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S 1. Introduction. 

A semigroup G with kernel K is called a nilpotent semigrQup if it sa;tisfies , the following 

condition (C. l) 

(C. 1) G~G2]G8[). , . . . '. [DGp =K for .some positive integer p.2) 

In particular, we shall call G a nilsemigroup if it is a nilpotent semigroup and its kernel 

is a. subgroup of G. Further, a semigroup M with zero O is called a generali2;ed nilsemigroup 

if M* =M¥ {O} constitutes a nilsubsemigroup of M.3) L,et T be a semigroup, and let O be 

a symbol not representing any element of T. Extend the given binary operation in T to 

one in TU{O} by defining O0=0 an;d a0=0a=0 for every a in T. It is easy to see that 

TU{O} becomes a semigroup with zero element O with respect to this binary operation 

We speak of the passage from the semigroup T to the' semigroup TU {O} as '< the addition 

of a zero element to T ", and denote the semigroup TU {O} by TO. It is clear that if T 

is a nilsemigroup then TO is a generalized nilsemigroup, and conversely that every 

generaliz~ed nilsemigroup can be obtained by adding a z~ero element to a nilsemigroup 

As defined by Tamura [5], a semigrol~lp is cailed a z-semigroup if it has a zero element, 

O,. but has no idempotent except O. In particular, for a finite semigroup S it can be easily 

proved by the Coro]_Iary t6 Lemma 2 of Tamura [4] that S is a z-semigroup if and only 

if it satisfies the fo]lowing condition (C. 2) 

(C. 2) (1) S has a zero elem6nt O, { (2) S~S2]S31D . . . . . . [)Sp = {O,} for some positive integer p 

That is, S is a z-semigroup if and on]y if it 'is a nilsemigrGup with zer0.4) 

Let A and B be commutative semigroups, ~ having a zero elem~nt O. Then, sometimes 

an ideal extension C of A by ~ in . the sense of Clifford [1] can be commutative.5) If C 

is commutative, then C is called a commutative ideal extension of A by ~. It should be 

noted that there,exists at least one commutative ideal extension of A by ~. If G is a finite 

[commutative] nilsen~igroup having , a kernel K, then the Rees factor semigroup G/'K of 

G mod K is a finite [commutative] z-semigroup.6) Therefore, we can say that G is a 

[commutative] ideal extension of a finite [commutative] group by a finite [commutative] 

1) An abstrac,t of a part of this paper has been appeared in 'Yamada [9] 

2) A[)~ means <'B is a proper subset of A" 

3) A¥~ means the set {x : x~A, x~E~} 

4) In the case where S is commutative, this is easily proved without the Corollary to Lemma 

2 of [4]. 

5) Clifford [l] used the term "ext~hsion" for the term '<ideal extension". The term "ideal 

extension" was introduced by ' Clifford & Preston [2] 

6) The term <<Rees factor semlgroup" is due to Clifford & "Preston [2]. However this 

concept was firstly introduced by Rees [3]. 
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z:-semigroup . 

In this paper, we shall present a , method Qf constructing all possible finit~ commutative 

semigtoups by using the concepts introduced above 

S 2. The structure of finite commutative semigroups 

Let S be a finite commutative semigroup.. Since S is finite, the set I of idempotents of 

S is not empty and is a commutative idempotent subsemigroup (i. e., a subsemilattice) of 

S. Define an ordering < in I as follows : e < f if and only if ef=fe=e. Then, I becomes 

a partial]y ordered set. Since I is a finite semilattice, there exists a maximal element (not 

necessarily unique), say eo･ Put 11 =1¥{eo}. If ll rs not empty, Ii is a]so a finite subsemi-

lattice of S. Hence there exists a maximal element of li, say el' Put 12 =11¥{el} 

Repeating this process, we can obtain a sequence of senulattrces I Io~ll[D . . . . [Dlm= {e,n} 

By. the definition of li , it is clear that each li is an ideal of I. Let Si = {x : x" Eli for 

some positive integer u} . Then, Si is a subsemigroup of S, and S=So[DSIDS2 [D . . . . [DSm 

Further, we hav~ 

Lemma l 
(1) Each S:i is an ideal of S, and for 1<i<m the Rees factor semigroup Si-1/Si of 

Si - I mod S~ is a finite commutative generalized nilsemigroup 

(2) Sm is a fi7zite commutative nilsemigroup 

Proof. Take elements x and y from Si and S respectively. There exist positive integers 

r, k such that xr EL and yk EI. Put xr =f and yk, =g. Then (xy)rk=x'kyrk=fgCElil 

~li . Hence xyES~. Therefore, S~ is an ideal of S. Next, we shall show that Gi-1 =Si-l¥S; 

is a finite commutative nilsemigroup. ' Take eletnents a and b from Gi-1' Then, there 

exist positive integers ~i, v such that a't '~Eli_1 and b-' Eli_1' If a" Ell dr bv ~I,' , then a 

