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Construction of Finite Commutative Semigroups”

By Miyuki YAMADA

§ 1. Introduction.

A semigroup G with kernel K is called a nilpotent semigroup if it satisfies the following
condition (C. 1) :

(C. 1) GDG2DG3D...... DG? =K for some positive integer p.2)

In particular, we shall call G a nilsemigroup if it is a nilpotent semigroup and its kernel
is a subgroup of G. Further, a semigroup M with zero 0 is called a generalized nilsemigroup
if M*=M\{0} constitutes a nilsubsemigroup of M.® Let T be a semigroup, and let 0 be
a symbol not representing any element of T. Extend the given binary operation in T to
one in. TU {0} by defining 00=0 and a0=0a=0 for every a in 7. Itiseasy to see that
TU{0} becomes a semigroup with zero element 0 with respect to this binary operation.
We speak of the passage from the semigroup T to the semigroup TU{0} as “the addition
of a zero element to T ”, and denote the semigroup T UJ{0} by T0. It is clear thatif T
is a nilsemigroup then 790 is a generalized nilsemigroup, and conversely that every
generalized nilsemigroup can be obtained by adding a zero element to a nilsemigroup.
As defined by Tamura [5], a semigroup is called a z-semigroup if it has a zero element,
0, but has no idempotent except 0. In particular, for a finite semigroup S it can be easily
proved by the Corollary to Lemma 2 of Tamura [4] that Sis a z-semigroup if and only
if it satisfies the following condition (C. 2) : '

©. 2 { (1) S has a zero element 0, _
2) SDOSs2DHS3D...... DS? ={0} for some positive integer p.
That is, S'is a z—serﬁigroup if and only if it is a nilsemigroup with zero.®

Let A and B be commutative semigroups, B having a zero element 0. Then, sometimes
an ideal extension C of A by B in the sense of Clifford [1] can be commutative.® If C
is commutative, then C is called a commutative ideal extension of A by B. It should be
noted that there exists at least one commutative ideal extension of A by B. If G is a finite
[commutative] nilsemigroup having .a kernel K, then the Rees factor semigroup G/K of
G mod K is a finite [commutative] z-semigroup.®) Therefore, we can say that G is a
[commutative] ideal extension of a finite [commutative] group by a finite [commutative]

1) An abstract of a part of this paper has been appeared in Yamada [9].

2) ADB means “B is a proper subset of A”.

3) A\B means the set {x:x€A, z&EB}.

4) In the case where Sis commutative, this is easily proved without the Corollary to Lemma
2 of [41. ’

5) Clifford [1] used the term “extéhsion” for the term “ideal extension”. The term “ideal
extension” was introduced by Clifford & Preston [2].

6) The term “Rees factor semigroup” is due to Clifford & Preston [2]. However, this
concept was firstly introduced by Rees [3].
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Z-semigroup.
In this paper, we shall present a method of constructing all p0551b1e {inite commutative
semigroups by using the concepts introduced above.

§ 2. The structure of finite commutative semigroups.

Let S be a finite commutative semigroup. Since S is finite, the set I of idempotents of
S is not empty and is a commutative idempotent subsemigroup (i. e., a subsemilattice) of
S. Define an ordering < in I as follows : e < f if and only if ef=fe=e. Then, I becomes
a partially ordered set. Since I is a finite semilattice, there exists a maximal element (not
necessarily unique), say eg. Put Iy=1\{eo}. ‘If I is not empty, Iy is also a finite subsemi-
lattice of S. Hence there exists a maximal element of Iy, say e1. Put Io=I;\{ei}.
Repeating this process, we can obtain a sequence of semilattices, I=Iy DI D.... DLn=/{e..}.
By the definition of I; , it is clear that each I is an ideal of 1. Let S; ={x : x* &I, for
some positive integer #}. Then, S; is a subsemigroup of S, and S=S,25:DS2D....DSm.

Further, we have

Lemma 1.

(1) Each S; is an ideal of S, and for 1<i<m the Rees factor semigroup Si-1/S; of
Si-1 mod S; 1is a finite commutative generalized mlsengroup

(2) Swm is a finite commutative nilsemigroup.

