Mem. Fac. Sci., Shimane Univ., 14, pp. 19–23 Dec. 20, 1980

On Fundamental Regular * Semigroups

Teruo Імаока

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1980)

A semigroup S is called to be *fundamental* if its only one congruence contained in the Green's relation \mathscr{X} on S is the trivial one. Let S be a regular * semigroup, and let E and P be the sets of idempotents and projections of S, respectively. In his paper [3], T. E. Hall gives us the construction of a fundamental regular semigroup $T_{\langle E \rangle}$ which is a generalization of [2] and [4]. In this paper, we shall show that the set of projections plays an important role in the theory of regular * semigroups, and construct a fundamental regular * semigroup T_P , say, by using P instead of $\langle E \rangle$.

A semigroup S with a unary operation $*: S \rightarrow S$ is called a * semigroup if it satisfies

- (i) $(x^*)^* = x$,
- (ii) $(xy)^* = y^*x^*$.

Let S and T be * semigroups. A mapping $\phi: S \to T$ is called a * homomorphism if ϕ is a (semigroup) homomorphism and $x^*\phi = (x\phi)^*$ for all x in S. A relation v on S is called a * relation on S if $(x, y) \in v$ implies $(x^*, y^*) \in v$. A * semigroup S is called a regular * semigroup if it satisfies

(iii) $xx^*x = x$.

An idempotent e in S such that $e^* = e$ is called a projection.

The following result due to Nordahl and Scheiblich is a very basic property of regular * semigroups.

RESULT 1 ([5]). Let S be a regular * semigroup. Then each \mathcal{L} -class and each \mathcal{R} -class in S contain one and only one projection. Let e and f be projections in S. Then ef is an idempotent in S.

Hereafter, a regular * semigroup S(P) means that S is a regular * semigroup with the set of projections P. The notations and terminologies are those of [1] and [3], unless otherwise stated.

LEMMA 2. Let S(P) be a regular * semigroup with the set of idempotents E. Then we have the followings:

Teruo Імаока

(i) $E=P^2$. More precisely, for any idempotent e, there exist projections f and g such that $e \mathcal{R} f$, $e \mathcal{L} g$ and e=fg.

(ii) For e, f in $P, ef \in P$ if and only if ef = fe.

PROOF. (i) It follows immediately from Result 1 that $P^2 \subset E$. Let e be any idempotent in S. Then we have that $e \mathscr{R} ee^* = f$, say, $e \mathscr{L} e^* e = g$, say, and $e = ee^* e$ $= ee^* e^* e = fg$.

(ii) Clear.

LEMMA 3. Let S(P) be a regular * semigroup. For any a in S and any e in P, a^*ea is a projection.

PROOF. Since aa^* is a projection, eaa^* is an idempotent. Then $(a^*ea)^2 = a^*eaa^*a = a^*eaa^*a = a^*ea$, and $(a^*ea)^* = a^*e^*(a^*)^* = a^*ea$. Thus we have $a^*ea \in P$.

A [*] congruence v on a regular [*] semigroup S is called an *idempotent-separating* [*] congruence if $v \subset \mathscr{H}_S$. Compare the following with Cor. 4.6[5].

THEOREM 4. Let $\mu [\mu']$ be the maximum idempotent-separating [*] congruence on a regular * semigroup S(P). Then we have $\mu = \mu' = \{(a, b) \in S \times S : a^*ea = b^*eb$ and $aea^* = beb^*$ for all $e \in P\}$.

PROOF. Let us denote the given relation by v. It is clear that v is a * equivalence. Let $(a, b) \in v$. For any $e \in P$ and $c \in S$,

$$(ac)^{*}eac = c^{*}a^{*}eac = c^{*}b^{*}ebc = (bc)^{*}ebc,$$

 $(ca)^{*}eca = a^{*}c^{*}eca = b^{*}c^{*}ecb = (cb)^{*}ecb,$

since c^*ec is a projection. Similarly we have $ace(ac)^* = bce(bc)^*$ and $cae(ca)^* = cbe(cb)^*$, and hence v is a * congruence.

