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A semigroup S is caHed to be fandameutal if its only one comgruence comtaiued in the 

Greeln's relation ~ om S is the trivial orne. Let S be a regular * semigroup, and let E and P be 

the sets of idempotents and ･projections of S, respectively. In his paper [3:], T. E. Hall gives us 

the comstructiolQ of a fundamemtal regular semigroup T

 which is a generalization of [2] and [4]. In this paper, we shall show that the set of projectioms plays an important role in the theory 

of regular * semigroups, and comstruct a fundamemtal regular * semigroup Tp, say9 by using P 

instead of 

-

A semigroup S with a unary operation * : S->S rs called a * semigroup if it 

satisfies 

(i) (x*)*=x, 

* y*+* (ii) (xy) = 
~. 

Let S and T be * semigroups. A .mapping ip : S~･Tis called a * homomorphism if c 

is a (semigroup) homomorphism and x*ip=(xip)* for all x in S. A relation v on S 

is called a * relation on S if (x, y) e v implies (x*, y*) e v. A * semigroup S is called a 

regular * semigroup if it satisfies 

(iil) xx*x=x. 

An idempotent e in S such that e* = e is called a projection. 

The following result due to Nordahl and Scheiblich is a very basic property of 

regular * semrgroups 

RESULT I ([5]). Let S be a regular * semigroup. Then each ~P-class and ~ach 

~-class irt S contain one dnd only one projection. L~t e and f be projections in S. 

Then ef is an idempotent in S. 
-' i ricreaf~e. r, ei r~gtila:r * seinigronip .~S(P) ineans that S is a regular ~ semigrbup' ~vith 

th:e' set of projeqtions P. ' The notationS anc termiriologies are those of [1]' and [3], 

uhle~s otherwise stated. 

LEMMA 2. 'Let S(P) be a fegtilar * seuagroup with thi set of idempotents E. 

Then we have the followings : 
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(i) E=P2. Mol'e pl'ecisely, for any idelnpotent e, there exist projections fand 

g such that e ~f, e~Pg and e=J'g. 

(ii) For e, f in P, efeP if and only 1:f ef=fe. 

PROoF. (i) It follows immediately from Result I that P2 c E. Let e be any 

idempotent in S. Then we have that e ~ ee* =f, say, e ~2 e*e=g, say, and e = ee*e 

= ee*e*e = fg . 

(ii) Clear 

LEMMA 3. Let S(P) be a regular * selnigroup. For any a in S and any e in, P, 

a*ea is a projection. 

PRooF. Since aa* is a projection, eaa* is an idempotent. Then (a.*ea)2 = 

a*eaa*eaa*a=a*eaa*a=a*ea, and (a*ea)*=a*e*(a*)*=a*ea. Thus we have a*ea 
e P. 

A [*] congruence v on a regular [*] semigroup S rs called an idempotent-

separating [*] congruerice if v c ~s ' Compare the following with Cor. 4.6[5] 

THEOREM 4. Let // [//] be the Inaxim'um idempotent-separating [*] congl'uence 

on a regular * semigroup S(P). Then we have p=kl'={(a, b) e S x S: a*ea=b*eb 

and aea*= beb* for all e e P}. 

PRooF. Let us denote the given relation by v. It is clear that v is a * equivalence 

Let (a, b) e v. For any e e P and c e S, 

(ac)*eac = c*a*eac = c*b*ebc = (bc)*ebc, 

(ca)*eca = a*c*eca = b*c*ecb = (cb)*ecb, 

since c*ec is a projection. Similarly we have ace(ac)* = bce(bc)* and cae(ca)* = 

cbe(cb)*, and hence v is a * congruence 

Let (x, y) e v n E x E, where E denotes the set of idempotents of S. By Lemma 

2, there exist projections e, f, g and h such that x = ef and y = gh. Then 

x = x2 = efef = ef *e*eef = e(ef )*eef = ex*ex = ey*ey e Sy. 

Similarly y e Sx, and so x ~2 y. Similarly x ~~ y, and hence x ~P y. Since x and y 

are both idempotents, we have x = y. Thus v is an idempotent-separating * con-

gruence on S. 

