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In the present note, we summarize some results needed to develop representation theory of
the titled groups about its structures.

§0. Imtroduction

Natural geometrical objects attached to noncompact real semisimple Lie groups
are the symmetric spaces and we have many deep results on representation theory of
these groups and analysis on these spaces, which are intimately related. In 1955
C. Chevalley, in his fundamental paper ‘“Sur certains groupes simples” (Tohoku
math. J., 7, pp. 14-66), develops fundamental theory of Chevalley groups over any
field.

At present we have a natural geometrical object attached to algebraic groups over
locally compact non-archimedean field, that is, Tits affine building. In the present
paper, we consider groups with “‘the discrete-valuated generic root-data system” in the
sense of Bruhat-Tits. Algebraic groups defined over a complete local field with perfect
residue field whose neutral component is reductive are contained in this class. To
develop representation theory of these groups which is explained in a forthcoming
paper, we summarize here some results of structures of these groups. We do not
endow our groups with any further topological conditions for the present. I.G.
Macdonald [3] and H. Matsumoto [4] get more deep results in the harmonic analysis
related to this class under some topological restrictions.

In §1, we describe some fundamental definitions and properties. In §2, we con-
struct a saturated affine Tits system associated with our groups, and in § 3 we construct
its affine building. In §4, we give the natural bornologic structure in our groups, and
in § 5, we give Iwasawa, and Cartan decompositions.

Our main results are these decompositions, Bruhat decomposition and specifica-
tion of actions of our group G on our building stated in §3. Some parts are informally
presented at 1979-Japan and France colloquy on ‘‘Unitary representations of groups”
at Strasbourg. The author acknowledge Professor J. Tits, Professor H. Matsumoto,
Professor T. Hirai and Professor N. Tatsuuma for their valuable comments and
encouragements.
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§1. Some fundamental definitions and properties

At first we will recall some definitions. Let V be a real vector space, V'* be its
dual and @ be a root system in V* with the Weyl group *W. We assume that there
is given a W-invariant scalar product in V. Fix a vector chamber D in V and IT
=II(D) be the system of simple roots of @ associated with the chamber D, and &%
(resp. @) be the set of positive roots (resp. negative roots) in @.

DermviTION 1. A system (T, (U,, M,),.s) associated with a group G satisfying the
following conditions is called a ‘‘system of generic root data” of type @ in a group G:

(DR1) Tis a subgroup of G and for each a € @, U, is a subgroup of G which does
not reduce to {e}, e is the unit element of G.

(DR2) For any a, be @, the commutator subgroup (U,, U,) is contained in the
group generated by U, where p, ge N* and pa+gb belongs to &, which we
denote by U, ).

(DR3) 1If a, 2ae @, we have U,, < U,.

(DR4) For each ae @, M, is a right coset in G with respect to T and we have

U*,=U_,—{e}<U,M,U,.

(DRS5) For a, be® and ne M,, we have nUyn~'=U, «,, where r,(-) is the re-
flection associated to a € P.
- (DR6) Denoting U™ (resp. U~) the group generated by U,, a € @* (resp. @), we
have TU* N U~ ={e}.
(DR7) Tand U, ae®, generate the group G.

As a typical example satisfying Def. 1, we mention Chevalley group over any
field. Moreover, let G be an algebraic K-group, with char (K)=0. Then it is known
that G is the semi-direct product of Levi K-subgroup and its unipotent radical Ru(G).
The group G/Ru(G) is reductive and we can associate with it a ‘‘system of generic root
data” taking its maximal semi-simple subgroup; that is, let G be a reductive connected
group: G is an almost direct product of a torus and its derived group 2G: 2G is the
maximal semi-simple subgroup of G and contains all unipotent subgroups of G: the
group G satisfies Def. 1.

ReEMARK. Let G be a K-group which is algebraic and connected whose any
proper closed invariant subgroup is finite, i.e., G is an almost simple group. Then we
have (U,, U,)="U,,; except for the following cases; Char(K)=2, G=B,, C,, G,, F,;
char (K)=3, G=G,.

