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On the Transverse Vibration of a Square Plate

with Four Clamped Edges.
(read at they annual meeting of tﬁekphysica’l society of Japan, 1948)
Misao HASEGAWA

[. Introduction

1. The problem of the transverse vibration of a squaré plate with four clamped
edges is‘one of the most important and interesting characteristic value probleni ‘in

_ elastokinetics. Prof. S. Tomotika has discussed this by ‘two different method i, e,
‘the metbod of treatment similar to that used by G. I. Taylor‘and ‘the method of
solvmg a minimal problem, and obtained the results that ta*hp?/Dr?= (3. 6462)*
=13.2948, and .(3.6461)2=13.2940. Tn this equation, p'is the frequency in 27 seconds
of the fundamental mode,,p,thé density of the ,materizjl of the plate, and a the
length of the side of the square. Also D is the flexural rigidity and is given by
the formula D~E—(1 —0%)-}, E and ¢ heing Young’s modulus and Pmsson s ratio

of the material of the plate respectively.

K. Sezawa and S. Iguchi have discussed the same problem by their own methods.
However, they did not considered the rotatory inertia treating this problem. Now
we shall discuss the same problem by considering the rotatory inertia.

We shall apply in this problem the method of solving a minimal problem.

.. Transverse Vibration of a Square Plate Clamped at four Edges.

2. Let us take the coordinate axes (x, y) in the middle surface of a square
plate of uniform small thickness such that the origin coinsides with the center of
' _the ‘plate and the axes are parallel to the sides; we denote the length of the square
and- the thickness of the plate by a and h respectively, Let the «density, Young’s
modulus and poisson’s ratio of the material of the plate, which is assumed to be
_ uniform and isotropic, be denoted by 4, E and s ~res})ectisrely. ]

- Then, if w be the transverse displacement of a point on the middle surface the
. differential -equation for the. transverse vibration of the plate is
e e
where D denotes the flexural rigidity, given by the formula :
3
When the four edges of the square plate are clamped, the boundary conditions

at.the edges are

_n Ow _ _oa
w=0, Fr at X=£—5
@)
w=0, W 0 at  y=x2 o
"oy T =*r |
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Writing x=a¢/z, y= an/x, the square Whose sides are x=xa/2, y = xa/2 is
transformed into a square whose sides are 5 +n/2 7= +n'/2 and equatlon [€))
is transformed as follows ; i

dw chat 8 [ _h’rY(dw , 0w ) _
T 2ot g Dot e 1= Taaalges + 5,7 )t =0 ®
while the boundary conditions hecome as follows ;
ow g o
w=0, %20, at &=xT, ] “
—0 0w _ T ;

’ W“Oy 6—77“0’ . at p==x 2 T i .
When the plate vibrates in a normal made, the displacement w takes of the form

w. = W cos (pt+e), « ; et 3),

where W is a function of & %, and p:is the frequency of vlbrauon in 27 seconde
cos(pt+e) is the nermal coordinate and W’]Sthe normal function, If we put. (5)
in (3) we.get the following partial differential equation for W ;

PW o, BW W SW . BWN o
G5t Zagrgyt gt — K {W-re (G ) -0 @
or 44W —Kk{W —2g24W}=0 - 6)
where ' : o S e
_ 62 82
A=oE oy |
_ oha'p* ; - ¢ hib vori
and k= (7N
' _h%g? v . .
ggc2432' v . 5 (8)

The bougdary conditions to be satisfied by the normal functlon W at the edges
Qf the plate now become

W 0, 66\2[ =0 . at 5=i%, : slg
W P )
W 0, 3? =0 at 9= iT

Our problem is therefore ‘to }ind the characteristic' values' k2 of i the -differential
equation (6)” under the clamped edge conditions (9). The least - value of k. for a
certain value of g corresponds’ evidently: thh the smallest: value- of piice;, the
frequency of the fundamental mode of vibration. ,

Now if we confine ourselves to the most important case of the fundamental mode
of vibration of a square plate with four clamped edges, the problem of fmdmg its
frequency is equivalent to solving the follomng minimal p.roblem ; Problem ; Tt is
required to. find the least value of the expression;