Let $(x, y) \in v \cap E \times E$, where E denotes the set of idempotents of S. By Lemma 2, there exist projections e, f, g and h such that x = ef and y = gh. Then

$$x = x^2 = efef = ef^*e^*eef = e(ef)^*eef = ex^*ex = ey^*ey \in Sy.$$

Similarly $y \in Sx$, and so $x \mathcal{L} y$. Similarly $x \mathcal{R} y$, and hence $x \mathcal{H} y$. Since x and y are both idempotents, we have x=y. Thus v is an idempotent-separating * congruence on S.

Finally, we shall show that v is the maximum idempotent-separating [*] congruence. Let ρ be any idempotent-separating [*] congruence on S. If $(a, b) \in \rho$, then $(a, b) \in \mathcal{H}$. Since $aa^* \mathcal{R} a$ and $bb^* \mathcal{R} b$, projections aa^* and bb^* are contained in a same \mathcal{R} -class. Since each \mathcal{R} -class contains one and only one projection, we have $aa^*=bb^*$. Similarly $a^*a=b^*b$. Then $a^*=a^*aa^*=a^*bb^*$ and $b^*=b^*bb^*=a^*ab^*$. Since ρ is a congruence, $(a^*bb^*, a^*ab^*) \in \rho$ and we have $(a^*, b^*) \in \rho$. Using again the

20

fact that ρ is a congruence, $(a^*ea, b^*eb) \in \rho$ and $(aea^*, beb^*) \in \rho$ for all $e \in P$. But ρ is an idempotent-separating congruence, we have that $a^*ea = b^*eb$ and $aea^* = beb^*$ for all $e \in P$. Then $(a, b) \in v$, and hence $\rho \subset v$.

Let P be the set of projections of a regular * semigroup S. For any $a \in S$, let ρ_a and λ_a be mappings of P into P defined by

$$e\rho_a = a^*ea,$$

 $e\lambda_a = aea^*.$

It is clear that $\rho_{ab} = \rho_a \rho_b$ and $\lambda_{ab} = \lambda_b \lambda_a$. Let \mathscr{T}_P^* be the dual semigroup of \mathscr{T}_P and denote its product by \cdot , that is, $\alpha \cdot \beta = \beta \alpha$ where the right side is the usual product of transformations β and α .

THEOREM 5. Let S(P) be a regular * semigroup, and let ξ be a mapping of S into $\mathscr{T}_P \times \mathscr{T}_P^*$ defined by $a\xi = (\rho_a, \lambda_a)$. Then ξ is a homomorphism whose kernel is the maximum idempotent-separating congruence on S.

PROOF. It is obvious ξ is a homomorphism. Let *E* be the set of idempotents of *S*. Firstly, suppose that $(e, f) \in \ker \xi \cap (E \times E)$. Then $e = eee = e\rho_e = e\rho_f = fef$. Similarly f = efe, and so $e \mathscr{H} f$. Then e = f. Thus ker ξ is an idempotent-separating congruence on *S*, and hence ker $\xi \subset \mu$.

Conversely, if $(a, b) \in \mu$, it follows from Theorem 4 that $a^*ea = b^*eb$ and $aea^* = beb^*$ for all $e \in P$. Then $(\rho_a, \lambda_a) = (\rho_b, \lambda_b)$, and hence $(a, b) \in \ker \xi$.