Let N be the group generated by the union of M,, ae®. We have a unique
epimorphism *v: N—*W such that for each ae® and neN, nU;nn"1=U, with b
=vy(n)(a). Moreover, for each ae @, "v(M,)={r,}. We have the following
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ProrosiTiON 1. (cf. [1], p. 115) Let R={M,aell}. Then the quadruplet
(G, TU*, N, R) is a saturated Tits system with Weyl group N|T isomorphic to *W.

The conjugates of B=TU* are Borel subgroups. We note that N is generated
by the union of M,, aeIl and (*v)"'(e)=T=NnTU*. We have also N\ nTU*n!
=T. The injection of N into G defines a bijection of N (resp. W) on the";gc of double
cosets UH\G/U™* (resp. TU\G/TU™). (Bruhat decomposition)

Let X be a subset of I, "Wy be the subgroup of *W generated by r,, ae X. Put
Gy=U*T*WyU* and Ny=("v)"}(T*Wy). Then, we have Gy=U*TNxU* and it is
a parabolic subgroup of G containing B, and the application X+—Gy is a bijection of
21 on the set of parabolic subgroups of G containing B, and {Gy, X € 21} is a filtration
of G.

PRrOPOSITION 2.  For any we*W, let E,, be the set {a e ®*; w(a)e &~} and U,, be
the group generated by {U,; a€E,}. The group G is the union of sets U*T*v-Y(w)U,,,
weW. The correspondence w—U*T*v"Y(w)U,, is bijective. Let n be the canonical
projection G—G|T; G|T is the disjoint union of n(U**v~(w)U,,), we*W and given
w e W, the correspondence (u, u'y—u*v-t(wyu') of Ut x U,, into G/T is bijective.

Proor. Let E!, be the set {a € &*; w(a) e &*} and U, be the group generated by
{U,; acE,}. Then, we have U*=U, U,,=U,U,. By the Bruhat decomposition,
G=U*TNU,U,, G is the union of sets UtT*v~}(w)U,,.

Suppose that ut*v=Y(wu'=ut>v-1(wuy, u, u; €U*, t,t, €T, w, w, €W and v’
eU,, uyeU,, Putx=urrv!(w'. Letu"eU" be such that xu"x"*e U*. Then
we must have u”eu'"'U,u’ and we have U,=U,, and E ,=E,, E,=E, . Let
ae®*t. When wl(a)e®*, we have wl(a)eE, =E,, and (wyw !)(a)ed*, and
when w™i(a) e #*, we have —w ' (a)eE,=E,, and (w,w™!)(a)e o, so that w,=w.
Put y=>v"1(wu'(*v"}(w))~! and y,=v"Y(w)ui(*v_1(w))"!, then we have y=y,; and
u'=ujy, and also u=u, t=t,. c.qg.f.d.

DEerINITION 2. We call a family ¢ ={¢,: a € ®}, where ¢, is an application of U,
into RU {0}, a valuation of the generic root-data (T, (U,),.e) When it has the fol-
lowing properties:

(V1) For each a € &, the image of ¢, consists of at leats three elements.

(V2) Foreachaed, and keR, U, =¢;! ([k, ©)) is a subgroup of U, and we
have U, = {e}.

(V3) For each a € @ and each n e M,, the function

u > P (u)— P (nun=?)
is constant on UZ,.
(V4) Let a,be® and k, meR. Then if b& —R*a, the commutator group
(Ugps Uy, is contained in the group generated by the groups U,sgp pi+qm Where
p, g€ N* and pa+qgbe .
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(VS5) When a, 2a belong to @, ¢,, is the restriction of 2¢, on U,,.
(V6) For any ae®, uceU, and o', u" e U_,, when v'uu” e M,, we have ¢_, (u')

= ¢'a(u)-

We remark that for any a € @ and u € U¥,, there exits a unique element n=n(u)
€ M, such that u=u'nu", nUpn==U_,, nU_nn'=U, and u’, u”" € U%. The family
{Uux; ke R} gives us a filter base of neighborhood of the unit element in the group
U, Let ¢ be a valuation of the generic root-data (T, (U,),es) and put I',=I'?=
¢ (U*) for ae ®. The valuation ¢ is called discrete when I', is a discrete subset of R
for each ae ®. Let A: ?—R, be a function and ve V. Define ¥,=Aa)p,(u)+ a(v)
for each ae® and ue U,. Then ¥={y,: ae @} is also a valuation, which is written
as ¥=A1¢+v. Foreach ne N and w="v(n), we define (n¢),=o,,_,,(n"'un), ueU,.
Then we have a formula n(A¢ +v)=A(ne)+v(n)(v). The valuations ¢ and ¥=¢+v
(ve V) are called equipollent.