Proof. Take elements x and y from S; and S respectively. There exist positive integers
7, k such that 27 &€I; and y* ©1. Put 27 =f and y% =g. Then (zxy)"*t=xkyrk=fgcL;1
CI;. Hence zy&S;. Therefore, S; is an ideal of S. Next, we shall show that Gi—1 =S;-1\S;
is a finite commutative nilsemigroup. Take elements a and b from G;i-1. Then, there
exist positive integers #, v such that a* ©L-1 and % €L~;. If a* €L or b €I; , then a
ESi or b=S; . Accordingly, a& Gi-1 or b&EGi-1, which contradicts to our assumption.
Hence, a* =b” =e;j—1 &1;-1\I;, Since (ab)#?=e¢;_1, the element ab is contained in S;—1\S:.
Hence ab&Gj-1. This proved that G;—1 is a semigroup. Let Ti—1 ={zei-1 : xEGi-1}.
Then, Ti-1 is a subgroup of Gj-1 as well as an ideal of Gi—;. Therefore, Gi—1 has the
group 7Tj-1 as its kernel. It is clear that Gj-; satisfies the condition (C.1). Thus, Gi-1
is a nilsemigroup. Since Gi-1 is a finit commutative nilsemigroup, S;-1/S; is a finite
commutative generalized nilsemigroup. The second part of the lemma can be verified by
a similar method.

If A is a finite commutative semigroup and if B is a finite commutative generalized
nilsemigroup, for convenience we shall call “a commutative ideal extension of A by B”
simply  “an elementary extension”.

Then,

Theorem 1.

(1) Every finite commutative semigroup can be built up from a finite commutative
nilsemigroup by repeating elementary extensions finitely many times successively.

Conversely,

(2) a semigroup which is built up from a finite commutative nilsemigroup by repeating
elementary extensions finitely many times successively is a finite commutative semigroup.

Proof. The first part of the theorem follows from Lemma 1 and the definition of ele-
mentary extensions. The second part is obvious.

By Theorem 1, the problem c¢f constructing all possible finite commutative semigroups
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is reduced to ‘the following two problems. o

(P.1) Determining all possible commutative ideal extensions of A by B, for a given finite
commutative semigroup A and for a given finite commutative generalized nilsemigroup B.

More generally, ‘ o

(P.1)* Determining all possible commutative ideal extensions of A by B, for a given
commutative semigroup A and for a given commutative semigroup B with zero in which
the set of non-zero elements is a subsemigroup.

(P.1) Construction of finite commutative nilsemigroups.

The problem (P.I)*(hence, the problem (P.I)) was solved by Tamura [7] ; that is,

Theorem 2. Let A be a commutative semigroup, and B a commutative semigroup with’

zero 0 in which the se_tb B*=B\{0} is a_subsemigroup. Letj'(A) be the semigroup of
translations of A. Let ¢ be a homomorphism. of B*. into 7 (A). Then, A+ B* becomes

a commutative ideal extension of A by B if multiplication o in C is defined as follows :
- Ty if z, yEA or z, yEB¥,
M. 1) zoy=1-2:(y) . if y&A and z&B¥

‘ Ay () if xEA and yEB*,
where v =@p(u). .

Further, every commutative ideal extension of A by B is found in this fashion.!)
- Proof. See Theorem 4 of [7].

Remarks. 1. In Theorem 2, 7~ (A) contains the identity mapping 7 on A. Now, consider
the mapping ¢ : B*——> g~ (A) defined by ¢(z)=7, x&B*. Then, the mapping ¢ is
clearly a homomorphism. Therefore, this ¢ gives a commutative ideal extension of A by
B. Hence, there exists at least one commutative ideal extension of A by B.

2. Tamura [6], [7], [8] studied also the problem of construction of finite commutative
semigroups in connection with the problem of constuction of finite semigroups. We shall
discuss this problem by taking a process which is somewhat different from the process
taken in (6], [7] and [8].

By Theorem 2, we need only toconsider the problem ‘(P. ). So, we shall deal with
this problem in the following paragraphs.

§ 3. Finite commutative nilsemigroups.

The following was proved by Clifford [1] :

Theorem 3. * Let S and T be semigroups, T having a zero element 0. Let T*=T\{0} and
Si=T*+S. Then, a partial homomorphism & of the partial groupoid T* into S determines
an ideal extension J(o) of S by T as follows

ab if a,b&ES or if apET* and ab>x0,
(M. 2) aob={ @B if abET* and ab=0,
£@b if a&T* and bES,
a () if bET* and aES.

If S has an identity, then every ideal extension of S by T is found in this fashion.®

7) For sets M and N, M+N means the class sum of M and N. In (M. 1), zy means the
product of z, y in A or B¥, corresponding to the case z,yEA or x,yE B¥ respectively.

8) Clifford [1] used the term “a ramified homomorphism” for the term “a partial homomor-
phism”. The term “a partial homomorphism” is due to Clifford & Preston [2]. For the
definition of partial groupoids, see also [2].
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Now, assume that both S and 7T of Theorem 3 are commutative. Then, the binary
operation o given by (M. 2) is also commutative. Therefore, in this case every ideal
extension of S by T is necessarily commutative.