ES~ or blt~S~ . Accordingly, a~EGi _1 or b~EGi-1, which cohtradicts to our assumption 

Hence, au =bv =ei-1 Eli-l¥Ii. Since (ab)uv=ei-1, the element ab is contained in Si-l¥Si 

Hence abEGi_1. This proved that Gi_1 is a semig~oup. Let Ti_1 = {xei-1 : xEGi-l} 

Then, Ti_1 is a subgroup of Gi_1 as well 'as an ideal of Gi-1' Therefore, Gi_1 has the 

group Ti-1 as its kernel. It is clear that Gi_1 satisfies the condition (C. 1). Thus, Gi,-1 

is a nilsemigroup. Since Gi-1 is a finit commutative nilsemigroup,' Si-1/Si is a finite 

commutative generalized ･ nilseinigroup'. The second part of the lemma can be verified by 

a' simil-ar method 

If A is a finite commutative semigroup and if B is a finite commutative generalized 

ni]seinigroup, for convenience we shall call "a commutative ideal .extension of A by ~ " 

simply "an elementary extension". 

Then, 

Theorem l_ 

(1) Every finite commutative semigroup can be built up from a fin~te commutative 

nilsemigroup by repeating elementary extensions finitely many times successively . 

Conve rse l y , 

(2) a semigroup which is built up from a finite commutative nilsemigroup by repeating 

elementary extensions finitely many times successively is a finite commutative semigroup 

Proof. The first part of the theorem follows from Lemm~ I and the definition of e]e-

me;itary extensions. The secoyLd part is obvious. 

By Theorem l, the problem Gf constructing all possible finite commutatlve semigroups 
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is reduced to 'the following two problems. 

(P. I ) 'Determining all posslble commutative ideal extensions of A by ~, for a given finite 

commutative semigroup A and for a given Linite commutative generalized nilsemigrou~ ~ 

More generally, 

(P. I ) * Determining all possib]e commutative ideal extensions of A by ~, for a given 

commutative semigroup A and for a given commutative semigroup ~ with zero in which 

the set of non-zero elements is a subsemigroup 

(P. H ) Construction of fimte commutative nilsemigroups 

The prob]em (P. I )*(hence, the problem (P. I )) was solved by Tamura [7] ; that is, 

Theorem ~. Let A be a commutative semigroup, and B a commutative semigroup with ' 

zero O in which' the se.t ~* =B¥ {O} is a subsemigroup. Let f (A) be the semigroup of 

translations of A. Let ~ be a homomorphism of B* , into ~ (A) . Then, A + ~* becomes 

a commutative ideaZ extension of A by ~ if multiplication ' i n C is defined as follows 

xy if x, _VEA or x, y~E~* 
(M 1) x " y = ' ~x(y) , if y~A aed XE~*. 

~_v(x) if XEA and yE~* 
where ~,, = ~ (u) . 

Further, every commutative ideal. extension of A by L;, is found in this fashion.7) 

Proof. S~e Theorem 4 of [7]. 

Remarks. 1. In Theorem 2, ~ (A) contains the identity mapping r on A. Novv, consider 

the mapping ~ : ~*-->f' (A) defined by ~(x) = r, x~E~*. Then, the mapping ~ is 

clearly a homomorphism. Therefore, this ~ gives a commutative ideal extension of A by 

L;. Hence, there exists at least one commutative ideal bxtension of A by ' ~. 

2. Tamura [6], [7], [8] studied also'the problem of construction of finite commutative 

semigroups in connection with the problem of constuction of finite semigroups. We shall 

disctiss this problem by taking a process which is somewhat different from the process 

taken in [6], [7] and [8]: 

By Theorem 2, we need o'nly to - consider the problem (P. H ) . So, we shall deal with 

this problem in the following paragraphs 

~~ 3. Finite commutative nilsemigroups 

The following was proved by Clifford [l] 

Theorem 3. : Let S and T be semigroups, T having a zero eZement O. Let T* = T¥ {O} and 

~ = T* + S. Then, a partial homomorphism ~ of the pattiaZ･groupoid T* into S determines 

an ideal extension ~ ( ' ) of S by T as follows 

ab if a,bES or if a,bET* aed ab~O, 
(M 2) a ' b - ~(a)~(b) if a,bET* and ab=0, 

~(a) b if aET* ard bES, 
a ~ (b) if bET* and a~ES. 

If S has an identity, then every ideal extension of S by T is found in this fashion.8) 

7) For sets M and N, M+Nmeans the class sum of M and N. In (M. 1), xy means the 
product of'x, y in A or ~* correspondmg to the case x yeA or x yeB* respectively 

8) Clifford [1] used the term "a ranufied homomorphism" for the term '<a partial homomor-

phism". The term "a partial homomorphism" is due to Clifford & Preston [2]. For the 

definition of partial groupoids, see also [2] 
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Now, assume that both S and T of Theorem 3 are commutative. Then, the binary 

o~eration o given by (M. 2) is alsb commutative. Therefore, in this case' evety ideal 

extension of S by T is necessarily corilmut~tive 

Hence, we have 

Lemma 2. If S is a commutative semigroup with identity, ard if T is a commutative 

semigroup with zero, then every ideal extension of S by T is a commutative ideal extension. 

