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A B S T R A C T

Research indicates that a subtle cognitive decline, accompanied by pathological changes, occurs in individuals
with subjective memory complaints (SMC). However, there is less evidence regarding the measurement of
resting-state functional connectivity to detect subtle brain network alterations in neurodegenerative illnesses
before cognitive change manifestation. We investigated the correlation between SMC and cognitive performance
and explored functional and structural brain changes underlying SMC severity, using behavioral and brain
imaging data-driven approaches. We observed that SMC was associated with depression but not with cognitive
test scores, implying that SMC represent the “worried-well”; however, this model explains only 15% of the target
variance. Using a conservative threshold, we observed connectivity related to SMC severity in the lingual gyrus,
cuneus, anterior insula, and superior parietal lobule. Post-hoc analysis indicated that occipital and parietal
functional connectivity increased with SMC severity. In contrast, volumetric alterations were not associated with
SMC, even after applying a liberal threshold. Our findings suggest that altered resting-state functional con-
nectivity in regions associated with SMC might reflect early compensatory changes that occur before cognitive
and structural abnormalities develop.

1. Introduction

Recently, there has been growing interest in individuals with sub-
jective memory complaints (SMC; also known as subjective cognitive
impairment, subjective memory impairment, subjective cognitive de-
cline, and other terminology) (Abdulrab and Heun, 2008) who ex-
perience changes in their memory function. Clinically, SMC may re-
present a prodromal state of mild cognitive impairment (MCI) (Dubois
et al., 2016; Jessen et al., 2014; Petersen et al., 2001), although some
studies have demonstrated that the cognitive state is not always related
to actual detectable memory function (Harwood et al., 2004; Jungwirth
et al., 2004; Kryscio et al., 2014). A meta-analysis indicated a sig-
nificant association between SMC and actual memory function, al-
though the effect size was small (Crumley et al., 2014). Such a small
effect might be due to the fact that SMC represent subtle cognitive
changes that fall below the detectable threshold of common cognitive
tests. Indeed, recent studies with larger sample sizes have indicated that
SMC at baseline can predict future memory decline related to dementia
(Abner et al., 2015; Kaup et al., 2015; Koppara et al., 2015).

Interestingly, SMC appears to correlate with specific pathological

processes related to MCI or Alzheimer's disease (AD). This includes
protein markers in the cerebrospinal fluid, including amyloid β-42,
total tau, and phosphorylated tau; structural patterns, identified with
magnetic resonance imaging (MRI) or diffusion MRI; and functional
brain states, identified with positron emission tomography or functional
MRI (fMRI) (for a review, Sun et al., 2015). Indeed, structural changes
in individuals with SMC have been observed, including reduced volume
in medial regions, such as the entorhinal cortex, hippocampus, anterior
cingulate, and precuneus (Hafkemeijer et al., 2013; Jessen et al., 2006),
as well as cortical thinning in these regions (Schultz et al., 2015).
However, the results of fMRI studies are somewhat controversial.
During an episodic memory task, participants with SMC exhibited re-
duced hippocampal activation and increased prefrontal activation re-
lative to control subjects (Erk et al., 2011). In contrast, another study
showed increased activation in subcortical regions, including the hip-
pocampus, in individuals with SMC performing a divided attention task
(Rodda et al., 2011).

Previous studies have attempted to identify key brain regions as-
sociated with SMC using biochemical, structural, and functional
methods. Such studies have confirmed that several brain regions play a
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role in SMC. However, most previous studies have used conventional
model-dependent methods to examine outcomes in specific brain re-
gions. More recently, functional neuroimaging data has been collected
using resting-state fMRI (rs-fMRI) techniques, which can be used to
measure spontaneous neural activity and to evaluate regional brain
fluctuations occurring during rest or when a participant is not per-
forming any explicit task (van den Heuvel and Hulshoff Pol, 2010). The
resulting resting-state functional connectivity (rs-FC) correlates with
the activity of distant brain regions. Measuring this allows the detection
of subtle brain network alterations in neurodegenerative illnesses, such
as AD, before the manifestation of cognitive and behavioral changes
(Sheline and Raichle, 2013). Although rs-FC is an appropriate marker
for the study of SMC, few studies have used rs-fMRI, albeit with in-
consistent results. One study reported increased rs-FC within the de-
fault-mode network and medial visual network in individuals with SMC
compared with control subjects (Hafkemeijer et al., 2013). The default-
mode network is one of the large-scale brain networks that exhibits
strong rs-FC, which is a key component of the aging brain (Sheline and
Raichle, 2013). It consists of several brain regions, mainly including the
posterior cingulate cortex, medial prefrontal cortex, and angular gyrus.
This region is known to be involved in many functions, including au-
tobiographical information, self-reference, theory of mind, social eva-
luations, episodic memory, etc. (Andrews-Hanna, 2012). However,
another study indicated lower connectivity in the default-mode net-
work in subjects with SMC when compared with control subjects, but
higher connectivity than in individuals with MCI (Wang et al., 2013).