Hence, we have

Lemma 2. If S is a commutative semigroup with identity, and if T is a commutative
semigroup with zero, then every ideal extension of Sby T is a commutative ideal extension.

Now, as was seen in § 1, a finite commutative nilsemigroup G having a kernel K is an
ideal extension of the finite commutative group K by the finite commutative z-semigroup
G/K. Conversely, it follows from Lemma 2 that an ideal extension of a finite commutative
group by a finite commutative z-semigroup is a finite commutative nilsemigroup.
Therefore, the problem (P.II) is reduced to the following three problems :

(P.IM) Construction of finite commutative groups.

(P.IV) Construction of finite commutative z-semigroups.

(P.V) Determining all possible ideal extensions of A by B, for a given finite

commutative group A and for a given finite commutative z-semigroup B.

The problem (P.MM) is clear from the theory of groups, while the problem (P.V) can
be also solved as a special case of Theorem 3; that is,

Corollary. Let Sbe a finite commutative group, and T a finite commutative z-semigroup.
Let O be the zero element of T. Let T*=T\{0} and S=T*+S. Take a partial homo-
morphism & of the partial groupoid T* into S, and define multiplication o in 3, by (M. 2).
Then, 3, (o) becomes an (commutative) ideal extension of Sby T. Further; every (com-
mutative) ideal extension of S by T is obtained by this method. v

Now, we need only to consider the problem (P.IV) which takes the most complicated
and important part of this paper. We shall solve this problem in the following § 4 and
§ 5.

Remark. Tamura [8] solved the problem of construction of finite z-semigroups (not
necessarily commutative) by using the concept of the decompositions of certain finite
free z-semigroups. We shall solve the problem (P. V) by another method which is essen-
tially quite differ from the method used in [8].

§ 4. Commutative z-semigroups of order n.

Let S be a finite commutative z-semigroup, and let 0 be its zero element.
Then, S satisfies the following condition :
(Z) SOS82D83D. ... DS8% = {0} for some positive integer p.

In the case of p=1 or p=2, S satisfies the following

(Z. 1) S={0}
or (Z. 2) S2={0}, that is, zy=0 for all z, yES,
respectively.

Such a semigroup. S is called a trivial z-semigroup or a null semigroup, corresponding
to p=1or p=2

Remark. Let M be a set consisting of # elements, and let e be an element of M. If we
define multiplication o in M by

(M. 3) zoy=e for all x, y&E M,
then M becomes a null semigroup of order n. Hence, of course M is a commutative z-
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semigroup of order n. Thus, we have the following result : For any positive integer n,
there exists a commutative z-semigroup of order n.

Let G be a semigroup with zero 0. The subset A of G, where A={x : zEG, zy=yx
=0 for all ¥ £G}, is a subsemigroup of G. We shall call A the annihilator of G.

Lemma 3. The annihilator of a non-trivial, finite commutative z-semigroup has a non-
zero element.

Proof. Let S be a non-trivial, finite commutative z-semigroup, and let 0 be its zero
element. Then, there exists a positive integer p > 2 such that $SOS2D..... D8r ={0}.
Take an element x from the set S*-1\S?. Then, 230 and zy&S? = {0} for all yES.
Hence, x is a non-zero element contained in ‘the annihilator of S.

Remark. Following Tamura [4], Lemma 3 is generalized as follows : The annihilator
of a non-trivial, finite z-semigroup has a non-zero element. We can prove this proposition
by a similar method to - that of the proof of Lemma 3 if we use the fact that a finite
z-semigroup satisfies the condition (Z), even if it is non-commutative.

Lemma 4. Let S be a commutative z-semigroup of order n+1 (n=1). Let 0 be the zero
element of S, and let u be a non-zero element contained in the annihilator of S. Then the
set {0, u} is hoth a null subsemigroup and an ideal of S, and the Rees factor semigroup
D=S/{0, u} of S mod {0, u} is a commutative z-semigroup of order n. Further, in this case
S is a commutative ideal extension of a null semigroup of order 2 by -a commutative
z-semigroup of order n.

Proof. Ovbious.

Conversely, we have

Lemma 5. A commutative ideal extension of a null semigoup of order 2 by a commutative
z-semigroup of order n is a commutative z-semigroup of order n+1.

