Mem. Fac. Sci., Shimane Univ., 14, pp. 35–39 Dec. 20, 1980

Right Self-Injective Semigroups are Absolutely Closed

Kunitaka Shoл

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1980)

Hinkle [3] has shown that the direct product of column monomial matrix semigroups over groups is right self-injective. The author [12] has shown that the full transformation semigroup on a non-empty set (written on the left) is right self-injective and so every semigroup is embedded in a right self-injective regular semigroup. While absolutely closed semigroups has been first studied in Isbell [7]. In Howie and Isbell [5] and Scheiblich and Moore [8] it has been shown that inverse semigroups, totally division-ordered semigroups, right [left] simple semigroups, finite cyclic semigroups and full transformation semigroups are absolutely closed. In § 1 we show that every right [left] self-injective semigroup is absolutely closed. This gives alternative proofs that right [left] semigroups, finite cyclic semigroups and full transformation semigroups and full transformation semigroups are absolutely closed. By using a result of [5] we show that the class of right [left] self-injective [regular] semigroup has the special amalgamation property. In § 2 we show that a commutative separative semigroup is absolutely closed if and only if it is a semilattice of abelian groups. By using a characterization of self-injective inverse semigroups [9] we give a structure theorem for self-injective commutative semigroups.

§1. Right self-injective semigroups

Throughout this paper we freely use the terms "right S-system", "S-homomorphism", "right self-injective" and so on, which are referred to [12].

Let A, B be semigroups such that A is a subsemigroup of B. Then by Isbell [7] the set $\{b \in B \mid f(b) = g(b) \text{ for all semigroups } C \text{ and for all homomorphisms } f, g: B \to C$ such that $f \mid A = g \mid A\}$ is called the *dominion* of A in B and is denoted by $\text{Dom}_B(A)$. A semigroup S is called *absolutely closed* if $\text{Dom}_T(S) = S$ for all semigroups T containing S as a subsemigroup.

The following result is due to J. R. Isbell [7].

THEOREM 1. ([4, Isbell's zigzag theorem]) Let T be a semigroup and S a subsemigroup of T. Then for each $d \in T$, $d \in \text{Dom}_T(S)$ if and only if $d \in S$ or there exist $s_0, s_1, \ldots, s_{2m} \in S$ and $x_1, \ldots, x_m, y_1, \ldots, y_m \in T$ such that $d = s_0 y_1, s_0 = x_1 s_1, s_{2i-1} y_i =$ $s_{2i} y_{i+1}, x_i s_{2i} = x_{i+1} s_{2i+1}$ $(1 \le i \le m-1), s_{2m-1} y_m = s_{2m}$ and $x_m s_{2m} = d$.

By using Isbell's zigzag theorem we prove the following

THEOREM 2. Every right [left] self-injective semigroup is absolutely closed.

Kunitaka Sнол

PROOF. Let S be a right self-injective semigroup and T a semigroup containing S as a subsemigroup. Suppose that there is $d \in \text{Dom}_T(S) \setminus S$. Then by Isbell's zigzag theorem there exist $s_0, s_1, \ldots, s_{2m} \in S$ and $x_1, \ldots, x_m, y_1, \ldots, y_m \in T$ such that $d = s_0 y_1$, $s_0 = x_1 s_1, s_{2i-1} y_i = s_{2i} y_{i+1}, x_i s_{2i} = x_{i+1} s_{2i+1}$ $(1 \le i \le m-1), s_{2m-1} y_m = s_{2m}$ and $x_m s_{2m} = d$. Consider S, T as right S-systems. Let ι_T, ι_S denote the inclusion mappings $\iota_T: S \to T$, $\iota_S: S \to S$, respectively. Since S is right self-injective, there exists an S-homomorphism $\xi: T \to S$ such that $\xi \iota_T = \iota_S$. Hence, $s_0 = \xi(s_0) = \xi(x_1) s_1, \xi(x_i) s_{2i} = \xi(x_{i+1}) s_{2i+1}$ $(1 \le i \le m-1)$ and hence, $d = s_0 y_1 = \xi(x_1) s_1 y_1 = \xi(x_1) s_2 y_2 = \xi(x_2) s_3 y_2 = \cdots = \xi(x_{m-1}) s_{2m-2} y_m$ $= \xi(x_m) s_{2m-1} y_m = \xi(x_m) s_{2m} \in S$. This is a contradiction. Then it follows that $\text{Dom}_T(S)$ = S. Therefore we have that S is absolutely closed. The theorem holds.

The next result follows from Theorem 2 and Corollary 1, 2 of [12].

COROLLARY 1. I. ([8, H. Scheiblich and K. Moore]) Full transformation semigroups are absolutely closed.

II. The direct product of column [row] monomial matrix semigroups over groups is absolutely closed.

According to [11] a semigroup S with 1 is called *completely right injective* if every right S-system is injective. It is clear that all the homomorphic images of a completely right injective semigroup are completely right injective, of course, right self-injective. It also follows from [12, Theorem 9] that any direct product of completely right injective semigroups is right self-injective. Thus we have

COROLLARY 2. I. All the homomorphic images of a completely right injective semigroup are absolutely closed.