Now, as was seen in S l, a finite commutative nilsemigroup G having a kernel K is an 

ideal extension of the finite commutative group K by the finite commutative z-semigroup 

G/K. Conversely, it follows from Lerrima 2 that an ideal extension of a finite commutative 

group by a finite commutative z-semigroup is a finite commutative nilsemigroup 

Therefore, the problem (P. 11 ) is reduced to the following three problems 

(P.IID Construction of finite commutative groups. 

(P.IV) Construction of finite commutative z-semigroups 

(P.V) Determining all possible ideal extensions of A by B, for a given finite 

commutative group A and for a given finite commutative z-semigroup 1~ 

The prob]em (P.IID is clear from "the theory of groups, whi]e the prob]em (P.V) can 

be also solved as a special case of Theorem 3 ; that is, 

Corollary. Let S be a finite commutative group, and T a finite commutative z-semigroup. 

Let O be the z;ero element of T. Let T* = T¥{O} ard ~=T*+S. Take a partial homo-

morphism ~ of the partial groupoid T* into S, and define multiplication ' in ~ by, -(M.' 2) . 

Then, ~ ( ･ o ) becomes an (commutative) ideal extension of S by T. Further; every (com-

mutative) ide!al extension of S by T is obtqined by this method 

Now, we need only to cotlsider the problem (P. IV) which ' takes the mQst complicated 

and important part of this paper. We shall solve this problem in the following S 4 and 

S 5. 

Remark. Tamura [8] solved the problem of construction 'of finite z-semigroups (not 

necessari]y commutative) by using the concept of the decompositions of certain finite 

free z-semigroups. We shall solve the problem (P. IV) by another method which is essen-

tially quite differ from the method used in [8] 

S 4. Commutative z-semigroups of order n 

Let S be a finite commutative z-semigroup, and let O be its zero element 

Then, S satisfies the following condition 

(Z) S[DS2]S8[). . . . . [DSp = {O} for some positive integer p. 

In the case of p=1 or p=2, S satisfies the following 

(Z. l) S={O} 

or (Z. 2) S2={O}, that is, xy=0 for all x, yES, 

respectively. 

Such a semigroup S is called a trivial z-semigroup or a null semigroup, corresponding 

to p=1 or p=2. 
Remark. L,et M be a set consisting of n elements, and let e be an element of M. If we 

define multip]ication o in M by 

(M. 3) x o y=e for all x, yE M, 

then M becomes a null semigroup of order n. Hence, of course M is a commutative z-
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semigroup of order n. Thus, we have the following result : For any positive integer n, 

there elxists a commutative z-semigroup of order n 

Let G be a semigroup with zero O. The subset A of G, where A={x : xEG, xy=yx 

= O, for all y ~ G}, is a subsemigroup of G. We shall call A the annihilator of G 

Lemma 3. The annihilator of a non-trivial, finite commutative z-semigroup has a non-

zero element. 

Proof. L,et S be a non-trivial, finite commutative z-semigroup, and let O be its zero 

element. Then, there exists a positive integer p > 2 such that Sl)S2 [) . . . . . [DSp = {O} 

Take an element x from the set Sc-1¥Sc . Then, x~O and xyESp = {O} for all yES 

Hence, x is a l~onJzero element contained in 'the annihilator of S 

Remark. Following Tamura [4], Lemma_ 3 is gel)era]ized as follows : The annihilator 

of a non-trivial, finite ~;-semigroup has q non-zero eleinent. We c'an prove this proposition 

by a similar method to ' that of the proof of Lemma 3 if we use the fact that a finite 

z-semigroup satisfies the condition (~) , even if it is non-commutative 

Lemma 4. Let S be a commutative z-semigroup of order n + I (n>1). Let O be the zero 

element of S, aed let u be a non-zero element contained in the annihilator of S. Then the 

set {O, u} is both a null subsemigroup and an ideal of S, and the Rees factor semigroup 

D = S/ {O, u} of S mod {O, u} is a commutative z-semigroup of order n. Further, in this case 

S is a commutative ideal extension of a null semigroup of order 2 ' by ' a commutative 

z-semigroup of order n. 

Proof. Ovbious. 

Conversely, we have 

Lemma 5. A. commutative ideal extension of a null semigoup of order 2 by a commutative 

z-semigroup of ' order n is a commutative z-semigroup of order n + l. 

