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Second Order Phase Transition in Certain

Antiferromagnetic Crystals

Toshio TAKEHARA

Weiss molecular field theory is applied to the calculation of the susceptibility and the
specific heat in an alternant spin system of the crystal of the copper sulphate pentahydrate
type. The system has two species of antiferromagnetic linear chains of ions. The four
sublattice model are introduced and the derived susceptibility curve like in ferriamagnetic
explain the temperature dependent behaviour in spite of the rough approximation. The
theory predicts the specific heat anomalies corresponding to the transition point of the
two independent systems. Such result can not be found in the measurements.

§ 1. Introduction

In certain types of peramagnets there are sometimes different kinds of environment of
spins of the same species which are mixed and correlated with each other through the
existence of spin-spin interaction. Paramagnetic resonance studies in such cases were first
observed in CuSOg5H;O by Bagguley and Griffith,) then in KyCuCly2HyO and Mn
(HCOO)»2HO by Abe et al.2 Results of the susceptibility and the specific heat
measurements of CuSOy,5H,O and CuSeOs5H;0 by Haseda et al.® convinced us the
situation that two kinds of dissimilar copper ion present.

In this paper the theoretical calculation of the susceptibility and the specific heat
anomaly is performed for the four sublattice model in the crystal of CuSO45H;O type.

§ 2. Molecular Field Theory Applied to Antiferromagnetic
CuSO4 -5H2 O Type Crystal

X-ray analysis of copper sulphate pentahydrate, CuSOg#5H;0, was made by Beevers
and Lipson.4 The unit cell is triclinic with axes ay = 6.12, by = 10.7, ¢y = 5.97A and
interaxial angles a=82°16", 8=107°26", r=102°40".

The crystal structure is shown in Fig. 1. They report the following facts : Unit cell
has two inequivalent copper ions at (0, 0, 0) and (3, %, 0). Each type of ions is surro-
unded by four water molecules and two oxygen ions in a similai but not the same way.
The atomic configurations betwieen copper ions of the same type are quite different for
the two types of ions. Each copper ion has two copper neighbours of the same sort at
a distance ay=6.12A, two more at a distance of cy=5.97A, whereas there are two pairs
of near neighbours of another sort at distance 5.65A and 6.8A. Other copper ions are more
than 8A apart.

The two systems of copper ions with different environment are distinguished by 1 and
IL. In one of the system I the magnetic interaction energy is of the order of 1°K, whereas
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Fig. 1. Projection of the crystal structure of copper sulphate pentanydrate on a plane
normal to the ¢ axis (after Beevers and Lipson). The distances to the plane of
the drawing are given in percentages of ¢p=5.97 A. The dashed lines between
the various oxygen atoms are drawn to show the tetragonal environments of the
Cu?+ions ; the dashed line connecting two oxygens belonging to sulphate groups
correspond to the crystal field axes.

the interionic interactions between I and II are much smaller and the interactions in the
system I1 will not exist appreciably. The ions of system I can be identified with the ion
at (4, %, 0). They are linked in a direction parallel to the ¢ axis to ions through the
indirect exchange or superexchange interaction containing two hydrogen molecules
between the exchange path, and linked parallel to a axis and also linked in the a b plane
along the two diagomnal directions. Their interaction between magnetic ions arise via the
two or more intermediary negative ions. The superexchange mechanism is complicated
and the magnitude might not be estimated easily.

The exchange interactions of the Heisenberg type are equivalent to an interatomic
potential (Hamiltonian), ‘apart from an additive constant :

H=—2J28; - S/, @
S; and S are, respectively, the spin angular momentum vector of atoms 7 and j measured

in units of h and J is the exchange integral. In antiferromagnetism, J is negative and

denote coefficient of the superexchange coupling. In our problem J and J; denote the
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antiferromagnetic interaction between the ions of system I along ¢ and a axis respectively ;
Jy and Jg denote the coupling between the ions of I and 11 in the two diagonal directions.
The existence of antiferrornagnetic ordering has not yet been proved from first principles,
except for the special model of a two dimensional Ising system, as Onsager5 showed
for the one dimensional Ising system, but all expériméntal evidence shows that it does exist.