- J' [ cawy az ay
TN [ Trwes 200+ 00 e 0

for all functions W(¢, ») which have continous derivatives up to,;the fourth order

(10)
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in the square C : |¢| = g_rzr_, %] ST’ and which also satisfy the conditions:

ow

w=0, W_o, f an

on the boundary C: | ¢ | =—g—, | 71 =—~27r— of the square. The double integrals are

taken over the square S, n being the normal to the boundary and g 4 constant.
. A Modified Minimum Problem and its Solution
3. But as it is very difficult to find the least value of the above problem.
Weishall now consider. the following modified problem:
It 1s requn'ed find the least value /' of the expressmn

V(v);f f (Av)"dg A

T
I (G G Paran”
for all functions v (¢, ) which vanish on the boundary of the squaré plate and

satisfy following m conditions on C:

ovee [
C

_instead of ,\gﬁ.:=0," ds beingﬂ a line element along C and g a constant, The double

12)

gﬁ—lds:O; (j:l, 2)"'9 m).y : ’ (]3)

integrals are taken, as before, over S; while the single integrals (13) are taken
along the boundary G and the functiohs g,j_ are taken as follows:

Il

*55

g ;‘ﬁc-cos(Qj—l)é‘ on g
: : (14)

1+
N’N- N!N

—-CsCOS(ZJ 1)77 ‘ on‘ £=

where the Cy’s are certam constants.

We shall apply to this modified problem the gereral principle in the calculus of
variations, which may be expressed as follows: .

If in a minimal problem some of the conditions are made less stringent, the
minimum value in thé modified problem carnnot be greater than that in the origi-
nal problem.

Then, it follows from" this general principles that

M= pt = = phm) :
and that u m 1S not greater than the true minimum value of k? —pha4‘ */Dn* for a
certain value of g. The values g% 1y’ -, u’m are therefore a non- decreasmg sequence
of lower limits for the true value of pha‘p?/Dat.

4 We shall now obtain the Euler equation and the boundary conditions for the
the modified problem. (This can be done easily by applying the usal, analysis in
the calculus of variations.) Thus, if we denote by . u%m, 2, a, -, am Lagrangian
indeterminate multipliers, we obtain the Euler equation and the houndary conditions,

for this problem by putting
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i, ff(dvﬁdgdv—yszfvzdgdp——ég it j{( )+ ( 7) Jae car

—zza,f g»“ds] T as

where ¢ is the symbol 'of ‘variation.
Performing the variation we get

J‘fdv{ddv ,c:,,,,2v+2;42 g?dvyde dy

+ _g[{dv — 2layZey- ,}%%~ {%‘—‘—’+., 2#2,; }avjdséb. > , (16)

Since, however dv is arbitrary n the m51de “of the square and OGV/Gu is also
arbitrary on the boundary of the square, while dv on ‘the boundary is zero, we
obtain from (16) in the inside of the square S, i

AAV p:u-v +2”m1gzdv 0 xG ‘ : I » (] 7)
and on/the boundary C, sty ‘ , 11

v=0, : 0D (i «(18)

AV"‘Eajgai . : L Q9)

The equatlon (17) is the Euler equatlon for the modified minimal problem under
consideration, and (18) and (19) are the correspondmg ‘boundary conditions. ~ -
Now ‘we can show that u® which'has been- hitherto: used as ‘one of: the:Lag-
rangian indeterminate multiplers isreally equal to the minimum value of the expres-
sion V(v)/T (v) defined by (12) subject to the boundary condltlons v=0 and

G”"I“I(an )g -t ds 0. For this purpose we multrply both 31des of the equation

(17) by v and mtegrate over S. Then we get using Green S theorem

.f .f [(4V)? = pm®V* =2 pug?4v] d2dy + f [(V@d“v“ 4v g;l;) grY }ds

But, by the boundary conditions (18) ), (19), ~we get: : :
,,msz i (v agedvydg dy - f f (dv)eds dy Eai f B - . (20)

Thus, we see from this equatlon that the Lagranglan multlpxer pm?is mdeed
equal to the minimum value of V(v)/T(v). with the boundary.conditions v = 0, and

Gyjy = )gg,_l ds=0 (j=1,2,---,m) in the edges of the square.