In the present study, we aimed to explore the relationship between
SMC and rs-FC by using rs-fMRI. Although seed-based analysis provides
a clear view of regions functionally connected with the seed re-
gion—and thus an elegant way of examining rs-FC in the human
brain—the resulting information is limited to the functional connec-
tions of selected seed regions, making it difficult to examine con-
nectivity patterns across the whole brain (van den Heuvel and Hulshoff
Pol, 2010). Therefore, we implemented whole-brain multivariate pat-
tern analysis (MVPA) for a data-driven, agnostic approach. The benefit
of such an approach is that it circumvents the selection bias of using
specific regions as nodes and is more reproducible than conventional
seed-based approaches (Song et al., 2016). Additionally, we conducted
voxel-based morphometry (VBM) (Ashburner and Friston, 2000) com-
bined with structural brain MRI to examine whether the gray matter
volume is associated with symptom severity and functional alterations
in individuals with SMC.

Our objectives were: (1) to confirm the association between per-
formance of cognitive functions and SMC in our dataset; (2) to explore
brain regions in which rs-FC correlated with the SMC index; and (3) to
investigate the relationship, if any, between functional and structural
findings associated with SMC severity. Based on previous reports
(Hafkemeijer et al., 2013; Jessen et al., 2006; Schultz et al., 2015;
Cooley et al., 2015), we hypothesized that the rs-FC and volume of
medial and posterior regions, such as the hippocampus, entorhinal,
thalamus, posterior cingulate, fusiform, cuneus, and precuneus, which
form part of the default-mode and visual networks, would be modulated
by SMC severity. Finally, as a complementary analysis, we include
follow-up data indicating that SMC are related to later cognitive de-
cline.

2. Materials and methods

2.1. Participants

Participants were selected from the health examination system da-
tabase at the Shimane Institute of Health Science (Kawagoe et al., 2017;
Onoda et al., 2012). This database is a collection of medical, neurolo-
gical, neuropsychological, MRI, and blood test data for individuals who
underwent rs-fMRI scanning from December 2012 to September 2015.
We included 322 older adults (60–94 years old), all of whom led

independent lives in the community without any advanced medical
treatment. They all voluntarily performed the above tests as a part of
their health checkup, which included brain imaging and a cognitive
function examination.

None of the participants expressed any severe complaints about
their health at the visit, but participants were excluded if there was any
suspicion of cognitive impairment [below the appropriate Mini-Mental
State Examination (MMSE) cutoff], cerebral injuries, or abnormalities,
such as any apparent atrophy, cerebral hemorrhage, or previous cere-
bral infarction, including silent infarction, brain edema, aneurysm,
hypoplasia, empty sella syndrome, any type of cyst, enlarged perivas-
cular space, hydrocephaly, chronic subdural hematoma, vessel mal-
formation, marked periventricular hyperintensity (PVH), or leukoar-
aiosis. At least two specialists (radiologists and/or neurologists)
confirmed these findings in addition to performing a standard neuro-
logical examination. If such abnormalities were below a moderate se-
verity level, for example grade II for PVH (Shinohara et al., 2007), the
individual was not excluded. We also excluded individuals with a
medical history of cancer, heart disease, or severely decreased vision or
hearing, as well as those with any history of cerebral disease, stroke,
psychosis, or parkinsonism. Some participants were excluded because
single or multiple data were missing. Therefore, the resulting sample
included 155 participants (age: 69.5 [range: 60–83] years; 70 men and
85 women; demographic data are shown in Table 1). Just as a com-
plementary analysis, we conducted a follow-up analysis. Of the 155
participants, only 14 (age: 69.2 [range: 60–77] years; 10 men) were
included in this follow-up because our health examination system da-
tabase does not have a study-first policy.