Proof. Let Z be a commutative z-semigroup of order n. Let 0 be the zero element of
Z. Let U={u, 0} be a null semigroup, where 0 is the zero element of U. - Let Z*=Z\{0}
and T=U+Z*. Suppose that T is a commutative ideal extension of U by Z under a
binary operation o. For any element x of T(©0), £00=2000CU 0 0={0}, 4. e., x o 0=0.
Hence 0 is the zero element of T'(o). Next, there exists a positive integer p such that
ZDOZ2D..... DZb = {0}. Therefore, T(o)2 =U2UUo Z*UZ*()2 CUUZ2\{0}. In
general, for 1<m<p T(o)mCUUZ"\{0}. Hence, especially T(0)? CU and hence
T(o)?+1={0}. Since the order of T'(o) is n+1, T(o) is a commutative z-semigroup
of order n+1.

Remark. For any given null semigroup N of order 2 and for any. commutative z-semi-
group Z of order n, existence of a commutative ideal extension of N by Z is proved by
the following example : Let N={0, u}, where O is the zero element of N. Let0 be the
zero element of Z, and put S=Z\{0}+ {0, «}. Then S becomes a commutative ideal
extension of N by Z if multiplication o in S is defined as follows :

xay=5 zy  if 2,yEZ\{0} and zy=x0,
L o otherwise.

Combining Lemmas 4 and 5, we have

Theorem 4. A commutative z-semigroup of order n+1 (n=1) is a commutative ideal
extension of a null semigroup of order 2 by a commutative z-semigroup of order n, and
vice-versa.
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Now, we consider the problem :

(P. VI) Construct all p0551b1e commutatlve z—semlgroups of ordér =z for a given positive
integer 7. :

For n=1 or 2 this problem is easily solved, since a : commutative 2- semlgroup of order
l'or 2 is a trivial 2-semigroup or a null semigroup respectively. -

Hence, the problem (P. VI) is reduced to the following problem :

(P. VII)’ We assume that we can construct all possible commutative z-semigroups of order
m (m=2). Construct all possible commutative z-semigrotips of order m+1.-

Further, by Theorem 4 the problem (P. VI) is reduced to ‘the following problem :

(P. W) Construct all possible comimutative ideal extensions of a given null semigroup
of order 2 by a given commutative z-semigroup of order m (m=>2).:
~We shall deal with this problem (P. V) in the next paragraph:

Remark:  Lemmas 4, 5 and Theorem 4 still hold, even if we substitute the terms “z-
semigroup” and.“ideal ' extension” for the terms “commutative 2z-semigroup” and “com-
mutative ideal extension” respectively. Accordingly, by a similar process to the process
used above the problem of constructing all finite z—semlgroups is reduced to the following
problem : :

“(P. IX) Construct all possible ideal extensions of a given null semigroup of order 2
by a given z-semigroup of order m (m=2). :

§ 5. C-factors of a finite commutative z-semigroups.

Let N be a null semigroup of order 2, and put N={0, 2}, where 0 is the zero element
of N. let T be a finite commutative z-semigroup havihg 0 as its zero element. Let
T*=T\{0}, and let S=N+ T* Let 2={(z, y) : zy=0, z, y=T}. Then, any subset A
of 2 satisfying the following condition (C)'is an ideal of the direct product T>< T:

@) &, 0)0EA for any tET, '
© 2 (tv,w) EA implies (¢, vw)E 4,
3) (v, w)EA implies (w, v)EA.

For, let (z, y)EAdand (¢4, t)ETXT. Then, (z, ) (1, t2) =(xt1, yig). Since (¢4, 0) =
(t1, ZYt2) EA, (xyte, t1) is contained in A Hence (yt2, xt1) 4, and hence (xti, yts)
€A, Therefore, (z, ¥)(t1, £s)EA. Thus, 4 is an ideal of TXT. Such a A is called
a commutative extension factor (abbrev. C-factor) of T. Itis easy to see that R itself is
the greatest C-factor of 7.

Under this definition, we have

Theorem 5. Let Abe a C-factor of T, and define multiplication o in S by the following :

xy if z, yET*, zyx0 or if x, yEN
(M. 4) zoy= 0 if xEN or y&N, o
0 if (z, y)EA, z, yET* and xy=0,
z if (z, ¥)EA, z, y=T* and zy=0.
Then, S( o) becomes a commutative ideal extension of N by T. Further, every commutative
ideal extension of N by T is found in this fashion. .