When the temperature is raised from absolute zero, Js or Jg is destroyed, then the
system II can not sustain ordered state.

Then the system I is isolated from the system I, it can still be in ordering state through
the interaction J and Jj. If the temperature is further raised, interaction J; is destroyed
and then the whole spin systems become paramagnetic.

We assume that the whole spin system in the ordering state is divided into four
sublattices, that is, the system I and II are divided into alternant up and dowm spin lattice.
The spin on each sublattice is denoted by ST and S respectively.

Hamiltonian of an i-th atom of system I is
Hii =2 (T +J2) 28 (ST —2(Tat+Jo) 28 <ST. @
z is the number of nearest neighbour spins around a spin S;, and z=2 always is in our
case. The F sign depends on whether the spin S; is on the sublattice of up or down spin.

The total magnetic moment of each sublattice MT and Mf are then

Mi=— Neug< Sy, Mf=—Neug(SH, ®

where g is the Landé g-factor, which is assumed isotropic,. that is, it does not depend on
the direction of the spin, with respect to the crystal orientation. N is the total number
of magnetic ions. Then (2) become

’41,1': _gﬂBSi'H?,i’ ) . (4)
where '

Hi;=—AM] — M} (5)
is the exchange field acting on each spin of the system I, and

__ 8(WJ+JD= —_ 8JatJ9)z
A= r=— s 6
Ng2uz Ng2up ®)

and similarly _ ‘

In the applied magnetic field H, the magnitude of the magnetization vector MF and M¥

are given by the standard theory of the molecular field appfoximation, and are

Mi=-1-NgugSBs (), with v% = (H+H)gusS/kT, ®)
and
ME=—L-Ngu, SBs(y¥), with vy* = (H+HF)gu,S/kT )
I 4 glpg s (V1) W Yy 1/84p .
Here ‘
25+1 25+1 1

Bs (y) = 55 coth 55— Y T 55 coth—é‘y‘s— (10)
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is the Brillouin function, which reduces to tanh y for S=% (for the ion Cu**) and to

the Langevin function coth y—1/y for S=co. When there is no external field MT and

M7 are antiparallel to each other :

Mt = - My, M = — My, an

and (8) and (9) gives the magnitude of the saturation magnetization M| and My,
which can be obtained from

M= 211_ NgugS Bsi{gugS (AM1+ rMy) /kT}, 2

and

My = -—}I—NgﬂBS Bs {guy STMy /ET}. @’

Here (5) and (7) have been used. M| and My are decreasing functions of temperatures
as in the case of ferromagnetism and vanishes at the critical point, or the Néel point,
Tn. Néel point can be found by expanding the Brillouin functions in (12) and (13) for
small argument. For |y| <1,

S+1 1 S+ {(S+1)2+S%

‘ Bs () T35 Y~ 45 958 ¥t (14)

and therefore (12) and (13) results in the equations :
T NM; — -4C (AM +rMy) = 0, (15)
TwMy — S 4rMy =0, @16)

where T has been replaced by the Néel temperature TN, since the equation applies to
that only, and '

Ng2u} S(S+1) | an

C= 3%

These two linear uniform equations in the magnetizations M| and My of the sublattices
cannot all be independent and they only give a solution differing from zero for the
sublattice magnetizations if the determinant of the coefficients of M| and My is zero. This
gives an equation of the second degree in TN with two roots :

Tn
B 0 18
. Ty =0 (18)
4C

It seems to us that there are two Néel temperature. It means only that there are two
different M| andMjy versus T curves for the resultant magnetization with two Néel points.
Two roots of the determinant equation are one positive and one negative, so that in
negative case there will be no spontaneous magnetization. Only for the positive root of
Tw the state will occur. We find according to (18) .