" 5. Now we' shall show that m®is not equal to the ‘smallest’ characteristic value
of ‘the problem of transverse vibration of a square plate with four supported edges,
In the case of a square plate with four supported edges, the differential equatlon for
the normal function is, denoting it simply by W¥,

AAW* Z K2 (W* L 2g24W*) =0, L aich ea))
and the boundary conditions on the supported edges are 35 ?.@ :
W=, 2

AW*=0,
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and it will be proved that the smallest characteristic value is k*>2.
Thus, the already meationed general principle in the calculus of variations yields
immediately. the result that : 3683 3 }
oot X 2 , ] ~(23)
6. We shall proceed to find to the solution of the differential equation (17) sub-
ject the conditions (18) and (19).
Now, we know that, as shown in the preceeding paragraph,
2SS S i
On the -other hand, if: we apply the Rayleigh’s principle to the problem: of trans-
verse vibration of a square plate with clamped edges by .assuming the mormal
function W m the form W = w, (1 -1 — y) we can get the reault that
ke=1330(1 + 20
evidently greater than the true value of pha‘p?/Dr?. Therefore we have the follow-
ing inequalities '
2 m<13, e

or ‘ 4 _ ,
14< un?<3.6, ) 24)
for all values of m for small values of g. It follows immediately from these in-
equalities that )

1<V im <3. , (25)
Now the solution of the differential equahon (17) under the condmons (18) and
(19) can be obtained in the form :

V=SV | (26)
i=1 - . . ’
where
i i=1:"
= (cosh-~/1 g-p‘,. + l/,u.,. +8um* cos ~/g2,u,., -1+ vy 2+g4

77

— Cos—- ~/g o — 1+ 4 ,am~+g*',um‘ cosh JI 22ua® + V prin? +g*,um4 77)cos &

+ (COS hT Jl '““82/fm2 + 'l//‘:-;mz‘*‘ g,"/fm4 Cos ngﬂm -1+ l/llm2+g4ﬂm2 S

T ' p \
- COSTJ 2w’ =1+ vV pm® + 23 pmicosh \/ 1-g% 2 4y el + St § )cosv

’ 27-a
(i) i=2,3,--,m (27-a)

Vil = ( cosh—;t-J(Zi ~1)2~ g2+ V td+ g cosh J(zi 12— g%t — V e + Bt 0

—cosh 5o/ (2i~1)* g~ ¥ ftul + §'pu* cOSH ,\/ @i—1)Y— gl + V ol +2m ;7)
\ : T Xxcos(2i—1) ¢
+ / cosh L J @i—1)—g%m2+ v llmz'*' gumicosh \/ (2i—1)2 —g'~’ 2 — Vv ,um‘~’+g ot 5

cosh J(21—1)2—g 1m? — Vg + 8 pmcosh J\Zi—l,?—g?ﬂm2 + v um2+g4p.a.45)
xcos(2i—1)yp: (27b)"
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The Ay’s are constants, and the i-thconstat A is- proportional to the correspond
ing-i-th-constant & in'(19); so that'A;’s are not simultaneously. zero.

It found that the boundary condition for the modified minimufy problei that v=0
on the boundary is satisfied by the above expressnon for v. The A/s'must then
satisfied the 'second boundary conditiofi (185, whlch may be Wrxtten m the torm

}_,Ai.f2 (a‘g;"l/‘ cos(zj TR AFL 0 (Gt wy s Wl avagy
i=) _;_g ' = 2 g \
since ‘the expression'for’ v glven by (26) i symmetucal with respect o s and 7
'»We denot for brevity fiw sislg 9 2k #1101}

foats

} Qiif f : (6V" ‘) COS(ZJ 1)9 dy. (1, Jh= 1 2 . ,m) oy {5 , (29)
, R 4_?. v
Then the equations (28 Y hecome | B
1A, Cy=0 . (j=1,2,---,m) , (30)
i=1
Sin_cg, as mentioned already, all the Ay’s do not vanish simulta 1eou<51y," we must
have , I
Ciu G - Cim dedt zoitifsuns
Ay = Cz] sz sz -0 . o (31) ’
Cm C o, Com s w2