The study was conducted in accordance with the Declaration of
Helsinki (1975), as revised in 2008, and the regulations of the Japanese
Ministry of Health, Labour and Welfare. The medical ethics committee
of Shimane University approved the study. Written informed consent
was obtained from all participants.

2.2. Neuropsychological and neuropsychiatric measures

All the participants underwent neuropsychological assessments,
including the MMSE (Folstein et al., 1975) and frontal lobe/executive
function tests: verbal fluency (Benton, 1968), frontal assessment battery
(Dubois et al., 2000; Kugo et al., 2007), “Kanahiroi” test (Kaneko,
1990), and Wisconsin card sorting test (Anderson et al., 1991). Fur-
thermore, they completed two psychiatric questionnaires: the self-
rating depression scale (SDS; Zung et al., 1965) and apathy scale (AS;
Starkstein et al., 1992) questionnaires.

Table 1
Demographic and behavioral data for all participants (N=155).

Variables Mean Standard deviation Range

Age 69.56 5.60 60–83
Education 13.59 2.55 9–19
MMSE 29.38 0.74 28–30
SDS 34.71 7.63 21–65
AS 10.47 6.23 0–30
WCST_CA 4.70 1.15 1–6
WCST_PEN 3.17 2.85 0–14
WCST_DMS 0.71 1.01 0–4
FAB 16.63 1.18 12–18
KANA 41.37 10.65 14–59
VFT_‘vegetable’ 15.72 3.75 7–24
VFT_‘shi’ 9.30 3.21 1–19
SMS 31.99 4.59 16–40
OMS 7.12 2.89 1–14.5

MMSE, Mini-Mental State Examination; SDS, Self-rating depression scale; AS,
apathy scale; WCST, Wisconsin card sorting task; CA, categories achieved; PEN,
preservative errors of Nelson; DMS, difficulties of maintaining set; FAB, frontal
assessment battery; KANA, kanahiroi test; VFT, verbal fluency test; SMS, sub-
jective memory score; OMS, objective memory score.
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In the verbal fluency tests, individuals were given one minute to
generate names from a specified category (i.e., vegetables), the name of
which started with a specific sound (/sa/ in Japanese). For the
Wisconsin Card Sorting Test, we considered the number of “categories
achieved,” “perseverative errors of Milner,” and the “difficulty main-
taining set,” because these data could be obtained from the Keio
Version that we used.

In the paper-based “Kanahiroi” test, participants identified and
circled five kana letters (i.e., the Japanese vowels corresponding to A,
E, I, O, and U) occurring in a story written in kana, which the partici-
pants read silently. The number of letters correctly identified in two
minutes was recorded. The SDS and AS were used to detect depressive
symptoms. SDS scores normally range from 20 to 80 and the AS scores
range from 0 to 42, with higher scores indicating a more depressive or
apathetic state, respectively.

The MMSE was used to initially screen for cognitive impairment
with a cutoff score of 27/28, which is considered important to detect
MCI. A recent meta-analysis suggested that this cutoff has a sensitivity
of 66% and a specificity of 72% (Ciesielska et al., 2016). For the ex-
ecutive function tests, the scores were integrated into a single measure
to avoid the problem of “task impurity” (Miyake et al., 2000; Shilling
et al., 2002), which suggests that any score derived from an executive
function task necessarily includes systematic variance attributed to non-
executive-related function. For example, scores of the Wisconsin Card
Sorting Test include assessment not only of executive function but also
of color and figure processing speed, articulation speed, manual motor
speed, etc. Unfortunately, this confounding variance is substantial and
makes it difficult to clearly capture executive-related variance from a
single test (Miyake and Friedman, 2012). Therefore, we unified scores
from several tests for executive function into a single index by aver-
aging Z-normalized values to minimize nuisance variance (Kawagoe
et al., 2017; Reineberg et al., 2015). Nevertheless, we also analyzed our
data for individual executive function tests to confirm the reliability of
our results.