II. The direct product of completely right injective semigroups is absolutely closed.

REMARK. It easily follows from Isbell's zigzag theorem that a semigroup S is absolutely closed if and only if S_0 [S¹] is absolutely closed, where S_0 [S¹] denotes the semigroup obtained from S by adjoining with zero [identity]. If a semigroup S is right simple, then $S_0^1 (=(S_0)^1)$ is completely right injective. Thus it follows from Corollary 2 that S is absolutely closed. Also, if a semigroup S is finite and cyclic, then we can show that S_0^1 is a self-injective semigroup (see [12]). Then it follows from Theorem 2 that S is absolutely closed. These results have been obtained by Howie and Isbell [5].

Let a be any class of algebras. According to Hall [2], if for some index set I, $\{S_i: i \in I\}$ is an indexed set of algebras from a having a common subalgebra U also in a, then the list $(S_i: i \in I: U)$ is called an *amalgam from* a. If there exist an algebra W and monomorphisms $\phi_i: S_i \rightarrow W(i \in I)$ such that $\phi_i | U = \phi_j | U$ and $\phi_i(S_i) \cap \phi_j(S_j)$ $= \phi_i(U)$ for all distinct $i, j \in I$, then the amalgam $(S_i: i \in : U)$ is said to be *strongly embeddable in W*. If an amalgam of the form (S, S; U) from a is strongly embeddable in an algebra from a, then U is said to be *closed in S* (within a). If U is closed in S

36

within a for all $U, S \in a$ with $U \subseteq S$, then a is said to have the special amalgamation property. If every amalgam from a is strongly embeddable in an algebra from a, then a is said to have the strong amalgamation property.

The following result is also due to J. R. Isbell.

THEOREM 3. ([4, Theorem 2.3]) Let U, S be semigroups such that U is a subsemigroup of S. Then U is closed in S (within the class of semigroups) if and only if $\text{Dom}_{S}(U)=U$.

The following result follows from Theorems 2 and 3 above and Corollary 3 of [12].

THEOREM 4. The class of right [left] self-injective [regular] semigroups has the special amalgamation property.

The following example, which is obtained by modifying an example in Imaoka [6], shows that the class of right [left] self-injective [regular] semigroups does not have the strong amalgamation property.

EXAMPLE. Let $U = \{0, e, f, g, 1\}$, $V = \{0, e, f, g, h, 1\}$ and $W = \{0, e, f, g, x, y, z, 1\}$ be semigroups with the following multiplicative tables:

U	0 e f g 1	V	0 e f g h 1	W	0 e f g x y z 1
0	00000	0	000000	0	000000000
е	0 e f g e	е	0 e f g f e	е	0 e f g x y z e
f	0 e f g f	f	0 e f g f f	f	0 e f g x y z f
g	0 e f g g	g	0 <i>e f g g g</i>	g	0 e f g x y z g
1	0 e f g 1	h	0 e f g h h	x	0 x y x x y z x
		1	0 e f g h 1	у	0 x y x x y z y
				Z	0 z z z x y z z
				1	0 e f g x y z 1

By [11] U, V and W are completely right injective, of course, right self-injective and regular. Suppose now that the amalgam (V, W: U) is embedded in a semigroup S. But in S we have xh=(xe)h=x(eh)=xf=y and xh=(xg)h=x(gh)=xg=x. This is a contradiction. Hence the amalgam (V, W: U) can not be embedded in any semigroup.

§2. Commutative separative semigroups

Let S be a commutative separative semigroup. Then by [1, Theorem 4.18] S is uniquely expressible as a semilattice Λ of archimedean cancellative semigroups S_{α} $(\alpha \in A)$ and S can be embedded in a semigroup T which is the same semilattice Λ of groups G_{α} ($\alpha \in A$) where G_{α} is the quotient group of S_{α} for each $\alpha \in \Lambda$, i.e., every element of G_{α} can be expressed in the form ab^{-1} with a and b in S_{α} .

Let ξ , ψ be homomorphisms of T to any semigroup W such that $\xi | S = \psi | S$. Then for each $\alpha \in \Lambda$, $\xi(G_{\alpha})$ and $\psi(G_{\alpha})$ are contained in a subgroup H of W. Hence $\xi(a^{-1}) = \psi(a^{-1})$ for all $a \in S_{\alpha}$. Because that both $\xi(a^{-1})$ and $\psi(a^{-1})$ are inverses of $\xi(a)$ in the group H. Then it is clear that $\xi | G_{\alpha} = \psi | G_{\alpha}$. Therefore we have $\xi = \psi$. This implies that $\text{Dom}_T(S) = T$. Therefore if a commutative separative semigroup S is absolutely closed, then S is a semilattice of abelian groups. Conversely, by [4, Theorem 2.3], a semilattice of abelian groups is absolutely closed. Thus we have

THEOREM 5. Let S be a commutative separative semigroup. Then S is absolutely closed if and only if S is a semilattice of abelian groups

In [10] we studied self-injective non-singular semigroups and showed that every self-injective non-singular semigroup is a semilattice of groups and that every commutative non-singular semigroup is separative. Furthermore, by Theorems 1 and 3 we have

THEOREM 6. Every self-injective separative commutative semigroup is a semilattice of abelian groups.