ExampLE. Chevalley groups over £-adic field

Let K be a £-adic field with discrete valuation ¢ and G be a Chevalley group
over K. Let U,, be a group such that U, ={u(x)e U,; xeK and ¢(x)=k}, acd
and ke R. Then these satisfy our Def. 2. '

§2. Construction of a saturated affine Tits system

Let ¢ be a discrete valuation and A4 be the set of valuations equipollent to ¢.
For each ae V* and ke R, we define o, ={x=¢+veAd/a(v)+k=0}. We call a,,
with ae ® and kel ,={¢,(u)luec U}, ¢ (u)=sup ¢, (uU,,)} affine roots of the space
A. We denote by 2 the set of affine roots. Let @"¢¢ (resp. $"™) be the set of indi-
visible (resp. non-multiable) roots in @. For each a=0,, X with ae P"*?, we put
U,=U,,. By its construction, we get

ProposITION 3. (cf. [1], p. 122) (1) The space A is stable under the action of
N defined in the above. For each ne N, the application v(n): y—mly of A is an
automorphism of the Euclidean space A, whose canonical image in Aut(V) is equal
to *v(n).

(2) For each ae®, and kel,, put M, ,=M,nU_,p; (k)U_,. Then the
image of elements in M, by v is the orthogonal reflection r,; with the reflecting
hyperplane

00, ={x=p+ve Ala()+k=0}.
(3) For each ne N and a €2, we have v(n)(«) € 2 and nU,n™' =U, -

Let H=v"1(e), W be the image of N by v and W be the subgroup of W generated
by reflections r,, with ae® and kel, N'=v (W), T'=TnN’. Let G’ be the
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subgroup of G generated by N’ and U, with ae ®. We call the group G’ the adjoint
group of G. By these definitions, we get

ProposITION 4. (cf. [1], pp. 123-128) (1) The system (T', (U,)ue) is a generic
root-data of type @ in G'.

(2) The set &' ={ae®|/I',#¢} is a root system containing ®"™. W is an
affine Weyl group and X is the corresponding affine root system.

The group G’ is a normal subgroup of G and G/G’ is isomorphic to T/T'=N/N'.

A point  of A is called special if for each ae &4, I'¥ contains zero. Taking a
special point as the origin, we identify "4 with V. We see that W is the semidirect
product of *W by the invariant vector subgroup ¥V n W, generated by translations ka?,
ac®ed and av is the inverse root of a, and k are elements of the subgroup of R
generated by I',; under the natural topology of W, W is locally compact and "W is a
maximal compact subgroup of W.

Let C be a W-chamber contained in D, and for each a € @, put fo(a)=inf {keR;
.2 C}. Let U, be the subgroup of G generated by the union of subgroups U, rca)
ae®and put B=HU_. Checking conditions of saturated affine Tits system, we get

PROPOSITION 5. Let S be the set of reflections with respect to walls of the cham-
ber C. Then BNN'=H and N'|[H=W. The quadruplet (G', B, N, S) is a saturated
affine Tits system.

§3. Construction of an affine building

In the situation described in §2, conjugates of the group B are called Iwahori
subgroups and each proper subgroup of G’ which contains an Iwahori subgroup is
called a paraholic subgroup. Let X be a subset of S and Wy the subgroup of W
generated by elements of X and put By=BWyB. When a paraholic subgroup of G
is conjugate to By, we say that it has type X.