Let P be the set of projections of a regular * semigroup S. Let A, B be subsets of P. A mapping $\alpha: A \to B$ is called a partial homomorphism if for $a_1, a_2, ..., a_n$ in A, $a_1a_2\cdots a_n \in A$ implies that $(a_1\alpha)(a_2\alpha)\cdots(a_n\alpha)\in B$ and $(a_1a_2\cdots a_n)\alpha=(a_1\alpha)(a_2\alpha)\cdots(a_n\alpha)$. If a partial homomorphism $\alpha: A \to B$ is bijective, we call α a partial isomorphism. In this case, we say A is partial isomorphic to B and denote it by $A \cong B$. For each $e \in P$, let $\langle e \rangle = \{f \in P : f \leq e\} = ePe$. Let $\mathscr{U} = \{(e, f) \in P \times P : \langle e \rangle \cong^p \langle f \rangle\}$ and for each $(e, f) \in \mathscr{U}$ let $T_{e,f}$ be the set of all partial isomorphisms of $\langle e \rangle$ onto $\langle f \rangle$. Let $T_P = \{(\rho_e \alpha, \lambda_f \alpha^{-1}) : \alpha \in T_{e,f}, (e, f) \in \mathscr{U}\}$. Notice that $\rho_e = \lambda_e$ for any $e \in P$. For convenience, we shall sometimes denote $(\rho_e \alpha, \lambda_f \alpha^{-1})$ simply by $\phi(\alpha)$. Let a be any element of S. Denote aa^* by e and a^*a by f. It is clear that mappings $\theta: x \mapsto a^*xa$ and $\theta': y \mapsto aya^*$ are mutually inverse partial isomorphisms of $\langle e \rangle$ onto $\langle f \rangle$ and of $\langle f \rangle$ onto $\langle e \rangle$, respectively. We have easily $(\rho_a, \lambda_a) = (\rho_e \theta, \lambda_f \theta^{-1})$ and hence $S\xi \subset T_P \subset \mathscr{T}_P \times \mathscr{T}_P^*$, where ξ is the homomorphism in Theorem 5.

THEOREM 6. Let P be the set of projections of a regular * semigroup. Define a unary operation *: $T_P \rightarrow T_P$ by $(\rho_e \alpha, \lambda_f \alpha^{-1})^* = (\rho_f \alpha^{-1}, \lambda_e \alpha)$. Then we have the followings:

- (i) T_P is a regular * subsemigroup of $\mathcal{T}_P \times \mathcal{T}_P^*$,
- (ii) the set of projections of T_P is $\{(\rho_e, \lambda_e): e \in P\}$ and it is partial isomorphic

to P,

(iii) for $(e, f) \in \mathcal{U}$, $\alpha \in T_{e,f}$ and $g \in P$,

 $\phi(\alpha)^*(\rho_g, \lambda_g)\phi(\alpha) = (\rho_{(ege)\alpha}, \lambda_{(ege)\alpha}),$

(iv) T_P is fundamental.

PROOF. (i) Let $(\rho_e \alpha, \lambda_f \alpha^{-1}), (\rho_g \beta, \lambda_h \beta^{-1})$ be any elements of T_P . Then the range of $\rho_e \alpha = f P f$ and the range of $\rho_e \alpha \rho_g \beta = \{(gfxfg)\beta : x \in P\}$. Now,

$$gfPfg = gfg(fPf)gfg \subset gfgPgfg = gf(gPg)fg \subset gfPfg$$
,

and hence the range of $\rho_e \alpha \rho_g \beta = \{jxj: x \in P\}$, where $j = (gfg)\beta$. We remark that $\beta |\langle gfg \rangle$ is a partial isomorphism of $\langle gfg \rangle$ onto $\langle j \rangle$, with inverse $\beta^{-1} |\langle j \rangle$. Define mappings $\theta_{gfg}: \langle fgf \rangle \rightarrow \langle gfg \rangle$ and $\theta_{fgf}: \langle gfg \rangle \rightarrow \langle fgf \rangle$ by $x\theta_{gfg} = gfgxgfg$ and $y\theta_{fgf} = fgfyfgf$, respectively. It is clear that θ_{gfg} and θ_{fgf} are mutually inverse partial isomorphisms. Let us denote $(fgf)\alpha^{-1}$ by *i*. It is obvious that $\alpha |\langle i \rangle$ is a partial isomorphism of $\langle i \rangle$ onto $\langle fgf \rangle$, with inverse $\alpha^{-1} |\langle fgf \rangle$. Let $\gamma = (\alpha |\langle i \rangle)(\theta_{gfg} |\langle fgf \rangle)$. $(\beta |\langle gfg \rangle)$ be a partial isomorphism of $\langle i \rangle$ onto $\langle i \rangle$ onto $\langle j \rangle$. We shall show that $\rho_e \alpha \rho_g \beta = \rho_i \gamma$. For any x in P,