Proof. At first, we shall prove thet S( o) is a commutative semigroup. Since clearly
S( o) is closed and commutative, we need only to prove that S( o) is associative, i. e.,
ao(boc)=(aob)oc for all a, b, c=S(). If at least one of the elements a, b, ¢ is an
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element of N, then ao (boc)=0 and (aob) o c=0. Hence, in this case ao (boc)y=(ao
b) o c is satisfied. Further, if a, b, c©T* and abcx0, then ao (boc)=a(bc)=(ab)c=
(aob) oc. Therefore, in this case ao (boc)=(aob) oc is also satisfied. ~Hence, we
assume that a, b, c&T* and abc =0. :

Case 1. ab=0, bc=0. (aob)oc=00c or goc=0and ao (oc)=ao0 or aoz =0.
Hence (aob)oc=ao (boc). :

Case 2. ab=¢0.

Subcase (i). (ab,c)EA. (aob) oc=aboc=0. Since (ab,c) is contained in A, (a, bc) is
also contained in 4. If bc0, then ao (boc)=aobc=0. If bc=0, then ao (boc)=ao0
oraoz=0, Hence, in both cases we have ao (boc)=0. Therefore, (aod) oc=ao (boc).

Subcase (i1). (ab, c)&E A. At first, (ab, ¢)& A implies (a, bc)E A. Next, be=0. For,
if bc=0 then (a, 0)=(a, bc)EA. This contradicts to (a, be) & A. Hence, bcx0. - Now,
ao (boc)=ao (bc)=2 =aboc=(aob)oc. Therefore, (acb) oc=ao (boc).

Case 3. bcx0. In this case, we can prove associativity ao (boc)=(aob)oc by a

similar method to that of the proof of the case 2.
Thus, in any case associativity ao (boc)=(aob) o c is satisfied.
It is easy to see that S( o) satisfies the following
(1) zoy=xzxy if x, yEN or if z, y&ET%*, zy=0,
and (2) NoSCN (in fact, No S={0}).
Therefore, S(°) is a commutative ideal extension of N by T.  Next, we shall prove that
every commutative ideal extension of N by T can be obtained by the method given in
the theorem. Let S(©) be any commutative ideal extension of Nby T. Let A4;={(x,y):
z0 y=0, (z, YELR, z, y=T*} and As={(x,y): z, yET, and =0 or y=0}, and put
A=A1UAs. Then, 4 is a C-factor of T. This is proved as follows : Clearly, A satisfies
the conditions (1) and (3) of (C). Let (t1tg, a)EA. Then, (#1t9,a) EA1 or E Az, If (129,
a)E A1, then tito © a= (t; ©t2) © a=0. Hence, t; © (t20a) =0. If i3 ©a=0 or gz, then tga=0
and hence (t1, t2a) EAs. If ty © a0, 2, then tea=T* and hence (¢y, tsa)EA;. Next,
suppose that (titg, a)EAs. If tea=0, then (t1, t2a) = (t1, 0) EAs. If t2a50, then t129=0
since (tit2, a) EAs and a30. Hence, we have t; © tsa=t1 0((s © a)=(t1 ©t3) ©a=00a
or £ ©a=0. Therefore, (t1, tsa)&A;. In any case,. (¢1t2, a) =4 implies (¢1, tea) E A
Thus, A satisfies the condition (2) of (C). Therefore, 4 is a C-factor of T. Now, let S(o)
be the commutative ideal extension of N by 7T that is determined by the C-factor A
and the multiplication o defined by (M. 4). Then, it is easy to see that S(o)=S(0),
i. e, xoy=x20 vy for all z, yES.
By Theorem 5, the problem of determining all commutative ideal extensions of N by T
is reduced to the problem of finding all C-factors of T. Next, we shall consider this problem.
Theorem 6. Let ['={(t1its, t3) : t1, ta, t3& T, t1tatg=0}1{(t1, %ats): 1, t2, ts&T,
titot3=0}.
Then, .
(1) [ is a C-factor of T, :
@2 I'=2\{(x, »): z, y are prime elements of T}, v
(B) if QD ADI and if A satisfies the condition (3) of (C), then A is a C-factor of T.9

9) Let G be a semigroup such that G\G? is not empty. Then, every element of G\G? is
called a prime element.
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Proof. (1) Obvious. .

2) Irc\{(z, ¥): z, y are prime elements of T} is clear. Take (u, v) from the set
O\{z, y) : z, v are prime elements of T}. Then, # or v is not a prime element. Hence,
u=ujug or v=v1ve. I u=ujus, then (uius, v)=(u, v)E. I vive=v, then (u, vivs)
=(u, v) EI. Therefore, in any case (u, v)ET.