We extracted the results from the SMC questionnaire, as well as the
“subjective memory score (SMS)” from our database. The SMS was
calculated based on a previous questionnaire reported by Osada et al.
(1997). The SMS questionnaire comprises 10 questions probing an in-
dividual's SMC. The questionnaire provides scores ranging from 10 to
40, with higher scores indicating less severe SMC. It reflects the degree
of SMC as a continuous variable, which may provide better resolution
than a dichotomized question. We also assessed the objective memory
score (OMS) using an associated learning test from Okabe's Mini-Mental
Scale, which is a modified verbal test included in the Wechsler Adult
Intelligence Scale (Kobayashi et al., 1987). The objective memory test
was administered by an experimenter who read out 10 pairs of words,
half of which were semantically related and half of which were not.
Participants were required to remember word pairs. After reading all
the words, the experimenter read one word from each pair, and the
participants responded with the paired word. This procedure was exe-
cuted twice. Scores ranged from 0 to 15, with 0.5 points awarded for
semantically-related word pairs and 1 point for unrelated pairs. Table 2
shows items of the OMS and SMS tests.

2.3. fMRI acquisition

Imaging data were acquired with a Siemens AG 1.5-T scanner
(Symphony). We acquired 27 slices (each 4.5 mm thick) with no gap
parallel to the plane connecting the anterior and posterior commissures
with a T2*-weighted gradient-echo spiral pulse sequence [repetition
time (TR)= 2000ms, echo time (TE)= 30ms, flip angle= 90°, inter-
leaved order, matrix size= 64×64, field of view
(FOV)= 256×256mm2, and isotropic spatial resolution=4mm]. All
participants were instructed to remain awake with their eyes closed as
they underwent a 5-min rs-fMRI scan. After the functional scan, we
obtained T1-weighted images of the entire brain (192 slices,

TR= 2170ms, TE= 3.93ms, inversion time=1100ms, flip
angle= 15°, matrix size= 256×256, FOV=256×256mm2, iso-
tropic spatial resolution=1mm).

2.4. fMRI preprocessing

For preprocessing, we used the Statistical Parametric Mapping
software (SPM12, http://www.fil.ion.ucl.ac.uk/spm) implemented in
MATLAB R2017a (MathWorks, Natick, MA, USA). The images were
realigned to remove any artifacts from head movements, with 6 para-
meters for bulk head motion (3 translations and 3 rotations) and 6
additional parameters that included the original derivatives.
Furthermore, we corrected for differences in image acquisition time
between slices. The realigned images were normalized to the Montreal
Neurological Institute template standard space with a nonlinear warp
transformation and resliced with a voxel size of 3×3×3mm3. Spatial
smoothing was then applied with a full-width at half-maximum
(FWHM) of 6mm.

Subsequently, the rs-FC temporal data were processed. The head
movement time series, white matter signal, and cerebral spinal fluid
signal were regressed out from each voxel in the first-level analysis. The
data were bandpass filtered from 0.008 to 0.09 Hz and were linearly
detrended and despiked in this step. Temporal processing and sub-
sequent analyses were conducted using the functional connectivity
toolbox 17.f (CONN; Whitfield-Gabrieli and Nieto-Castanon, 2012).

2.5. Statistical analyses

2.5.1. Analyses for behavioral measures
We first conducted a multiple regression analysis for behavioral

measures. This was calculated to predict the SMS based on other data,
including age, sex, education, MMSE, SDS, AS, ZEF, and OMS, in a
stepwise method (probability-of-F-to-enter ≤0.05; probability-of-F-to-
remove ≥0.10). Before this regression, we tested the normality of each
dataset, where appropriate, using the Kolmogorov–Smirnov test with
Lilliefors significance correction. Based on the result, we determined
which covariates required adjustment in the following analyses. In
addition, for the complementary follow-up, correlation coefficients
were calculated. The variables included the baseline SMC score and
variability of the integrated score of executive function (ZEF) (follow-
up score – baseline score).