$$\begin{aligned} x\rho_i\gamma &= (iexei)\alpha(\theta_{gfg} | \langle fgf \rangle)(\beta | \langle gfg \rangle) & \text{since } i \leq e, \\ &= (i\alpha)((exe)\alpha)(i\alpha)(\theta_{gfg} | \langle fgf \rangle)(\beta | \langle gfg \rangle) \\ &= (gfgfgf((exe)\alpha)fgfgfg)\beta \\ &= (g((exe)\alpha)g)\beta & \text{since } (exe)\alpha \in fPf, \\ &= x\rho_e\alpha\rho_e\beta. \end{aligned}$$

Thus we have $\rho_e \alpha \rho_g \beta = \rho_i \gamma$. Similarly $(\lambda_f \alpha^{-1}) \cdot (\lambda_h \beta^{-1}) = \lambda_h \beta^{-1} \lambda_f \alpha^{-1} = \lambda_j \gamma^{-1}$, and hence $(\rho_e \alpha, \lambda_f \alpha^{-1}) (\rho_g \beta, \lambda_h \beta^{-1}) = (\rho_i \gamma, \lambda_j \gamma^{-1}) \in T_P$. Then we have T_P is a subsemigroup.

Next, we shall show that T_P is a regular * semigroup. It is obvious $(\phi(\alpha)^*)^* = \phi(\alpha)$. Now

$$\phi(\beta)^* \phi(\alpha)^* = (\rho_h \beta^{-1}, \lambda_g \beta) (\rho_f \alpha^{-1}, \lambda_e \alpha)$$
$$= (\rho_k \delta, \lambda_m \delta^{-1}),$$

where $k = (gfg)\beta$, $m = (fgf)\alpha^{-1}$ and $\delta = (\beta^{-1} |\langle k \rangle)(\theta_{fgf} |\langle gfg \rangle)(\alpha^{-1} |\langle fgf \rangle)$. Then we have k = j, m = i and $\delta = \alpha^{-1}$, and hence $\phi(\beta)^* \phi(\alpha)^* = (\rho_j \gamma^{-1}, \lambda_i \gamma) = (\rho_i \gamma, \lambda_j \gamma^{-1})^* = (\phi(\alpha)\phi(\beta))^*$. Now

$$\phi(\alpha)\phi(\alpha)^*\phi(\alpha) = (\rho_{f\alpha^{-1}}\alpha\theta_f\alpha^{-1}, \lambda_{f\alpha^{-1}}\alpha\theta_f^{-1}\alpha^{-1})\phi(\alpha)$$
$$= (\rho_{\alpha}(\zeta_{\alpha}), \lambda_{\alpha}(\zeta_{\alpha}))(\rho_{\alpha}\alpha, \lambda_{\alpha}\alpha^{-1})$$

22

On Fundamental Regular * Semigroups

$$= (\rho_e \alpha, \lambda_f \alpha^{-1})$$
$$= \phi(\alpha).$$

Thus we have that T_P is a regular * subsemigroup of $\mathscr{T}_P \times \mathscr{T}_P^*$.