In [9] B. Schein characterized self-injective inverse semigroups as follows:

Let S be an inverse semigroup and E_S the set of idempotents of S. A subset B of S is compatible if for each $b \in B$ there is $e_b \in E_S$ with $be_b = b$ and $be_c = ce_b$ for all $b, c \in B$. Define an order \leq on S by $a \leq b$ $(a, b \in S)$ if and only if $a \in bE_S$. Then (1) S is complete if every compatible set B of S has the least upper bount $\lor B$ relatively to \leq , (2) S is *infinitely distributive* if $(\lor B)a = \lor Ba$ for any compatible set B of S and for any $a \in S$, and (3) S is E_S -reflexive if $st \in E_S$ $(s, t \in S)$ implies $ts \in E_S$.

THEOREM 7. ([9, Theorem 2.3]) Let S be an inverse semigroup and E_S the set of idempotents of S. Then S is self-injective if and only if S is complete, infinitely distributive and E_S -reflexive.

Here we can obtain the following

THEOREM 8. Let S be a commutative semigroup. Then S is self-injective and separative if and only if S is a semilattice Λ of abelian groups G_{α} ($\alpha \in \Lambda$) satisfying the following conditions: (1) Λ ($\cong E_S$) is self-injective, (2) for any set $\{g_{\alpha}\}_{\alpha \in X}$ such that $g_{\alpha}e_{\beta} = g_{\beta}e_{\alpha}$ ($\alpha, \beta \in X, g_{\alpha} \in G_{\alpha}, g_{\beta} \in G_{\beta}, e_{\alpha}, e_{\beta}$ are identities of G_{α}, G_{β} , respectively), there exists a unique $g \in G_{\gamma}$ such that $ge_{\alpha} = g_{\alpha}$ for all $\alpha \in X$, where $\gamma = \vee X$.

PROOF. The "only if" part: Let S be a self-injective separative commutative semigroup. By Theorem 6, S is a semilattice Λ of abelian groups G_{α} ($\alpha \in \Lambda$). Let E_S

38

be a semilattice of all idempotents of S. Then E_S is isomorphic to A. On the other hand, it easily follows from Theorem 7 that E_S is complete, infinitely distributive, equivalently, E_S is self-injective. Therefore the condition (1) is satisfied. Let $B = \{g_{\alpha}\}_{\alpha \in X}$ be as given in the condition (2). It is clear that B is a compatible set. By Theorem 7, there exists $g \in G_{\gamma}$ such that $ge_{\alpha} = g_{\alpha}$ for all $\alpha \in X$ ($\gamma = \lor X$). The condition (2) is satisfied. The "if" part: We first show that S is complete. Let A be a compatible set of S. If A is empty, then the least upper bound of A in E_S is the one of A in S, since E_S is complete. On the other hand, if A is non-empty, say, $A = \{g_{\alpha}\}_{\alpha \in X}$, then by the condition (2), there exists $g \in G_{\gamma}$ such that $ge_{\alpha} = g_{\alpha} (\alpha \in X)$, where $\gamma = \lor X$. It is easy to check that g is the least upper bound of A. Therefore, S is complete. Since E_S is infinitely distributive, so is S. It is also clear that S is E_S -reflexive. Then the theorem follows from Theorem 7.

References

- A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Vol. 1 (1961), Amer. Math. Soc., Mathematical Surveys, No. 7, Providence, R. I.
- [2] J. E. Hall, Amalgamation and inverse and regular semigroups, Trans. Amer. Math., 246 (1978), 395-406.
- [3] C. Hinkle, Jr., Generalized semigroups of quotients, Trans. Amer. Math., 183 (1973), 87-117.
- [4] J. M. Howie, An introduction to semigroup theory, London Math. Soc. Monographs, No. 7, Academic Press, London and New York, 1976.
- and J. R. Isbell, Epimorphisms and dominions, II, J. Algebra, 6 (1967), 7–21.
- [6] T. Imaoka, Free products with amalgamation of bands, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 10 (1976), 7–17.
- [7] J. R. Isbell, Epimorphisms and dominions, "Proc. conference on Categorical algebra, La Jolla, 1965", Springer-verlag, 1966.
- [8] H. E. Scheiblich and K. C. Moore, \mathcal{T}_{x} is absolutely closed, Semigroup Forum, 6 (1973), 216-226.
- B. M. Schein, Injective monars over inverse semigroups, Colloquia Math. Soc. Janos Bolyai 20, Algebraic theory of semigroups, Szeged (Hungary), 1976, 519-544.
- [10] K. Shoji, Self-injective non-singular semigroups, Proceedings of the 3rd Symposium on Semigroups held at Inter-univ. Seminar House of Kansai, 1979, 69-78.
- [11] ——, Completely right injective semigroups, Math. Japonica, 24 (1980), 609-615.
- [12] ———, Injective hulls of certain right reductive semigroups as right S-systems, Mem. Fac. Sci., Shimane Univ., 14 (1980), 25–34.