We will associate to the group G’ the “‘affine building” and endow it with the
“bornologic structure”. Let F be the set of parabolic subgroups of G’. Each
paraholic subgroup P has type (P), and the latter defines a facet of the chamber C,
which we denote by Cp). Put I={(P, x)/PeV, xeCyp}. For each Pe/l, the set
F=F(P)={(P, x); x€ Cyp)} is called a facet of I with type ©(F)=1(P) and codimen-
sion Card (¢(P)). An application (P, x)~>x is called the application of I into C. Let
F be the union of facets of the facet F of I. We define chambers of I to be facets of
type ¢, and the facets corresponding to maximal paraholic subgroups are vertices of I.
When rank (@)=1, C is a I-simplex. The group G’ acts on I by the .action g(P, x)’
=(gPg~!, x) for PeV and xeC,p). By these constructions, we get the following
two propositions:

ProrosiTION 6. (1) For any type X, the group G’ permutes transitively facets
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_ of type X; let Py be a paraholic subgroup of G’ of type X, then G'[|Py is naturally
identified with the set of facets of type X. In particular, G'|B is identified with the
set of chambers in I.

(2) The closed facet F(P) is the P-stable point set of I and C is a fundamental
domain of G' in I.

ProproSITION 7. The set 1 equipped with the family of facets, the incidence
relation among facets and the affine structures on each of closed facet F(P), PV, is
a (poly)simplicial complex, and G’ operates on I by automorphism of (poly)simplicial
complex. In particular, when 1=1, 1 is a tree.

The next two propositions due to Bruhat-Tits are fundamental.

ProrosiTioN 8. There exists a unique mapping j: A—I having the following
properties;

(1) the restriction of j to C is the bijection of C onto F(B),
(2) forany neN'and xe A, we have

JOm)=nj(x).

Proor. The unicity follows from the fact C being fundamental domain. Let
Jjo: C—F(B) be such that j,(x) is facets containing xe C. Let x€Cyp), X' € Cypy,
n, n’ € N be such that

(1) njo(x)=n"jo(x), @ v(mx=v(n)x".

The condition (2) is equivalent to x=x' and w(n~'n’)e W,p,; the condition (1) is
equivalent to x=x" and n~'n’ € B,p,; and we have v~ }(Wp))=B,p,N N. Thus, the
condition (1) and (2) are equivalent and j exists and injective. c.q.f.d.

Note that j(F) is a facet of j(A) having the same type with F, j(F)=j(F) and the
restriction of j to F is a bijective affine map of F onto j(F), in particular the restriction
of j to C is a bijective affine map of C onto F(B), thus F(B) has a natural [-simplex
structure, and j(A4) has a natural affine structure.

~ We call the application j canonical application of A into I. An application  of
A into I such that Y(x)=gj(x) with g € G’ is called a structural application of I and
a subset of I which is an image of A by a structural application is called an appartment
of I. j(A) is an appartment which is identified with 4 and G’ acts on 4; gx=gj(x),
xeA and g e G'. Under this action, H is the fixer in G’ of A and N’ is the stabilizer
in G’ of A. Let ¢ be a structural application of I, and x € C, then y(x)=gj(x) which
belongs to gF(B)=F(gBg~T), gBg~! is a Iwahori subgroup fixing chamber gC, and
for any ne N’ and xe A, we have Y(nx)=gn-x=g-nx which belongs to g4, thus ¥
maps 4 to gA. G’/N’ is naturally identified with the set of appartments In some
cases, i may be continuous. -
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The group G acts also on the building associated to G'. We will specify this
action. The group G is generated by T'and G’ and we have G=T-G'=N-G'.

When n e N, we have nN’n~! =N’ and nBn~1 is the stabilizer of the chamber v(n)C
so that there exists an n’ € N’ such that nBn~!=n'Bn’~1. Moreover, let N be the
stabilizer of the appartment 4 in G. Then we have NcN and N=N(N nG)=NN’
=N. Let geG, then there exists g’ of G’ such that g’N’g’~*=gN'g™%, so that there
exists the unique permutation &(g) of the affine Weyl group W such that for any we W,

B&(g)(w)B=g'~lgBwBg~lg'.

We see that the application ¢: G— Sy, where Sy, is the permutation group of
W, is a homomorphism. Let g€ G be an element of Ker (£), then we have BwB=
g'~1gBwBg~1g’', we W. - This shows that G’ =Ker (¢) and for any g=tg’, g€ G, g' € G’
and te T, we have B&(g) (w)B=BE(f)(w)B, we W.