(ii) It is clear that (ρ_e, λ_e) is a projection for each $e \in P$. Conversely, suppose that $(\rho_e \alpha, \lambda_f \alpha^{-1})$ is a projection of T_P . Since $(\rho_e \alpha, \lambda_f \alpha^{-1}) = \phi(\alpha) = \phi(\alpha)^* = (\rho_f \alpha^{-1}, \lambda_e \alpha)$, fPf=the range of $\rho_e \alpha$ =the range of $\rho_f \alpha^{-1} = ePe$. Then we have e = f, and so $\alpha \in T_{e,e}$. Since $\phi(\alpha)$ is an idempotent, $\alpha^2 = \alpha$ and so $\alpha = \iota_{\langle e \rangle}$. Therefore $\phi(\alpha) = (\rho_e, \lambda_e)$ and the set of projections of T_P is $\{(\rho_e, \lambda_e) : e \in P\}$. It is clear that $\{(\rho_e, \lambda_e) : e \in P\}$ is partially isomorphic to P.

(iii) Let $(e, f) \in \mathcal{U}$, $\alpha \in T_{e,f}$ and $g \in P$. Setting $\gamma = (\alpha^{-1} | \langle (ege)\alpha \rangle)(\theta_{geg} | \langle ege \rangle)$, we have easily that $(geg)\gamma^{-1} = (ege)\alpha$. Then

$$\phi(\alpha)^*(\rho_g, \lambda_g)\phi(\alpha) = (\rho_{(ege)\alpha}\gamma, \lambda_{geg}\gamma^{-1})(\rho_e\alpha, \lambda_f\alpha^{-1})$$
$$= (\rho_{(ege)\alpha}\psi, \lambda_{(ege)\alpha}\psi^{-1}),$$

where $\psi = (\gamma | \langle (ege)\alpha \rangle)(\theta_{ege} | \langle geg \rangle)(\alpha | \langle ege \rangle) = \iota_{\langle (ege)\alpha \rangle}$

 $=(\rho_{(ege)\alpha}, \lambda_{(ege)\alpha}).$

(iv) Let μ be the maximum idempotent-separating congruence on T_P , and suppose that $(\rho_e \alpha, \lambda_f \alpha^{-1}) \mu(\rho_g \beta, \lambda_h \beta^{-1})$. By Theorem 4, $\phi(\alpha)^*(\rho_i, \lambda_i)\phi(\alpha) = \phi(\beta)^*(\rho_i, \lambda_i)\phi(\beta)$ and $\phi(\alpha)(\rho_i, \lambda_i)\phi(\alpha)^* = \phi(\beta)(\rho_i, \lambda_i)\phi(\beta)^*$ for all $i \in P$. It follows from (iii) above that $(\rho_{(eie)\alpha}, \lambda_{(eie)\alpha}) = (\rho_{(gig)\beta}, \rho_{(gig)\beta})$ and $(\rho_{(fif)\alpha^{-1}}, \lambda_{(fif)\alpha^{-1}}) = (\rho_{(hih)\beta^{-1}}, \lambda_{(hih)\beta^{-1}})$. Since $\xi: S \to T_P$ is a homomorphism whose kernel is the maximum idempotent-separating congruence on S, we have that $i\rho_e\alpha = (eie)\alpha = (gig)\beta = i\rho_g\beta$ and $i\lambda_f\alpha^{-1} = (fif)\alpha^{-1}$ $= (hih)\beta^{-1} = i\lambda\beta^{-1}$. Then $\rho_e\alpha = \rho_g\beta$ and $\lambda_f\alpha^{-1} = \lambda_h\beta^{-1}$, and hence $\phi(\alpha) = \phi(\beta)$. Thus T_P is fundamental.

References

- Clifford, A. H. and G. B. Preston, The algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, RI, Vol. I, 1961.
- [2] Hall, T. E., On orthodox semigroups and uniform and antiuniform bands, J. Algebra, 16 (1970), 204-217.
- [3] Hall, T. E., On regular semigroups, J. Algebra, 24 (1973), 1-24.
- [4] Munn, W. D., Uniform semilattices and bisimple inverse semigroups, Quart. J. Math. Oxford (2), 17 (1966), 151-159.
- [5] Nordahl, T. E. and H. E. Scheiblich, Regular * semigroups, Semigroup Forum, 16 (1978), 369-377.