Proof. Let .Z be a commutative z-semigroup of order n. Let O be the zero ' element of 

Z. Let U= {u, O} be a null semigroup, where O is the zero element of U. ･ Let Z*=Z¥{O} 

and T= U+ Z*. Suppose that T is a commutative ideal extension of U by Z under a 
binary o'peration o . For any element x of T( o ), x o 0=xO o O~~Uo 0={O}, i. e., x o 0=0 

Hence O is the . zero element of T( o ) . Next, there exists a positive integer p such that 

. [)Zp = {O}. Therefore, T( o )2 = U2U Uo Z*UZ*( o )2 ~; CrUZ2¥{O}. In Z]Z2[) . . . . 

genera], for l<m<p T( o )m~:UUZm¥{O}. Hence, especially T( o )p ~ U and hence 

T( o )p+1={O} . Since the order of T( o ) is n+1, T( o ) is a commutative z-semigroup 

of order n+1. 

Remark. For any given null semigroup N of order 2 and for any. commut~tive z-semi-

group Z of order n, existence of a commutative ideal extension of N by Z is proved by 

the follo;wing example : Let N= {O, u}, where O is the b~ero element of N. L,et O be the 

zero e]ement of Z, and put S=Z¥{O} + {O, u} . Then S becomes a commutative ideal 

extension of N by Z if multipiication o in S is defined as follows 

x o y=1 if x,yEZ¥{O} and xy~O, xy 
L O otherwise. 

Combining L,emmas 4 and 5, we have 

Theorem 4. A commutative z-semigroup of order n + I (n>1) is a commutative ideal 

extension of a 'null semigroup of order 2 by a commutative z;-semigroup of order n, and 

vice-versa. 
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Now, we consider the prob]ein 

(P. VD Construct all possib]e commutative z-semigroups of otd~r n for a given positive 

ihteger n. 

For' n'= I or 2 this problem is ~asily solved, since a; 'cdmmutative z-semigroup of order 

l" or 2 is a trivial ' :~-semigroup 'or 'a null semigtoup, respectively; ' 

Hence, the problem (P. VD is reduced to the following problem 

(P. VU:) We assume that ,we can' construct all possible commutative z-semigroups of order 

m (m>2) . Construct all possible commutative z-semigroups of order m+1 

Further, 'by Theorem 4 the problem' (P. Vu) is redticed' to 'the following problem 

(P. VHD Construct all possible cominutative ideal extensions of a given null, semigroup 

of order 2 by a given ' commutative z-semigroup 'of order m (m~,2) 

We shall deal with this problem (P. VED in the nlext paragraph 

Remark: L,emmas 4, 5 and Theorem 4 still hold even if we substitute the terms <~z-

semigroup" and . t<ideal extension" for the terms ttcommtitative zLsemigrbup" and '~com-

mutative id6al extension" respectively. Accordingly, ' by a similar' process" to the prodess 

used above the problem of constructing all finite z-semigroups is redticed, to the; following 

Problem 
(P-. IX) Construct all possible ideal extensiohs ' of a given null semigroup of order '2 

by a given z-semigroup of order m (m>2) 

S 5. C-factors of a finite commutative z-semigroups 

Let N be a null semigroup of order 2, and put N= {O, z}, where O is the b~ero elerrient 

of N. L,et T be a finite commutative z-semigroup having O as~ its zero element. Let 

T*=T¥{O}, and let S=N+ T*. Let ~~={(~, y) : xy=0, x, yET}. Then, any stibset A 
of ~2) sati'sfying the following condition ' (C)' is an ideal of the direct product' TX' T 

(1) (t, O) IEA for any tET, ' ' 

(C) (2) (tv,w) EA implies (t, vw) EA, 

(3) (v, w) EA implies (w, v) EA. 
For, Iet (x, y) EA and (ti, t2) E ~X T. ' Then,.(x, y) (tl, t'2) ~ (xtl' yi2). Since (tl, O) = 

(tl, ~xyt2)EA, (xyt2, ti) is contained in A. Hence (jt2, xtl)E:A, and hence (xtl,yt2) 

EA. Therefore, (x, y) (tl' t'2)EA. Thus, A is an ideal of TXT. Such a A is called 

zi commutative extension factor (abbrev. C-factor) of T. It is easy to see that ~2 itself is 

the greatest C-factor of T. 

Under this definition, we have 

Theorem 5. Let A be a C-factor of T, and defme multrplicatwn o m S by the foZZowmg 
xy if ~t, yEt* xy~i0' or if ~, yE~;, 

(M. 4) x o y = O if XEN or yEN, ' ' 
O if (x, y)EA, x, y~T* ard xy=0, 

z if (x y)~~A, x, yET* and xy=0. 
Then, S ( o ) becomes a commutative ideal extension of N by T. Further, every commutative 

ideal extension of N by T is found in this fashion. 

Proof. At first, we shall prove thet S( o ) is a commutative semigroup. Since clearly 

S( o ) is. closed and commutative, we need only to prove that S( o ) is associative, i. e., 

a o (b o c) = (a o b) o c for all a, b, cES( o ) . If at least one of the elements a, b, c is an 
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element of N, then a ' (b . c) =0 and (a ' b) . c=0. Hence, in this case a ' (b . c) = (a ' 

b) o c is satisfied. Further, if a, b, cET* and abc~O, then a ' (b ･ c) =a(bc) = (ab)c= 

(a " b) ･ c. Therefore, in this case a ' (b ･ c) = (a ' b) ･ c is also satisfied. Hence, we 

assume that a, b, ceET* and abc =0. 