When P is a paraholic subgroup of type X in G’, 9P=gPg~! is a paraholic sub-
group of type &(g)(X) in G’. Thus, if y=(P, x) € I, the couple gy=(?P, {(g)x) is also
a point of I, and in this way, we define the action of G on the building I. Under this
action, the stabilizer of a facet F(P) in G is the subgroup P and B is the fixer of chamber
F(B).

PROPOSITION 9. Let A be an appariment and C a chamber contained in A.
Then there exists a unique application p=p 4 c of I into A, called the retraction of 1
into A with center C, such that (1) p(C)=C; (2) for each appartment A’ containing C,
there exists g € G' such that p(x)=gx, x€ A'.

By a structural application, we transport the affine-space structure of the space 4
into an appartment gA, in particular we could define a metric d, on the appartment 4.

There exists a unique function d: I x I-R . such that

(1) its restriction on A X A4 is the metric d 4,

(2) for each x, yel, we have d(p(x), p(y))<d(x, y) and when xeC, we have
d(p(x), p(y) =d(x, y),

(3) dis a complete metric on I and the metric space I is contractible.

Now we define the affine building of our Tits system (G', B, N', S).

DERNITION 3. The affine building I associated to the saturated affine Tits system
(G, B, N', S) is the set I equipped with the (poly)simplicial complex structure, the
family of structural applications and the metric.

The application y+->gy (g € G) of the building I is an isometric automorphism of
the (poly)simplicial complex I and permutes appartments, quarters and walls in I.

REMARK. (Oral communication by Tits) When the affine rank =4, the group G’
is algebraic and Aut(G")= Aut(l).
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§4. Bornologic structures

In this section, we will give the ““bornologic™ structure on the groups G’ and G.

DEFINITION 4. A bornology on a group G is a family 4 of subsets of G having the
following properties;

(1) 4 is stable under finite union and it contains all finite subsets.

(2) If MeAd and M'cM, then M' € 4.

(3) If M, M'ed,then M~tM' e 4.

We call a set M in 4 a bounded set. We see that {e} € 4 and when M e 4, M-!
also belongs to A.

The bornology defined by Tits system (G, B, N) is the set 4={X = G; canonical
image of X in B\G/B is finite}. Thus, G itself is not bounded.

Now consider our Tits system (G', B, N’, S) and its associated building I. The
group G’ acts on I as isometry. The group of isometries of I, Isom (I), has the natu-
ral bornology structure defined by sets M such that

there exists a point x €I such that {g-x; g e M} is bounded in I.

By these two definitions, we get the following propositions.

PROPOSITION 10. The bornology in G’ defined by Tits system (G', B, N', S) is
the inverse image of the natural bornology in Isom (I) by the canonical homomor-
phism of G’ into Isom (I).

Since the group G also acts as an isometry, we define a bounded set in G as inverse
image of a bounded set in Isom (I).

PROPOSITION 11.  Suppose & irreducible. Then, a subset of G' is bounded if
and only if it is a paraholic subgroup.

REMARK. When the group G’ is defined over some locally compact, non-discrete,
local field with discrete valuation, the subgroup B is an open and compact subgroup of
G’, and bounded subsets of G’ are relatively compact subsets, maximal bounded
subgroups are maximal compact subgroups of G'.

Each appartment has its natural Euclidean space structure and we may endow the
building I with (1) a topology invariant by G’ which is naturally defined by the metric
d, or (2) the quotient topology of the natural topology of the disjoint union of all
appartments (CW-topology). When the group G’ is G(K), the group of K-rational
points of an algebraic group over complete local field with finite residue field, these
two topologies coincide and the building I is locally compact and the group G’ is also
locally compact. :

OpPEN PROBLEM. What are conditions on the Tits system (G’, B, N’, S) to make
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the building I a locally compact space under its bornologic structure?

§5. Iwasawa, and Cartan decompositions

In this section, at first we will show that the Tits system (G’, B, N’, S) is a double
Tits system and will give Iwasawa, and Cartan decompositions of G’ and G.