(8) Suppose that 2D4D]" and A satisfies the condition (8) of (C). Since AD], A
satisfies the condition (1) of (C). Let (tifs, t3) be an element of A. Since (tite, t3)
€ Q and since f1ts is not a prime element, by (2) of the theorem (#1t9, £3) is contained
in 7. Since [ is a C-factor of T, (1, tot3) is also contained in [, and hence in 4. Thus,
A satisfies the condition (2) of (C). Therefore, 4 is a C-factor of T.

If a sequence &={t, tg, t1, t2,.....,tr } of elements of T, where r is an even integer
= 2, satisfies

@ @ t)EeL
and (2) t=titlg, tot1=1L3t4, Lal3=I5l6,..... s by —aby—3=1ty—1ty (t:tﬂfz in the case of T:Z),
then & is called a (¢, to)-chain (in T). ;
Further, in this case the ordered set (¢y—2, t,—1, & ) is called the final part of @ It should
be noted that for a given (¢, to) EQ such a (¢, tg)-chain is not necessarily unique even
if it exists. _

Lemma 6. (1) If (to, t1, t2) is the final part of a (t, 0)-chain, {t, to, t1, to}, then (tot1,
t2) =(0, t2) and (ta, tot1)=(ts,0). . . .

@) If (ty-2, tr—1, tr) is the final part of a (¢, 0)-chain, {i, to, t1,....., &}, and if
r=>4, then (t,—9, ty—1, t; ) is also the final part of some (0, t’ )-chain. -

Proof. (1) Since (to, t1, t2) is the final part of the (¢, 0)-chain {t, %o, ¢, t2}, £0=0.
Hence (tot1, t2) =(0, t3) and (Z2, totr) = (¢2,0).

(2) Since {t, to, t1,..... , b} is a (¢ 0)-chain, tq=0 and  t=tits, tot1=tats, totz=
E5t6y. . i , ly—aty—3=tr—1tr . Hence, we have the series 0=tgts, tats=tsts,..... , tr—aty—3

=ty_1ty. Now, putt,_, =tpfor k>3 and f; =ts.  Then, we get the series 0=t t,, {; t;=
té t;, ..... , t,',_G t;,_s = t;_s t;_z. Hence, (t;_4, t;_3, t;_z)z(trvz, ty-1, tr ) is the _final part

of the (0, t(;)—chain {0, 23, t3,.....,Lr }.

Theorem 7. The least C-factor Ay of T is as follows :

Ao={(v, 0) : vET}UA{0, w) : wETU{(tr—2tr—1,tr ) : (r—2, tr—1, tr ) is ‘the final part of

a (0,t)-or (t, 0)-chain for some t& T} U{(lr, tr—aotr—1) : (¢tr—2, tr—1, &) is the final part of

a (0, t)-or (t, 0)-chain for sometET}={(v, 0) : vET}U{(0, w) : wE T} U{(Er-atr—1, tr ) :
(ty_g, ty_1, tr) is the final part of a (0, £)-chain for some t&T} U{(ty , tr—z tr-1) : (-2,
ty—1, tr ) is the final part of a (0, t)-chain for some t&T}.

Proof. Let 4 ={(v,0): vET}U{0, w) : w&T}U{(tr—str—1, tr ) : (tr—2, tr—1, tr ) is the
final part of a (0, t)-chain for some t&T}YU{(tr, tr—2tr—1) : ((r—2, tr—1, t» ) 1is the final
part of a (0, t)-chain for some t&T}. Since the last equality follows from Lemma 6, we
shall only show that 4 is the least Cfactor of 7. Let A be any C-factor of T. Then, it
_is clear that 4 D{(v, 0) : vET}U{0, w) : w&T}. Next, we prove that for a (%, v)-chain
{u, v, t1,t2, ..... , tr }, where (u, v) ©4, both (¢,—str—1, t» ) and (¢, tr—2t,—1) are contained
in A. Since {u, v, t1, to,..... , t» } is.a (u, v)-chain, we obtain the series u=t1tg, vi1 =
tsty, totg=tste,..... , ty—aty—3=t,—1t, . Now, the elements (¢1ts, v) = (u, v), (¢2, £10) = (l2,
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tsta), (tols, t4) = (tste, t4),..... , and the elements (v, #1t2) = (v, ), (t1v, t2) = (tsts, t2),
(ta, tots) = (t4, tstg), ..... are all contained in A.  In particular, (¢,—2t,-1, % ) and (%,
ty—1tr—2) are contained in A. Hence, if (¢,—3, t,—1, %, ) is the final part of a (0, £)-chain,
then both (tr—gtr—1,%tr ) and (¢, tr—1tr—2) are contained in /4, since A contains the set
{(0, w) : we&T}. Therefore, AC A. Next, we shall prove that 4 is a C-factor of T. Itis
clear that A satisfies the conditions (1) and (3) of (C). Also, (2) of (C), i. e, “(xy,
2)E4 implies (x, yz) E4” is proved as follows :

Case 1. (zy,2) =(0, w), wET. Since z=w and zy=0, (z, ¥, ) is the final part of the
(0, w)--chain {0, w, vy, z}. Hence, (z, y2)E 4.