Case l. ab=0, bc=0. (a ' b) o c=0 ' c or z ' c=0 and- a =' (b ･ c)=a ' O or a ' z =0. 

Hence (a ' b) . c=a ' (b o c). 

Case 2. ab~O. 

Subcase (i) . (ab, c) ~EA. (a ' b) o c=ab ･ c=0. Since (ab, c) is contained in A, (a, bc) is 

also contained in A. If bc~O, then a ' (b ･ c) =a ' bc=0. If bc=0, then a ' (b o c) =a o O 

or a ' z=0. Hence, in both cases w;e have a o (b ･ c) =0. Therefore, (a ' b) o c=a ' (b ･ c) . 

S~bcase (ii) . (ab, c) ~IE A. At first, (ab, c) ~IE A implies (a, bc)'~E A. Next, bc~~O. For, 

if bc = O then (a, O) = (a, bc) EA. This contradicts to (a, bc) ~E A. Hence, bc~O. Now, 

a o (b ･ c) =a o (bc) =z =ab ･ c= (a ' b) . c. Therefore, (a ' b) o c=a ' (b ･ c) 

Case 3. bc~O. In this case, we can prove associativity a ' (b ･ c) ~ (a ' b) ･ c by a 

similar method to that of the proof of the case 2 

Thus, in any case associativity ~ ･ (b o c) = (a ' b) ･ c is satisfied 

It is easy to see that S( ･ ) satisfies the following 

(1) x ' y=xy if x, yEN or if x, y~ET* xy~O, 

and (2) N･ S~~N (in fact, N･ S= {O}). 

Therefore, S(･) is a commutative ideal extension of N by T. Next, we shall prove that 

every commutative ideal ext~nsion of' N by T can be obtai"ned by the method given in 

the theorem. L,et S(C) be any commutative ideal extension of N by 'r. Let Al={(x, y) 

x C y=0, (x, y)Ef~, x, yET*} and A~={(x, y) : x, yET, and x=0 or y=0}, and put 

A=AIUA2' Then, A is a C-factor of T. This is proved as follows : Clearly, A satisfies 

the tonditions (1) and (3) of (C). ' L,et (tlt2, a) EA.' Then, (tlt2,a) EAI or EA2: If (tlt2, 

a) EAl' then tlt2 Ca= (tl C t2) Ca=0. Hence, ti C (t2Ca) =0. If t2 C a=0 or z, then t2a=0 

and hence (tl' t2a) EA2' If t2 C) a~O, z, then t2aeET* and hence (tl' 't2a) EAi. Next, 

suppose that (tit2, a)EA2. If t2a=0, then (tl' t2a) = (tl' O)EA2. If t2a~O, then tlt2=0 

since (tlt2, a) EA2 and a~O. Hence, we have tl C t2a=tl C(t2 C a) = (tl C t2) C a=0 ~) a 

or z C a=0. Therefore, (tl' t2a) EAl' In any case,, (tlt2, a) EA .implies (tl' t2a) eEA. 

Thus A satisfies the condition (2) of (C). Therefore, A is a C-factor of T. Now, Iet S(･) 

be the commutative ideal extension of N by' T that is determined by the C-factor A 

and the multiplication ' deLined by (M. 4). Then, it is easy to see that S( o ) =S( C ), 

i. e., x ' y=x C y for all x, yES. 

By Theore~l 5, the problem of determining all. commutative ideal extensions of N by T 

is reduced to the problem of finding all C-factors of T. Next, we shall consider this problem 

Theorem 6. Let r= {(tlt2, t8) : tl' t2, t8ET, tit2t8=0}L I {(tl' t2t8) : tl' t2, t8ET, 

tlt2t8 = O} . 

Then, 

(1) r is a C-factor of T, 

(2) r=~~¥ { (x, y) : x, y are prime elements of T} , , 
(3) if ~2~A~raed if A satisfies the condition (3) of (C~ , then A is a C-factor of T.9) 

9) L~t G be a semrgroup such that G¥G2 rs not empty. Then, every element of G¥G2 is 

called a prime element. 
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Proof. (1) Obvious. 

(2) F~~2¥{(x, y) : x, y are prime elements of T} is clear. Take (u, v) , from the set 

~2¥{x, y) : x, y are prime elements of T} . Then, u or v is not a pritne element. Hence, 

u=ulu2 or v=vlv2. If u=ulu2, then (ulu2, v)=(u, v)Er. If vlv2=v, then (u, vlv2) 

= (u, v) Er. Therefore, in any case (u, v). Ell: 

(3) Suppose that ~~~A~r and A satisfies the condition (3) of (C). Since A~~r, A 

satisfies the condition (1) of (C). L,et (tlt2, t8) be an element of A. Since (tlt2, t8) 

E ~~f and since tlt2 rs not a prime element, by (2) of the theorem (tlt2, t8) is contained 

in F. Since r is a C-factor of T, (tl' t2t~) is also contained in F, and hence in A. Thus, 

A satisfies the condition (2) of (C). Therefore, .A, is a C-factor of T. 