Finally, we shall show that v is the maximum idempotent-separating [*] con-

gruence. Let p be any idempotent-separating [*] congruence on S. If (a, b) e p, 

then (a, b) e ~~. Since aa* ~ a and bb* ~ b, projections aa* and bb* are contained 

in a same ~-class. Since each ~-class contains one and only one projeetion, we have 

aa*=bb*. Similarly a*a=b*b. Then a*=a*aa*=a*bb* and b*=b*bb*=a*ab* 
Since p is a congruence, (a*bb*, a*ab*) e p and we have (a*, b*) e p. Using again the 
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fact that p is a congruence, (a*ea, b*eb) e p and (aea*, beb*) e p for all e e P. But p 

is an idempotent-separating congruence, we have that a*ea = b*eb and aea*=beb* 

for all e e P. Then (a, b) e v, and hence p c v 

Let P be the set of projections of a regular * semigroup S. For any a e S, Iet p~ 

and ~* be mappings of P into P defined by 

ep* = a*ea, 

eh. = aea* . 

It is clear that p~b = p.pb and ~.b = ~bh*. Let ~~ be the dual semigroup of ~p and 

denote its prodjlct by ., that is, oc ' P = Poc where the right side is the usual product of 

transf'ormations p and c( 

THEOREM 5. Let S(P) be a regular * semigroup, and let ~ be a mapping of S 

into j'rp X J4r~ defined bJ' a~=(p~, ~*). Then ~ js a homomorphism whose kernel is 

the maxilnuln idelnpotent-separating congruence on S. 

PROOF. It is obvious ~ is a homomorphism. Let E be the set of idempotents of 

S. Firstly, suppose that (e, f) e ker ~ n (E x E). Then e=eee = ep.=epf =fef. Simi-

larly f= efe, and so e ~f. Then e =f. Thus ker ~ is an idempotent-separating con-

gruence on S, and hence ker ~ C I/-

Conversely, if (a, b) e p, it follows from Theorem 4 that a*ea = b*eb and aea* = 

beb* for all e e P. Then (p., ~*) = (pb, Ab), and hence (a, b) e ker ~ 

Let P be the set of projections of a regular * semigroup S. Let A. B be subsets of 

P. A mapping oc: A-~B is called a partial homomorphism if for al, a2,"', a* in A, 

ala2"'a~ eA implies that (aloc)(a20c)"'(a.oc) eB and (ala2"'a*)Qc=(alcc)(a20c)"'(a*oc). 

If a partial homomorphism oc : A->B is bijective, we call oe a partial isolnorphism. In 

this case we say A rs partral rsomorphic to B and denote rt by A ~; B. For each e e P, 

let 

 ~ {feP: f ;~e} = ePe. Let ~f = {(e, f) e P x P: 

 ~ 

} and for each (e, f) 

e ~f let T.,f be the set of all partial isomorphisms of 

 onto 

･ Let Tp = {(p.oc, 

~foc~1): cc e T.,f' (e, f) e d~f}. Notice that p.=~. for any e e P. For convenience, we 

shall sometimes denote (p.oc, ~fcc~1) simply by c(oc). Let a be any element of S. De-

note aa* by e and a*a by f. It is clear that mappings O : xH>a*xa and e' : y~>aya* 

are mutually mverse partial isorlLorphisms of 

 onto 

 and of 

 onto 

, 

respectively. We have easily (p., h.) = (p.O, ~f0-1) and hence S~ c Tp C j~p X J~~, 

where ~ is the homomorphism in Theorem 5. 

THEOREM 6. Let P be the set of projections of a regular * semiqroup. Define 

a unary operation * : Tp->Tp by (p.ce, ~foe~1)* =(pfQe~1, h.oe). Theri we have the 

followings : 

( i ) Tp is a regu,lal' * subsemigroup of ~p X ~~, 

(il) the set of projections of Tp is {(p., 4*) : e e P} and it is partial isomorphic 
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to P, 

(iii) for-(e,f)e~f, cceT.j and 9eP 

ip(oc)*(pg, Ag)c(oc) = (p(.g.)*, ~ ~(.g.).) , 

(iv) Tp is fundamental. 