Cass 2. (xy, 2)=(v, 0), vET. Since z=0 and xzy=v, (z, y2)=(z, 0)E 4.

Case 3. (zy, 2) = (ty—gtr—1, tr ), where (ty—2, tr—1, tr ) is the final part of a (0, t)-chain

{0, t, £, to,..... ,tr }. Since {0, t, t1, ta,..... , tr } is a (0, t)-chain, we obtain the series
0=tqto, tt1=tgts, ..... , tr—tty—3=t,_1t, . Putting y=t,+1 and x=t,43, we get the series
0=t1ts, tt1=t3t4;,..... s br—dty—3=ty 1ty , by—gtr—1=tr+1tr+2. Therefore, {0, £, t1, to,..... sty

tr+1, tr+2} is a (0, t)-chain in T. Hence, (¢r+2, tr tr+1) = (x, y2)E 4.
Case 4. (xy, 2)=(r, tr—1tr—2), where (ty_3, tr—1, tr) is the final part of a (0, t)-chain
{0, ¢, t1, to,..... , t» }. In this case, xy=1%, and 0=i1to, it1=tgt4, tatg=Lsts,..... S ly—dty—3

=ly—1ly .
Subcase (i) r=2. 0=tits=t1xy. Putting tlyzti and x:té , we obtain the (0, t)-chain
{0,t, t;, 1, }. Since (t,t;, t,) is the final part of {0, ¢, &1, t,}, (&, tt; ) =(z. y2)E4.
Subcase (i1) r>2, i. e. r=>4. Since ty—aty—3=tr—1tr (tr—4=t in the case of r=4), xyt,—1

=ty_4ty—3. Putting yty—lzt;_l and x:t; , we have tr——4tr—3:t;__1 t;, Hence, (ty-2, t;,_l,

" t,) is the final part of the (0, £)-chain {0, £, t1,. .., tr—2, t,_1, t, +. Therefore, @, , t,_itr—2)
=(z, yz)E4. Thus, 4 satisfies the condition (2) of (C).

Further, we have the following

Theorem 8. Let Ay be a C-factor of T and let (u, v) be an element of Q. Then,
the C-factor A4 of T generated by {4y, (u, v)}, that is, the least C~factor containing Ao
and (u, v) is as follows :

A=doU {(u, ©)} U{v, )} U{(tr—2tr—1, t» ) : @r—2, tr—1, b ) is the fmal part of a (u, v)-or
(v, w)-chainy U{(ty, tr—gtr—1) : (br—2, tr—1, tr ) is the final gart of a (u, v)-or (v, u)-chain}.

Proof. Let A=AdoU{(x, v)}U{(v, u)} U{Er—2tr—1, tr ) : (tr=2, tr—1, tr ) is the final part
of a (u, v)-or (v, w)-chain} U {(t, tr—atr—1) : ((tr—2, tr—1, ty ) is the final part of a (u, v)-or
(v, u)-chain}. At first, we shall prove that 4is a C-factor of T. Ttis clear that A satisfies
the conditions (1) and (3) of (C). Also, (2) of (C), i. e, “(xy, 2) EA implies (x, yz)
& A” is proved as follows :

Case 1. (zy, 2)E4dy. Since 4o is a C-factor of T, (z, yz) E4oC 4.

Case 2. (zy, 2)=(u, v). In this case, zy=u and z=wv. Therefore, {%, v, y, z} is a (u,

v)-chain. Hence, (v, y, x) is the final part of the (, v)-chain {«, v, y, z} and hence

(z, yv) = (z, y2)EA
Case 3. (zy, 2)=(v, u). By a similar method to that of the proof of the case 2, we

have (z, yz) EA..
Case 4. (zv, 2) = (tr—str—1, tr ), where (tr—2, tr—1, tr ) is the final part of a (u, v)-chain
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{u, v, t1, to,..... ,tr }. Since {%, v, t1, to,..... , tr } is a (u, v)-chain, we obtain the series
u=tyte, vty =tsts, tols=tste,..... , tr—atr—3=tr—1ty . Putting y=ty+1 and z=tr12, we get
also the series u=tqtq, Vi1 =tsty, tatg=tstg,..... , by—dty—3=ty—1ty , ty—otr—1=tr+1tr+2. Hence,
(tr , tr+1, tr+2) is the final part of the (u, v)-chain {u, v, t1, fo,..... , by, Erel, tr4a).