2.5.2. Multivariate pattern analysis for functional connectivity
We performed a principle component MVPA, i.e., a “connectome

MVPA” (Fig. 1). This analysis provides a regionally unbiased mapping

Table 2
List of items from (a) the subjective memory score questionnaire and (b) the
associated learning test for objective memory scores.

a. Questionnaire for subjective memory score
Read the statement and respond with the frequency that applies to you these days.
1. When you look for something, you forget what you look for.
2. You are forgetful of your promises.
3. You cannot recall the name of your friends or relatives.
4. You forget what you are about to say unexpectedly.
5. You forget important days, such as a birthday or anniversary.
6. You forget a deadline for a payment or promise.
7. You experience tip-of-the-tongue phenomena.
8. You forget where you put items for daily use such as glasses.
9. You always lose something when you go somewhere.
10. You forget to buy items when you have multiple items to buy.
Choices: 1. Frequently 2. Sometimes 3. Occasionally 4. Never
b. Items in the associated learning test for objective memory score
1. Fruit and apple 6. Boy and tatami
2. Sky and the sun 7. Bud and tiger
3. House and yard 8. Rabbit and shoji
4. Travel and sights 9. Swimming and bank
5. Metal and iron 10. Bathing and assets

T. Kawagoe et al. NeuroImage: Clinical 21 (2019) 101675

3

http://www.fil.ion.ucl.ac.uk/spm


of brain areas with whole brain connectivity patterns, as predicted by
target variables (Whitfield-Gabrieli et al., 2016). In comparison to
univariate models, MVPA takes the joint information of all features into
account, as opposed to considering the features as independent from
one another. The target variable here was the SMS. Specifically, pair-
wise connectivity patterns among all voxels in the brain were calculated
separately for each voxel. The connectivity matrix of each participant
was concatenated for all participants into a matrix of M (number of
participants) x N (number of voxels in the brain) for each single voxel.
The dimensions of these multivariate patterns were then reduced with
principal component analysis, which maximizes the proportion of inter-
participant variance explained by fewer components. This process
produced a matrix of M (number of participants) x C (appropriate
number of components). The number of components was determined
according to the general rule of proportion (i.e., 10%) against the
number of participants, as previously described (Nieto-Castanon,
2015). As a result, the principle component could explain 90.7% of the
data, on average, for each voxel. Thus, the resulting component score
accurately represented the whole brain connectivity pattern for each
participant.

Next, we performed a second-level analysis, which consisted of an
omnibus F-test to identify the main effect of variables of interest.
Therefore, post-hoc general linear model (GLM) analyses were required
to determine specific connectivity patterns in data associated with the
degree of SMC. We created regions of interest (ROI) based on peak
clusters from the MVPA results to further explore the rs-FC of these
regions. To create ROIs, the height threshold was set at p < 0.005
[cluster-level of p < 0.05 with false discovery rate (FDR) correction].
Except for ROI creation, we applied conservative thresholds for all
imaging analyses and set the uncorrected height threshold at
p < 0.001 and the FDR-corrected cluster-level threshold at p < 0.05.
According to the multiple regression analysis results, we included SDS
and AS scores as covariates for the MVPA. Age was covaried out, as it is
known to be a factor that strongly affects the rs-FC (Onoda et al., 2012).
To test if head movement during scanning affected the re-
sults—although this nuisance was denoised at preprocessing—we cal-
culated the correlation coefficients between the SMS and motion
parameters (mean and maximum value for each of the six bulk

motions). The results indicated that the relationship was too small,
especially after the covariates (SDS, AS, and age) were regressed out
(rs < 0.09).