Let us fix a vector chamber D in 4 and E(D) be the set of quarters in A with the
direction D. For any subset  of I, put P,=Fixg (Q) and P§=Stabg (). We
know that N'=P} and B=P{=P,, where C is the fixed chamber in D. Put Q)=
U {Pg; E€c E(D)}. Forany g ev (V) and E € E(D), we have wW(g)E € E(D) and gPrg~!
=P,ge- Thus, v-i(V)=4"c(0P) and Q=Qp=v"(V)Q} is a subgroup of G'. The
subgroup Q N N’=v"1(V) is also a normal subgroup of N’ and the quotient group
N’/(Q n N') is canonically identified with the Weyl group *W.

Let R be the set of reflections with respect to walls of vector chamber D. We will
show that the quadruplet (G, Q, N', R) is a Tits system with Weyl group *W.

DEFINITION 5. We call an affine Tits system (G, B, N’, S) a double Tits system
when the quadruplet (G’, @, N’, R) is a Tits system with Weyl group *W.

By Prop. 1 applied to the root-data (7', (U,)) in the adjoint group G’, it is suf-
ficient to show that Q=T'U*. It is necessary and sufficient for g to belong to Q9
that there exists a ve V such that t~gte B for all te T with w(t)ev+D. Since B
<U-HU* and U, H, U* are normalized by T, we have Q3 <U-HU*. Moreover
since {u € U~[tut~1 e B for v(t) e v+ D} ={e}, we have Q) =HU* and Q=T'U*.

Thus we get A

ProrosiTioN 12. (cf. [1], p. 154) The quadruplet (G', B, N', S) associated with
the adjoint group G’ is a double Tits system, and Qy=HU™*, Q,=T'U*.

We have, then, G'=QN'Q=U*+T’'N'U*=BN'Q=BN'U*. Let ¥ be the subgroup
of translations in W and for a quarter E e E(D), put Py=Fixs(E), 03= U {Py; Ee
E(D)} and Qp=v"4(V)0%. Then the group G has a decomposition

G=BNQ,, and G=BWB (“‘Bruhat decomposition”).

A maximal paraholic subgroup K of G’ (resp. a maximal bounded subgroup K
of G) is called a good subgroup when we have G'=QK (resp. G=0K), and these
subgroups correspond to special vertices of the building I. It is shown by Bruhat-
Tits that any group G, with double Tits system has Iwasawa decomposition and
Cartan decomposition with respect to good subgroups, and when a homomorphism
0: G,—~G, is B-N-adapted, G, has also these decompositions. (cf. [1], pp. 71-106)

We will give these decompositions in our case. Since our group G’ has a double
Tits system, we get
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ProprosITION 13. Let K be a good subgroup in the adjoint group G' containing
B. Then the followings are hold:

(1) Iwasawa decomposition G'=Q3VK=U*VK and the canonical application
of Vinto Q\G'/K is bijective.

(2) Cartan decomposition G'=KVpK, where Vp=VnD, and the canonical
application of Vp, into K\G'[K is bijective. LetteVp, t'€V, and t"e V. '

(3) If KtKnQJt"K+#¢, then for all dominant weights p of with respect to
(D), p(t—1t) 20, i.e., t=1(D).

4) KiKnQK=tK.

(5) Ift'eVpand KiK' KnKt"K#¢, t+1t =t"(D).

©6) YW KYKini"Kt" 'K=1"1KtnK.

Also, taking G, as our G', G, as our G and 6 as inclusion we get

ProposiTioN 14. Let K be a good subgroup of G containing B. Then the
followings are hold:

(1) Iwasawa decomposition G=QQVK and the canonical application of V into
O0p\G/K is bijective.

(2) Cartan decomposition G=KV K and the canonical application of V§ into
K\G/K is bijective, where V,=Vn D.

We have also (3) to (6) in Prop. 13 by replacing V, Vp, by V, V, respectively.

Thus, in some cases, we can consider functions (with bounded supports) which
are B-biinvariant, or K-biinvariant. In the forthcoming paper, we will give some
results of representations of these groups, and to specify the structure of ‘‘Hecke
algebra H(G, Px)”, where Py is a paraholic subgroup, may also be an interesting
problem.
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