Tlns is a transcendental equatlon for determmg L - and 1ts least pos;txve root
gives the required lower limit for the true vaiue of phaip? /Dn4 »

7. The expression for the C,j's are easily obtained in the form : i '
for i=1, j=1,2,.---,m

" Ciy = cos 5 /8% a1 +V prud + g4um* cosh #\/1~0wm2 + l/ﬂm2+g o N

o A@-DV o T it gl
. -[(‘l)f lﬂmﬁ+g‘§e:4f{)1fg?p?+g(§lj B oy 24 {*/ 8 ni = 1 +'/""‘2+g4"“‘

T
xtanfé ~/g2ﬂmﬁf1 AV gt ‘/1,—g~,um2 + Vet + Bt

%tanh%,v/l'—gzpmm— l/;—j,;-,z‘r—f—‘_g“_,.' '“4‘%)'-' LY NSNS soo T (32a)

and‘for i=2, 3,"'m, j=1, 2: s, IN

Ciy=cosh T JQ—1)"~ gta’— v/ i + G g’ COSH T [ 2= 1) = pra® + pru” + 8t

r( S — AQi-D@2j =DV o’ + 8w’ :
{@i=1)Y2 =g+ Ci =P um*+ g umt)

: +i>‘,, 2{/(21—1) gz,jm - 1/,,,,,,-+gu,..4 tanh 2J(21—1> g,,m - 1/,,,,. +g4#m

- /(21—1)-—g2p 4+ +g T tanh M/<21—1)2 g ym‘+ n/um2+g = }J(SZb)

where
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oy = {1 =5
T d
Now, we put 7
byj=(~1)i-" 42—V 4 gy

et g —1- g (2= P

oy Gt 1+ T Bt tan [~ 1+ V i G

+ /1—g2ym2 +V e+ Bipat tanh _JZL ~/1'—g2/1m2+ v um2+g4ﬂm4} (j=1,2,---,m) (333)

by=(—1)i+i-1 42§ —1D)Ci— 1)y s+ g ttm?
A T {@I-1y— g%’ + @] — D= (Gt + 8 pm®)

+ %{ VCi=1Y =g’ ~) pu+ ghpm® tanh 7 /(21—1)— 8%~ v/ o + &

i ,/(Zi—l)ﬁ—gzp.,.2+,7ﬂm2+ ot tanh—g—/(Zi——l)e—gzpmz—!-;/pm"'-i—g*/,gm‘*}

i=2,3,.-,m
(j=1, , (33b)
It is easily found that when (,j=1,2,:-;m)

by = by
Then we have

Cy= cos%x/gzﬂmtl +1 i+ g umt cosh —72r~~/1wg2,um2+ V ot + 8w bij,
(j=1, 2,“',1’1'1) »

Cy= cosh §. (=13 = u’ —y/ 1’ + £ O b @137 = g%t + ¥ o+ ¥ by

i=2,3,..,m
<j=],2,w,m) . GH
and the determinal equation (31) becomes
by blz"'b]m
dm = :21 2 Pm | g . (35)
bt Dms---Pam

We shall now find the least positive root p, of this determinal equation.
V. Calculation of the Roots sy, 5, #s and sy
8. We shall now find the least positive roots um of this determinal equations 4,,
ds, 43 and 4, for h/a=01, 0.2 aad 0.3. For this purpose the values of 4, for
appropriate several values of ., are calculated and then the least positive root
is obtained by using Lagrange interpolation formula. The results obtained here are
given in Table T, II, TilL

Table 1. h/a=0:11

* ffm 4, 43 4, Jim 4y

3.605 —0.02109 0.038887 = —0.0348405 3.5 0.2150
3.610 0.00674 0.602626 —0.0049380 3.6 —0.0819
3.615 0.03950 —0.039277 0.0335940 3.7 —0.3334

Root 3.609 3.6103 3.6107 ~3.5705
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Table II. h/a=02