If a sequence . ~= {t, to, tl' t2,. . : . . , 'tr } of ele,ments of T, where r is an even integer 

> 2 satisfies 

(1) (t, to)E~2 

and (2) t=tlt2, totl=t8t4, t2t8=t5t6,. . . . ., tr-4tr-3=tr-Itr (t=tlt2 in the case of r=2), 

then ~ is called a (t, to)~chain (in T). . , 
Further, in this case the ordered set . (tr -2, tr-1, tr ) is called t,he final pqrt of ~~. It should 

be noted that for a given (t, to)E~2 such a (t, to)~chain is not necessarily unique even 

if it exists. 

L,emma 6. (1) If (to, tl' t2) is the final part of a (t, O)-chain, {t, to, tl' t2}, then (totl, 

t2) = (O, ,t2) and (t2, totl)= (t2, O). 

(2) If (tr-2, tr-1, tr ) is the final part of a (t, O)7chain, {t, to, ,tl" i ' ' " t,, }, and if 

r>4, then (tr-2, tr-1, tr ) is also the ,final part of some , (O, t ' ) -chain. 

Proof. (1) 'Since (to, tl' t2) is the final part of the (t, O)-chain {t, to, tl' t2}, t0=0 

Hence (totl' t2)= (O, t2) an~ ･(t2, toti)= (t2,0). 

(2), Since {t, to, tl"""' t, } is a (t,.O)-chain, t0=0 and, t=tlt2, totl=t8t4, t2t8= 

t5t6,. . . . ., tr-4tr-3=tr-Itr ' Hence, we have the series 0=t3t4, t2t3=t5t6,. . . . ., tr-4tr-3 

=tr-Itr. Now, put t~_2 =tk for k _,__>_ 3 and t; ~t2. ' Then, ¥ve get the 'series 0=t; t~, t~ t[= 

t~ t~, ･ ･ ･ t 6 tr 5 = t' t~ 2 '- t~-3' t~-2) = (tr-_ . Hence, (tr 4, 2, tr-1' tr ) is the fmal part r-3 

of the (O, t6)-chain {O, t2, t8, ' ' '-' ', tr } 

Theorem 7. The least C-fadtor A o of T is as follows 

A0= {(v, O) : vET} U {O, w) : wET} U {(tr-2tr-1, tr ) : (tr-2, tr-T, tr ) is' the final part of 

a (O, t)-or (t, O)-choin for some t~ET} U { (tr , tr-2tr-1) : (tr-2, tr-1, tr )' is th~ finaZ part of 

a (O, t)-or (t, O)-chain for some tET} = { (v, O) : VE T} U { (O, w) : WE T} U { (tr-2tr-1, tr ) : 

( tr-2, tr-1' tr ) is ihe fina'l part ~oj a (O, t)-ch~in for some tET} U { (tr , tr-2 tr-1) : ('tr-2, 

tr-1' tr ) is the final part of a (O, t) -chain for soine tET} . 

Proof. Let A = {(v,O) : vET} U {(O, w) : wET} U {(tr-2tr-1, tr ) : (tr-2, tr-1' tr ) is the 

final part of a (O, t)-chain for some tET} U {(tr , tr-2tr-1) : (tr-2, tr-1, tr ) is the final 

part of a (O, t)-chain for some tET} . Since the last equality follows from L,emma 6, we 

shall only show that A is the least C-factor of T. L,et A be any C-factor ,of T. Then, it 

is clear that A ~~ { (v, O) : vET} U {9, w) : WET}. Next, we pFove that for a (u, v)-chain 

' ' ' " tr }, where (u, v) EA, both (tr-2tr-1' tr ) and (tr , tr-2tr-1) are contained {u, v, tl' t2, . 

' ' " tr }' is. a (u, v)-chain, we obtain the series u=tlt2, vti = in A. Since {u, v, tl' t2,.. 

' ' ' ' ', tr-4tr-3=tr-Itr ' Now, the elements (tlt2, v) = (u, v), (t2, tl~') = (t2, t8t4, t2t8=t5t6, 
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and the elements (v, tlt2) = (v, u), (tlv, t2) = (t8t4, t2), t8t4), (t2t8, t4)= (t5t6, t4),. . . . ., 

are all contained in A. In particular, (tr-2tr-1' tr ) and (tr , (t4, t2t8) = (t4, t5t6), . . . . . 

tr-Itr-2) are contained in A. H.ence, if (tr-2, tr-1' tr ) is the final part of a (O, t)-chain 

then both (tr-2tr-1' tr ) and (tr , tr.-Itr-2) are contained in A, since A contains the set 