2.5.3. Voxel-based morphometry for structural data
Gray matter differences were assessed with VBM, as implemented in

SPM12. The procedure consisted of two steps: preprocessing and sta-
tistical analysis. Preprocessing included gray matter segmentation,
normalization with Diffeomorphic Anatomical Registration Through
Exponentiated Lie algebra (DARTEL; Ashburner, 2007), and smoothing.
At this step, each individual's T1-weighted image was denoised and
segmented into gray matter, white matter, and cerebrospinal fluid on
the basis of an algorithm in SPM12. An original DARTEL template for
the total sample was created with the affine and DARTEL-warped gray
matter, to attempt a closer match between the template and individual
images. Each gray matter image was morphed into the original DARTEL
template. Subsequently, modulated gray matter segments were de-
termined with an 8-mm FWHM Gaussian kernel. In the statistical ana-
lysis, the smoothed gray matter segments were entered into a multiple
regression analysis based on the GLM to explore regions in which vo-
lume correlated with SMC severity. Because the total brain volume
could affect the results, especially in older adults, this variance was
covaried out via analysis of covariance. As in the functional analyses,
we used an uncorrected height threshold of p < 0.001 and an FDR-
corrected cluster-level threshold of p < 0.05.

As with the rs-fMRI data, in addition to a mass-univariate approach,
we also applied MVPA to the structural data for VBM analysis using the
Pattern Recognition for Neuroimaging Toolbox (PRoNTo; Schrouff
et al., 2013). We used the learned function called “regression model” and
its predicting continuous measure (i.e. SMS score). The dataset (i.e.
DARTEL-normalized gray matter images) was divided into training and
test sets, and the analysis was partitioned into training and test phases.
During the training phase, the algorithm learns some mapping between
patterns and the labels on the training set. Then, during the test phase,
the learned function is utilized to predict the SMS from data of the test
set. Because a leave-one-out cross-validation approach was followed in
this study, the training test process was repeated by the number of
participants—namely the data of every participant were selected once

Fig. 1. Illustration of resting-state multivariate pattern analysis (MVPA) procedure for a single voxel.
First, a single voxel was seeded, and pairwise correlation patterns to all other voxels in the brain were calculated. Second, principle component analysis reduced the
dimensions into an appropriate number of components (e.g., 10% of the number of samples) while maximizing inter-participant variability in the resulting corre-
lation patterns. Subsequently, the spatial map and component scores were calculated. Next, we performed multivariate analyses to identify associations between any
resulting component scores and subjective memory scores for each participant. In the actual MVPA, this process was effectively repeated for every voxel in the brain.
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as the test data, and the remaining participants' results were used as the
training data. For the machine learning technique, Kernel Ridge Re-
gression (Shawe-Taylor and Cristianini, 2004) was applied in PRonTo.
This machine learning technique combines ridge regression (linear least
squares with l2-norm regularization) with the kernel trick. Thus, it
learns a linear function in the space, induced by the respective kernel
and data. For validation, different metrics were used to compute the
agreement between predicted and actual values, such as Pearson's
correlation coefficient (r) and mean squared error (MSE). Permutation
tests with 1000 repetitions were conducted to judge the significance of
these metrics.

3. Results

3.1. Demographic and behavioral data

Table 1 presents the demographic and behavioral data for all par-
ticipants. As described in Section 2.2, executive function test scores
were integrated into a single score (ZEF) in the following analyses. One
participant representing an outlier based on the SMS was excluded case-
wise (smaller than mean+3 standard deviations). None of the first-
order correlations were above 0.70 (or below −0.70), and the highest
squared correlation was 0.31, indicating that multicollinearity was not
a problem in these data.

Because the original SMS result was negatively skewed, and the
resulting residual was not normally distributed, we conducted the same
analysis by using the log-transformed values for SMS
(newX= LG10*[K–X]—where K is a constant from which the score is
subtracted so that the smallest score is 1, and X is the original SMS), as
the dependent variable (Howell, 2007). Due to this transformation, the
polarity of SMS was reversed in this model (the higher the score the
greater the severity). Although a significant regression equation was
found [F(2, 151)= 16.42, p < 0.001], the model did not fit very well
(R2= 0.18, adjusted R2= 0.17). The SMS was associated with the SDS
(b*= 0.19) and AS (b*=0.28) in our analysis, and the unstandardized
residual normality was confirmed (D=0.052, p=0.20).