Therefore, (tr+2, trtr+1) = (x, y2) E A
Case 5. (xy, 2)=(r—atr—1, tr ), where (tr_9, tr—1, Ly ) is the final part of a (v,' w)-chain

{v, u, 23, 89,..... , & }. By a similar mothod to that of the proof of the case 4, we have
(z, v2)EA '

Case 6. (zy, 2) = (ty, tr—otyr—1), where (tr—2, ty_1, b ) is the final part of a (u, v)-chain
{u, v, t1, ta,..... , & }. 1In this case, zy=t, and wu=tity, vi;=tgts. Lolg=tslg,..... R

Ly—4ly—3=1ly—1tr .

subcase (i) r=2. Since r=2, u=t;xy and z=vt;. Putting tiy:ti and z=t, , we have a
(u, v)-chain {u, v, ti, ty }. Since (v, ti, t,) is the final part of the (x, v)-chain {, v,

4t} (&, 4 o)=(z, y2)EL
Subcase (i) r>2, i. e, r=24. Since ty—aty—3=ty—1ly (ty—4=v in the case of r=4), zyt, 1

=t,_aly—3. Putting yt,_1=£,_; and x:t;’ we have t,_;t, =t,_4ty_3. Hence, (tr—2, t 1
t,) is the final part of the (x, v)-chain {u, v, 1, ta,.. ... s tr—2,t,_y, t, }. Therefore, (t,',7

t,_str—2)=(x, y2) EA
Case 7. (zy, 2) = (i, ty—oty—1), where (ty—3, ty—1, 1, ) is the final part of a (v, w)-chain
{v, u, t1, t2,..... , t» }. By a similar method to that of the proof of the case 6, we have

(z, y2)EA. Thus A satisfies the condition (2) of (C), and hence ./ is a. Cfactor of 7.
Now, let ® be any C-factor containing {4y, (%, v)}. Since @ contains both (z, v) and
(v, u), for the final part (t,—3, tr—1, t») of a (u, v)- or (v, u)-chain @ contains both
(ty—str—1, t) and (&, tr—2tr—1). Hence @ contains 4. Therefore, A is the least C-factor
containing {Ao, (%, v)}. )

For any C-factor 4 of T and for any subset 5 of 2, let I'(4, &) be the least C-factor
of T containing A and 5. Put {aj, ag, as,..... , ar } =5, where aj €. Then, we can
easily prove the following relation : )

... rarr(asd), {ash), {ash)....., {ae-1}), ez H =4, 5).

Now, by Theorems 7 and 8 we can obtain all C-factors of T. In fact : {I["(Ao, ) :
SCO\ Ay is the totality of C-factors of T, where Ao is the least C-factor of T.

Remark. In the case in which T is not necessarily commutative, we can also introduce

the concept of E-factors of T as follows : A subset /T of 2 satisfying the condition

1) (@¢,00& and (0, $)& /] for any T,

(E) (2) (v, w)E]l implies (¢, vw)ET], and (¢, vw) &[] implies

(tv, w) &1,
is called an extension factor (abbrev. E-factor) of T. It is clear that £ itself is the greatest
E-factor of T. Let ¥={(z, y): x, yET}. Define multiplication o [0] in ¥ as follows :
(z, ) o (v, w) =(xv, wy) [ (x, y) © (v, w)=(vx, yw)]. Then, the resulting system ¥ (o)
[¥(©)] becomes a semigroup. It is easy to see that any E-factor of T is a left ideal of
¥(o) and a right ideal of ¥ (©). Also, it is easily proved that both ¥ (o) and ¥ (0©)
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coincide with T'X T if T is commutative. Hence, an E-factor of T is an ideal of TX T
if T is commutative. Every C-factor of a finite commutative z-semigroup is an E-factor,
but the converse is not true.

We have :

Theorem. An E-factor A of a finite commutative z-semigroup is a C-factor if and only
if it satisfies the condition (3) of (C).

Finally, we obtain the following extension theorem for the case in which T is not
necessarily commutative :

Theorem. Let A be an E- -factor of T, and define multiplicationoin S by (M. 4) of
Theorem 5. Then, the resultmg system S( o )becomes an ideal extenszon of N by T.
Further, every ideal extension of N by T is found in this fashion.
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