{ (O, w) : wET} . Therefore, A~~A. Next, we shall prove that A is a C-factor of T. It is 

clear that A satisfies the condrtrons (1) and (3) of (C) Also (2) of (C) ~ e t< (xy 

z) EA rmplies (x yz) EA" rs proved as follows 

Case 1. (xy,z:) = (O, w), wET. Since z=w and xy=0, (z, y, x) is the final part of the 

(O, w)--chain {O, w, y, x}. Hence, (x, yz) EA 

Cass 2. (xy, z) = (v, O), vET. Since z=0 and xy=v, (x, yz) = (x, O)EA 

Case 3. (xy, z) = (tr-2tr-1, tr ), where (tr-2, tr-1' tr ) is the final part of a (O, t)-chain 

tr } is a (O, t)-chain, we obtain the series tr }.' Since {O, t, tl' t2,. . . . ., {O, t, tl, t2,. . . . ., 

. , tr-4tr-3=tr-Itr ' Putting y=tr+1 and x=tr+2, we get the series 0=tlt2, tti=t8t4, . . . . 

tr-4tr-3=tr-Itr , tr-2tr-1=tr+1tr+2. Therefore, {O, t, tl' t2,. . . . . , 0=tlt2, ttl =t8t4; . . . . ., tr , 

tr+1, tr+2} is a (O, t)-chain in T. Hence, (tr+2, tr tr+1) = (x, yz) EA. 

, r- , tr ) is the final part of a (O, t) -chain. Case 4. (xy, z) = (tr , tr-Itr-2) , where (t 2 t 1 

{O, t, tl' t2,.. }. In this case, xy=tr and 0=tlt2 ttl t8t4 t2t8 t5t6 . . . . .,tr-4tr-3 ' ' ', tr 

=tr-Itr ' 

Sicbcase (i) r=2. 0=tlt2=tlxy. Putting tly=t; and x=t~ , we obtain the (O, t)-chain 

{O, t, t; , t~ } ･ Since (t t' t' ) is the final part of {O, t, t{ , t~ } , (t~ , tt; ) = (x, yz) EA 
, 1, 2 

Subcase (ii) r>2, i. 'e. r..__>_4. Since tr-4tr-3=tr-Itr (tr-4=t in the case of r=4), xytr-l 

= r- r- ' r- - - and x=tr ' we have tr-4tr-3=tr-Itr ' Hence, (tr-2, tr-1' t 4t 3 Putting yt l-tr l 

' ' } . Therefore, (t; , t~_Itr-2) t~ ) is the final part of the (O t) cham {O, t, tl , tr 2, t t 
~ r-1' r 

= (x, yz) CEA. Thus, A satisfies the condition (2) of (C) 

Further, we have the following 

Theorem g. Let Ao be a C-factor of T ard let .(u, v) be an element of ~2. Then, 

the C-factor A of T generated by {Ao, (u, v) } , that is, the least C-factor containing Ao 

ard (u, v) is as follows 

A = Ao U { (u, v) } U {v, u) } U { (tr-2tr-1' tr ) : (tr-2, tr-1' tr ) is the final part of a (u, v)-or 

(v, u) -chain} U { (tr, tr-2tr-1) : (tr-2, tr-1' tr ) is the final k'art of a (u, v)-or (v, u)-chain}. 

Proof. Let A=AoU {(u, v)} U {(v, u)} U {(tr-2tr-1' tr ) : (tr-2, tr-1' tr ) is the final part 

of a (u, v) -or (v, u)-chain} U { (tr , tr-2tr-1) : ( (tr-2, tr-1' tr ) is the final part of a (u, v)-or 

(v, u) -chain}. At first, we shall prove that A is a C-factor of T. It is clear that A satisfies 

the conditions (1) and (3) of (C). Also, (2) of (C), i. e., t<(xy z) EA Implies (x yz) 

EA" is proved as follows 

Case 1. (xy, z) EAo' Since Ao is a C-factor of T, (x, yz) EAo~A. 

Case 2. (xy, z) = (u, v). In this case, xy=u and z=v. Therefore,' {u, v, y, x} is a (u, 

v)-chain. Hence, (v, y, x) is the final part of the (u, v) -chain {u, v, y, x} and hence 

(x, yv) ~ (x, yz) EA. 

Case 3. (xy, z) = (v, u) . By a similar method to that of the proof of the case 2, we 

Case 4. (xy, ~) = (tr-2tr-1, tr ) , where (tr-2, tr-1' tr ) is the final part of a (u, v) -chain 



10 Miyuki YAMADA 
{u, v, tl' t2,. . . . ., tr }' Smce {u v, tl t2 . . . ., tr } is a (u, v)- ' cham, we obtain the series 

u=tlt2, vtl=t3t4, t2t8=t5t6,. . . . ., t -Itr ' Putting y=tr+1 and x=tr+2, we get tr-4tr-3= r 

also the series u=tlt2, vtl =t8t4, t2t8=t5t6,. . . . . , tr-2tr-1~tr+1tr+2. Hence, , tr-4tr- 3 = tr-Itr 

(tr , tr+1, tr+2) is the final p,art of the (u, v)-chain {u, v, tl' ' ' ' ' " tr , tr+1, tr+2}. t2, 

Therefore, (tr~-2, trt,.+1) = (x, yz) ~l A. 