Tn = —é— C[A+AY 1+4re/Az 1. (19)

To derive the susceptibility above the Néel temperature, we expand the Brillouin
function in (12) and (13) and write down, like in the equations (15) and (16) in the
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applied field, as

M= (H-AMT ~ M), " (20)
and

M} = = (H—rMD). 1)
since MT and M:f are all parallel to H in paramagnetic region, Solving these equations,
we obtain M‘f =M7, Summing up these equations we obtain the total magnetization
M{ +M7 +Mj +Mj. Then dividing it by H we obtain the susceptibility above the
Néel temperature

CT +—4-C* (A+1)

% = . : (22)
Cr C2Ar
T T+ 46 -
We derive from (22) the relation
1_7T_ 1 _ o (23)

x C %o T+6
with the constants :

1 A-r :

w ~ 8 @)
CAr

0 = Cla-r2) + =4 (25)

0= 713— C(A+T). (26)

Equation (23) shows that 1/x versus T curve is nearly straight lines above the Néel
temperature. Below the Néel temperature the susceptibility of the system I will have
negative slope or zero if the system I is ordered, but the system II is in disorder and
contribution to the paramagnetic susceptibility exists with C/2 instead of C in (23), the
slope below the Néel temperature is doubled that above. The curve is bent in the Néel
point and has the discontinuous slope.

Next, the specific heat discontinuity must be derived in the Néel point. The magnetic

interaction energy is

Ey = ——5- (M{H{+M{H+M{H{+M{H7)
= AM{M7T + rM{My + rM; My
— —AM?—rM My, @

where the equation (5) and (7) are used.

Owing to the decrease of M| and My, the change of the total magnetic interaction
energy with the temperature is accompanied by an extra contribution to the specific heat
which in the absence of external fields, is given by
dEuy aMm % '

. dMy .
i o ar ™y @8)

Just below the Néel point, My=0 and dM/dT=0, and only the first term contributes

daM

Cu= —I'M1
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the specific heat Cyand.has a maximum. and. above it Cy is zero, i. e. there occurs a
jump equal to

5  S(@S+1)

i St Ve (29)
which is given by using the equation

My \2 10 (S+1)2 T\ (TN
(3s) =3 @rms (rw) (FF1), (30)

A finite jump of this kind in specific heat is characteristic of what is called a second

ACpm =

order transition.
§ 3. Comparison with Experiment and Discussion

Experimental studies of the susceptibility and the specific heat of CuSO45H;O and
CuSeO45H;0 were performed by Haseda et al 3 below 1°K. A part of their results are
shown in Figs. 2 and 3.'1/x versus temperature curve composed of two straight lines,
one of which (low terﬁperature side) is extrapolated to pass through very near the origin.

Q

x

1 - I |
0 —T & 1 2 3 °K 4
Fig. 2. The ratio of the Curie constant C and the adiabatic susceptibility X of CuSOj,.
5H,0 plotted as a function of temperature below 4°K. (after Haseda et al.)

Oa axis OB axis A7y axis

and bent down towards the T axis with less slope of about half of the lower temperature
part. The discontinuous point of slope will correspond to the Néel point. It is about 1°K.
The above analysis explains this curve and equation (19) of Tn is of the order of 1°K.
1/x behavior found in CuSeO45H;0 below 0.1°K is characteristic of antiferromagnetism.
In the Néel point the discontinuity of the specific heat might be expected. But the
measurements of the specific heat shows anomaly below 0.05°K, which corresponds not
to TN but to the point below 0.1°K of the susceptibility.

In the ordinary antiferromagnetic and ferrimagnetic one sublattice magnetization exists
solely by virtue of the other. In our case the sublattice magnetization of the system I
remaines isolated after the sublattice magnetization have vanished. We can imagine here
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Fig. 3. Comparison of the specific heat versus temperature curves of CuSO4. 5H;O (dashed
line) and CuSe04.5H50 (solid line). The temperatures are plotted on a logarithmic
scale. (after Haseda et al.)

two Néel points, one of which is the temperature that only the system II vanishes, and
the other the temperature of the system 1 also vanishes. Specific heat ancmaly may
correspond to the lower one. In this point the specific heat jump can be computed likewise.
Experiment shows only one anomaly. The reason can not understand to me. 1f this
difficulty is solved, the tails of the specific heat curve must be explained. The molecular
field theory cannot explain such tails sbove the Curie point. This will be a measure of
the short range order and the statistical treatments are needed.

The numbers of this sort of crystals ever find will be very few. The specific heat data
I know is only that of copper sulphate and selenate only. A number of measurement
about such sort of crystals are desired.
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