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On the Vibration under Shearing Forces
of an Elastic Plate,

Misao HASEGAWA

I. Introduction

Let us now consider the problem of an elastic thin square plate under shearing
forces, We assume the plate is clamped at edges. Ttis very interest and important
_ in theoretically and practically to solve these problems. But owing the boundary

conditions that edges are clamped, it is almost impossible to obtain exact solutions
~ and the solutions hitherto obtained are in most approximations.

The problem of the stability of the clamped square plate under shearing forces
at the four edges ‘discussed by Prof. S. Tomotika, Prof, K. Hidaka and Prof, S,
Iguchi. S, Tomotika and I. Imai used the Rayleigh principle to find the solution,
K. Hidaka collatz’s method and S, Iguchi his own method. The transverse vibration
of the square plate with four clamped edges are discussed also S, Tomitika and K.
Sezawa. The former used at first Taylor’s method and then the variations method
and found the more exact solutions. ‘

We will now treat the problems of transverse vibration of a square plate under
shearing forces at the four clamped edges. We will now apply Reyleigh’s principle
to the problem. K. Munekata was also discussed this problem by the method which
Lamb used in the problem of hydrodynamics. The allied problem has been dis-
cussed by R, V. Southwell and S, W, Skan . They treated the case of a trans-
- verse vibration of a flat elastic strip under shearing forces at edges. The bounda-
ry conditions they used are a simple support and clamping.

. Fundamental equations
Y We shall employ the usual approximate theory of
L — § thin plates, rotatory inertia being neglected. Let us
T take axes'Ox, Oy in the middie plane of the undis.
‘ S turved plate as in Fig. 1. (a), O being its center and
S 1 0 > x and axis Oz perpendicular to the plate. The edges
' X=xa, y=-a are assumed to be subjected to shear-

‘ ing forces, of uniform intersity S per unit length of
g edges, acting in the directions shown. The stress-
Fig. 1. (a) resultants N,, N, and S and stress-couples G,, G,
H, acting on a distorted element of the plate are shown in Fig, 1 (b) and the
‘equations governing the transverse displacement of the middle surface are
h2
a;:r{ aa?’*’?s aiav; o

aG] aH,
ox Oy —Na= (1
0H, 0G, g

ox oy The=0
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235N in ‘which
Hi Nz ‘2a=length of side of the plate,
S h=thickness of the plate,
w=displacement 'of points in the middle plane
_Z‘ y Ha ., in direction of z,
1 [ P
((L* t t:me
* ML l'G Z i o=density of the plate ,
Ng D=1E_hg2 the flexural rigidity,
Fig.1 (b) i * g=Poisson’s ratio.

E=Young’s modulus.

Gj= D(givf g—;‘;!>

1w | Ow ' : ' (2)
5 “5%) T
=D—s )6 6Y

_ Eliminating N,;, and N, from (1) and substltutmg for (r,, G2, and H, from(Z),
we obtain as the differential equation to be satisfied by w,

Ddw 296‘“’ PR (3)
6’2 92

W—l- @—372

The boundary conditions are

w=90 and 6_W=0 when x=:a, ]

G,y= —D(

in which 4=

ox

W= Oanda =0 when y=za.

(4D

Since it is very (_iszlcult to find the solution of the equation (3) satisfying the
boundary conditions, as an altérnative, we will apply Rayleigh’s principle.

According this principle, the mode of the displacement is assumed, and the fre-
quency is determined from the energy condition

V + T = const.

m which V denotes the total increase in potential energy, and T the kinetic energy
of the motion, in a vibration of the assumed type. By applying this principle,
much labour can usually be saved, without serious loss of accuracy. And if the
appropriate boundary conditions are satisfied, and if the mode is suitably chosen in
other’ respects, this procedure will result in ‘a close estimate of the gravest fre-
quency natural to the system, and the estimate will be too high for the true value,
Its accuracy may therefore be improved by including one or more arbitary para-
meters in the assumed mode, and subsequently adjusting these as as to, make the
resulting estimate of frequecy a minimum, just as in Ritz’s method. The value ob-
tained by this principle is a upper limit of the value. '

The expressions for V and T are:
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—D f f [(Aw)2+2(1 a){(aa ;"y) %;‘Z%;}Jf%%—waa ]d x dy, (5)

v fGae.

the integration extending over the whole area of the plate,
It will be noticed that the terms in the integral of V which involve (1—¢) are
transformed to

2a-f2 (e Z)- 255,

and so vanish in integration and V takes the expression:

1. f( . .25 dwaw ‘ .
For brevity, we put
x=ag, y=ay. (8)
Then V,. and T are transformed as follows:
32W 6’2w ZSazaw oW
ff[w ‘_2 7D oz 5g JXY (9
_ pha2 ow\?
T = P f f (Gt)asan. . (10)
-1 1

When the plate vibrates in a normal mode, we assume for the expression of dis-
placement w satisfying the boundary conditions (4) that
w=w(1—£*(1—7")*1+C,(&%+7°) +2C,5 9} cos(pt+¢) 11)
in which w, being proportional to the displacement of center of the plate, and C,
and C, arbitray parameters. The expression (11) is introduced into V and T (9),
(1_0'), and then by Rayleigh’s principle (5), we obtain the following relation :

1 258
(13 13775C + gr77eCs *+ 1091475 2 )+ A rog7sCC - 5w75C7)
_ 1 1 92 4
=K (99225+ 1091475 *+ 1560800257 +12006225C22) ) az
in which '
A=23%
and K=OHR ‘ G

To make the shearing force S minimum for a given frequeacy, we must deter-
mime C, and C, as to satisfying the following equations.
0A 0 0A

2, % 3C, = =0. 14
After differenciating equation (12) and substituting (14) for gé and gé from
(14) ‘we obtain the following equations determining the parameters C, and Cl
4 32 2A 184
13475 77775% + 1001475 "K(1091475+156080925 ) (15)
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(onrEt: +A(1091475“1 99225) = T9006225C* (16)

From these equations we obtain the values of C, and C,:

- 286(K —81)(5896 —8K) — 17303 A2
~ (52272 — 92K (5896~ 8K) — 3146 A¥

C = e

and

121(26]36 46K) 3146(K — 81) A (18 ,
(26136 — 46K (5896 — 8K ) — 1573A? t b Voris 13

Substituting (17) and (18) for C, and C, in equation (12), ‘we obtain the relation
between A and K, that is, the skearing force and the frequency of vibration, We

C, =

then find values of shearing force for various values of the frequenc1es of v1bratxon
and these values C, and C, are given in Table 1 and p’otted in Fig, 2 and Fig, 3.

Table I
K 0 10 20 30 40 50 160 70 81
A 764516 72323 67.650 62.512 56.620 49.799 41.494 - 30451 O
c; —0.82027 —0.739189 —0.652130 —0.560659 —0.463289—0.360493-~0.251500 —0.135868 0
c, 180296 1.70€88 159627 147366 133216, 1.16823 . 0.969420 0.707571 0 -

From Table 1, it is found tke miniinum value of A for which the stability can
become neutral is 76.4516. This value was obtaired by S. Tomotika and I. Imai

K. Hidaka found for 2a=1 the value l§Sz—2‘9 7941-and Tomotika’s value was 582
=30.9847. These two values are in good agreement.
In the case A=0 no shearing forces exert
and S, Tomotika found for this case $0
L0chatn” 132048 :0 \“‘\Q:\
In the present case we find, - \Q{]\
16”%3;1})2:@:13 3047 40 N
sy o \ N
By comparing- these two values, there is a [ \
good agreement. From ahove two cases we e \
may conclude that the values in the Table 1
express good approximate values for their 0 0 By a0 8y 80
true values. On the other hand, Munekata Fig. 2' ...Munekata’s curve
obtained the following results which are show- —Auther’s curve
n in Table 2,
Table 2 (Courteéy of Mr. Munekata, Kyoto Univ.)
. K 0 25.94 45.42 63.10 74,72 80.34 8154
A 7614 68.00 58.00 44.00 28.00 - . 12.00 0

In Fig, 2, Munekata’s curve is shown in a broken hne for comparleon From this
figure, we see that both curves are in fairly agreement ~We can find thus the
shearing force necessary to perform the transverse vibration in a certain normal
mode of frequency p/2mw.
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" If we shall consider to find the values of frequency of transverse vibration
corresponding to a certan shearing force, we must determine C; and C, so to
satisfying the following conditions,

oK oK | . o
oC, ac, = a9

And the equauons determmg G and C2 are the same with equatrons (17) and (18)
and in this case, we obtam the Table 1 Table H Wthh will serve in both these
cases.

) and

. Summary
By applying Raylexgh prmcxple, we ha ve trearted tbe problems of transverse
vibration of a square plate under shearmg forces at the four clamped edgea The
relation between the shearing force and the frequency of the normal mode “of vib-
ratxon was found in Table 1. and showen in Fig, 2.
“From thls figure, we may evaluate the correspondmg values of the frequency of
v;bratlon to a grven shearmg force, or vice versa.
In conclusion, I Wlsh to thank Prof. Tomotika for his encouragement and also to
Mr. Munekata for permlssron to make use of the data contained i in Table 2.
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