Case 5. (xy, z) = (tr-2tr-1, tr ), where (tr-2, t - r r 1, t ) is the finaZ pal-t of a (v, u) -chain 

{v, u, tl' t2,. . . ' " tr }' By a sirnilar mothod to that of the proof of the case 4, we have 

(x, yz) EA. 

Case 6. (x_y, z) = (tr, tr-2tr-1)' where (tr-2, tr-1' tr ) is the final part of a (u, v)-chain 

' ' ' ' " tr }' In this case, xy=tr and u=tlt2, vtl=t8t4. t2t3=t5t6,. . . . ., {u, v, tl, t2, 

tr- 4tr - 3 = tr - Itr ' 

subcase (i) r=2. Since r=2, u=tlxy and z;=vtl' Putting tly=tl an'd x~t' we have a 
2' 

(u, v)-chain {u, v; t{, t~ }･ Since (v, t{, t~ ) is the final part of the (u, v) -chain {u, v, 

t{, t~ }, (t~, t; v) = (x, yz) EA. 

Subcase (ii) r>2, i. e., r:~4. i v m the case of r=4), xytr-l *S nce t 4tr-3=tr-Itr (tr-4= ' 

=tr-4tr-3. Puttmg yt I tr I and x I we have tr I t t 4tr-3. Hence, (tr-2, t;_1' 

t; ) is the final part of the (u, v)-chain {u, v, tl' t2,. . . . . , tr 2, tr I t~ }･ Therefore, (t~, 

t~-Itr-2) = (x, yz) EA. 

Case 7. (xy, z) ~ (tr, tr-2tr-1)' where (tr-2, tr-1' tr ) is the final pa~t of a (v, u)-chain 

{v, u, tl, t2,. . . . . , tr }' By a similar method to that of the proof of the ca~e 6, we have 

(x, yz;) EA. Thus A satisfies the condition (2) of (C), and he~lce_.A is a C-factlor of T. 

Now, Iet ~) be any C-factor containing {Ao, (u, v) }. Since ~ contains both (u, v) and 

(v, u), for the final part (tr-2, tr-1' tr ) of a (u, v)- or (v, ~t)-chain ~ qontains both 

(tr-2tr-1' tr ) and (tr ' tr-2tr-1) ' Hence ~ contains A. Therefore, A is the least C-factor 

containing {Ao, (.u, v) } 

For any C-factor A of T and for any subset _~7 of ~2, Iet r(A, ~) . be the least C-factor 

of T containing A and ,_,'~H,*,~L Put {(xl' ci~2, Qi3, . . . ., oik } =~:, where oij E~. Then we can 

easily prove the following relation 

r(r(. . . .r(r(r(A,{ciil}), {cli2}), {c~8})... . . {clik l}) {clik })=r(A, B). 

Now, by Theorems ~/ and 8 we can obtain all C-Lactors of T. In fact : {r(Ao, 2) 

~~~2¥Ao is the totality of C-factors of T, where Ao is the least C-factor of T. 

Remark. In the case in which T is r,ot necessarily commutative, we can also introduce 

the concept of E-factors of T as follows : A subset H of ~2 satisfying the condition 

(1) (t ,O) EJI and (O, t) EH for any tET, 

(E) (2) (t~), w) ~JI implies (t, vzv) EH, and (t, vw) CEH implies 

(tv, w) EH, 

is called an extension factor (abbrev. E-factor) of T. It is clear that ~21 itself is the greatest 

E-factor of T. L,et ~r={(x, y) : x, yET} . Define multiplication o [C] in ~ as follows 

(x, y) o (v, w) = (xv, wy) L~ (x, y) C (v, w) = (vx, yw)]. Then, the resulting system ~ ( o ) 

[~ ( C )] becomes a semigroup. It is easy to see that any E-factor of T is a left ideal of 

~r( . ) and a right ideal of 2~( C ). Also, it is easily proved that both ~r( o ) and ~r( C ) 
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coincide with TX T if T is commutative. Hence, an E-factor of T is an ideal of TX T 

if T is commutative. Every C-fa,ctor of a finite cotnmutative z-semigroup is an E-factor, 

but the converse is not true. 

We have ' Theorem. An E-factor A of a finite commutative z-semigroup is a C-factor if aed only 

if it satisfies the condition (3) of (C). 

Finally, we obtain the following extension theorem for the case in which T is not 

necessarily commutative 

Theorem. Let A be an E-fac~or of T, and define muZtipZication o in S by (M. 4) of 

Theorem 5. Th~n, the' resuZti7ig syslem S( ･ ) 'becomes an ideaZ ~xtension of N by T. 

Furth~r, every ideal extension of ,N by T is jourd iri this fashion. 
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