PRooF. (i) Let (p.oc, ~foc~1), (pgP, ~hP-1) be any elements of Tp Then the 

range of p.oc =f Pf and the range of p.ocpgp = {(9fxfg)P : x e P} Now 

gf Pfg-= gfg( f P f )gj~g c gfg Pgfg = gf (g Pg) fg c gf Pfg , 

and hence the range of p.ccpgP = {jxj : x e P}, where j = (gfg)P. We remark that 

P I 

 rs a partial isomorphism of 

 onto 

, with inverse fi-1 1 

. Define 

mappings Ogfg: 

->

 and efgf : 

~

 by xOgfg=gfgx9fg and yOfgf 

=fgfyfgf, respectively. It is clear that Ogfg and efgf are mutually inverse partial iso-

morphisms. Let us denote (fgf)oc~1 by i. It is obvious that oc I 

 is a partial iso-morphism of 

 onto 

, with inverse oe~1 1 

. Let y = (oe I 

) (Ogfg I 

) 

(P I 

) be a partial isomorphism of 

 onto 

. We shall show that p*ccpgP = piy 

For any x in P, 

xpiy = (iexei)oc(egfg I 

) (p I 

) since i ~ e, 
= (ioc) ((exe)cc) (ioe) (Ogfg I 

) (p I 

) - (gfgfgf ((ex e)oc) fgfgfg) P 

= (.g((exe)oc)9)P since (exe)oc efPf, 

= x p.oc pg p. 

Thus we have p.ocpgp = piy. Similarly (hfoc~i) ' (~hp-1)=Abp-1~foe~1 = ~jy~1, and hence 

(p.oc, ~foc~1)(pgp, AkP-1)=(piy, ~jV~1) e Tp. Then we have Tp is a subsemigroup 

Next, we shall show that Tp is a regular * semigroup. It is obvious (ip(oc)*)* = 

ip(oc). Now 

ip(fl) c(oc) (p P 1, AgP) (pfoc~i, A.oc) 

= (pk6, A~5-1) , 

where k=(9fg)P, m =(fgf)cc~1 and 6 = (P-i I 

) (efgf I 

) (oc~i' I 

). Then 

we have k~j,..m = i' and .6 =0rl, and. hence ip(. p)*ip(oe).* =(pjy~1, hiV) = (piy, hjV~.1-)* = 

(ip(oc)ip(p))*:. Now' ' . -

ip(oc)c(oc)*ip(oc) i (Pf'-_'ocefoc~1, ~f'- 10CO J Ioe~ 1)ip(oc) 

= (p.e

, h.e

) (p.ec, ~foc~1) 
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= (p*oc, Afoc~1) 

= ip(oc) . 

Thus we have that Tp is a regular * subsemigroup of jarp X ~ar~ 

(ii) It is clear that (p., ),.) is a projection for each e e P. Conversely, suppose that 

(p.cc, hfoc~1) is a projection of Tp. Since (p.oc, ~fcc~1)=ip(oc) = ip(cc)* = (pfoc~1, ~.oc), 

fPf= the range of p.c~ = the range of pfcc~ I = ePe. Then we have e =f, and so oc e T.,. 

Since c(oe) is an idempotent, cc2 = oc and so oe = c

 ' Therefore c(cc) = (p*, h*) and the set of projections of Tp is {(.p., ~.) : e e P}. It is clear that {(p., ~.) : e e P} is partially 

isomorphic to P. 

(tii) Let (e, f) e (~f, cc e T.,f and g e P Settmg y ' = (cc~i I 

) (Og.g I 

), 

we have easily that (.geg)y~1=(ege)ce. Then 

ip(.oe)*(pg' ~g)ip(oc) = (p(.g.).y, ~g.gy~ 1)(p oc ~ oc~1) 

" f 
- '/' 'I'-1~ 

(
 
p
 

- (.q.).y , ~(.g.)*v ) , 

where ~ = (y I 

)(O.g. I 

)(.oc I 

) = c

 

-(n ~ 
~ ¥r(*9')" h(.g')*) ' 

(iv) Let ,l be the maximum idempotent-separating congruence on Tp, and 
suppose that (p.oc, ~foe~ 1)ll(pgfi, ~hp-1). By Theorem 4, ip(oe)*(pi, hi)c(oe) = c(p)*(pi, 

~i)ip(p) and ip(oc) (pi, ~i)ip(cc)*=ip(p) (pi, Ai)ip(p)* for all i e P. It follows from (iii) 

above that (p(.ie)" ~(.ie)') = (p(gig)p, P(gi9)p) and (p(fif)'- i' ~(fif)'-i) = (p(hih)P'L 1, h(kih)P - i)' 

Since ~ : S->Tp is a homomorphism whose kernel is the maximum idempotent-sepa-

rating congruence on S, we have that ip.oe = (eie)oc=(g ig)p = ipgp and i~foe~1 = (fif)ce~ 1 

=(hih)p-1=i~p-1. Then p.oc = pgp and Afoe~1 =~hp-1, and hence ip(oc) = ip(p). Thus 

Tp Is fundamental. 
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