Um 4, 4 4, Um 44
3.50 —0.03558 0.054348  —0.0478360 34 0.1969
3.505 —0.01031 0.023173  —0.0205100 35  —0.0937
3.510 0.02097  —0.015520 0.0125117 36  —0.3530
Root 3.507 3.5082 35082 . 3.466

Table III. h/a=0.3 ,

Hin 4s 4y 44 ‘ " " 4
3.350 —0.02618 0.040695  —0.0340722 3.2 0.3586
3.355 0.00509 - 0.003289  —0.0034244 33 0.04697
13360 0.03476  —0.032247 0.0253866 34  —0.2435
Root ~ 3.354 3.3555 3.35558 33157

From these Tables we.see that the value of u,, rapidly converges to the limiting

value when m increases. And we may take s, as the value of k= '/ pha'p?

D 4 .
Fig. 1. shows the relation between k2 “ i
and h/a that ‘is, the frequency of the
fundamental mode of vibration and the —
ratio of the thickness to the lengh of side '31
of a square plate for small value of h/a. + \\
From this figure we see that when the ra- 2 \\
tio increases the frequency of the funda- N\,
mental mode of vibration of the plate de- : N
creases, and therefore the frequency of "
the fundamental mode of vibration of the
square plate decreases as the plate thick- 10
ens. 0 ol 02 , 03
Fig. 2. shows the relation between k «
and ({:—)2 The curve in Fig. 2 represents ’
almost a straight line and we may expect . N
that the following relation hold in a small 4{ AN
values of h/a, 35 N
k= /002D _ g fy 4 ( BV (g6 AN
‘/'ﬁn*ﬂo{ a(a/} 24 - \\\
approximately. . N
The value of k, is the value of k when 33 ]
h=o0. and therefore we may use Tomo- e i

0.06 . 0-08
tika’s value: k,=3.6461 (3)’ _
By the method of least squares, the value of coefficient ¢ is determined as follows:

—3348
a="3g16 — 0.9183

By using the equation (36), we can find approximately the frequency of the
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fundamental mode of vibration of a square plate with four clamped edge for any
small values of h/a. '

V. Summary
- .“‘The‘ problem of calcuating the frequency of the fundamental mode of trans-
verse vibration of a square plate with clamped edges is equivalent to a minimum
problem of computing the minimum value of the expression:

AW)Hrde d
— ff( )*dg dy

W)= f [T 200 (O Feear " o

for all function W (¢, ) which have continuous derivatives up to the fourth order

in the square S: | & | g%, | 9| g% and which also satisfy the clamped edges
conditions :
’ W =0, %W 0 an
at the honndary C: | ¢ | :%, 7] =—g— of the square, the double integrals be-
ing over the square S and n denoting the normal to the boundary.

In the present paper, we consider the modified minimum problem which may be
expressed as follows: .

it is required to find the minimum value of the expression :

V(v) J;J'(Av)g dedy _
TWH™ f f[v~+ 2g (g;’) Jd dy

for all functions v (&,7) which vamsh on the boundary C of the square and satis-
fy the following boundary m conditions on C:

Gyjr= iﬁgz;—xd3= ; (i=1,2,--,m)
where ds is a line element along C so that ds=d$ on 7= ’2r , andds=dyon ¢=
+—2— The double integrals are taken over the square S, while the single integrals
are taken along the boundary C and functions g;;_; are taken follows:
&1 =Gy cos(2j—-1)¢ on p=o4-2,
=C; cos(Zj—1)y on €=i—725,

where the C;’s are certain constants.

Applying to the modified problem the general principle in the calculus of variation,
pha'p?
Dr?

is calculated for %=O.1, 0.2 and 0.3. From these sequences we {ind the TableIV,

a non-decreasing sequence of lower limits for the true minimum value of k?>=

giving the frequency p of the fundamental mode of transverse vibration of a square
plate with clamped edges.
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Table [y.
h/a 01 02 03
eha'D® 9097 12308 11.260

Dn#
In conclusion, I wish to thank Prof, Tomotika for his encouragement during this
work. '
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