Because transformed data does not always accurately maintain the
meaning of the original measurements (Grissom, 2000), we modeled
the original SMS values via the same stepwise multiple linear regression
analysis (Fig. 2). This suggested that SMS was significantly associated
with the AS and SDS scores [F(1, 152)= 14.73, p < 0.001; R2= 0.16,
adjusted R2=0.15; SMS= constant – 0.28*AS – 0.18*SDS], although
the residual was not normally distributed (D=0.08, p= .017). In ad-
dition, the result remained unchanged even when scores for different
executive function tests were modeled as independent variables [F(2,
151)= 16.42, p < 0.001; R2=0.15, adjusted R2=0.18; SMS= con-
stant +0.28*AS +0.19*SDS]. Thus, the results did not differ much,
regardless of whether the SMS were transformed and/or if the executive
indices were integrated.

3.2. Functional neuroimaging data

Table 3a presents the MVPA results. As expected, three posterior
regions (two of which were medial), the lingual gyrus, cuneus, and
superior parietal lobule (SPL) showed rs-FC patterns with the whole
brain and were associated with SMS. Connectivity patterns of the
anterior insula also showed a significant association with SMS.

Subsequently, we set these regions as separate ROIs to investigate
rs-FC patterns associated with SMS. Simple functional connectivity is
depicted in the blue and red binary maps of Fig. 3, and regions asso-
ciated with SMS within simply connected areas are depicted in the
yellow intensity maps of Fig. 3 and Table 3b. First, the lingual gyrus
was functionally connected to the occipital and central brain areas. An
association with SMS was confirmed in occipital regions, including the
bilateral cuneus, right precuneus, and calcarine cortex. Second, the rs-
FC of the cuneus was similar to that of the lingual gyrus, but it extended
a bit further. An association with SMS was confirmed in the pre- and
postcentral gyri, as well as in occipital visual regions. Third, the ante-
rior insula was functionally connected to frontal and temporal regions,
including the anterior cingulate cortex and bilateral anterior insula,
which constitute the salience network (Seeley et al., 2007). However,
we did not observe any associations with SMS within regions connected
to this seed. This could be because regions whose connectivity with the
insula correlated with the SMC level were not included in the area that
was significantly and simply connected to the insula. Therefore, we did
not focus on this connectivity pattern although an association in this
region could have some implications. Finally, the SPL was simply
connected with the temporal, parietal, and occipital cortices. When this
was seeded, we confirmed an association with the SMS in the ipsilateral
and contralateral SPL.

Collectively, four regions showed distinctive rs-FC patterns asso-
ciated with SMC severity, independent of depression and apathy.
Except for the anterior insula, the results indicated that more severe
SMC were associated with stronger rs-FC at each seed (i.e., individuals
with greater SMC had stronger rs-FC within occipital regions and be-
tween the ipsi- and contralateral SPL). Moreover, we seeded these three
regions to explore OMS-related rs-FC. However, no regions showed
significant associations with OMS, even when each ROI was seeded.

3.3. Structural imaging data

We implemented VBM analysis to investigate the relationship be-
tween SMC and brain volume. However, unlike our functional con-
nectivity data, in the mass-univariate analysis, no associations were
observed between the SMS and the volume of any region across the
whole brain, even when we set a very liberal threshold (cluster-level
uncorrected p < 0.001). Furthermore, even the MVPA failed to detect
any relationship between SMC and brain structure. The r between real
and predicted values was −0.09 and the MSE was 28.9. Permutation
tests revealed that these values were non-significant (p= 0.73 and
0.52, respectively).

3.4. Complementary longitudinal analysis

We also conducted a complementary longitudinal analysis to con-
firm the association between SMC severity and future cognitive decline,
although the sample size was very small (n=14, approximately 10% of
the total sample). The results indicated a significant association be-
tween baseline SMS and follow-up ZEF (r=−0.55, p= 0.040), even
after controlling for the follow-up interval and age (rp=−0.74,
p=0.009), suggesting that SMC represents a very early indication of
cognitive decline.

4. Discussion

SMC refer to self-reported memory problems in daily life. Although

Fig. 2. Results of the multiple regression analysis.
In this model, the dependent variable was the original subjective memory score,
which indicated that worse subjective memory complaints could be predicted
by worse AS and SDS scores. AS: apathy score; SDS: self-rating depression scale;
SMS: subjective memory score; MMSE: Mini-Mental State Examination; ZEF:
integrated score of executive function; OMS: objective memory scale.
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it is controversial whether SMC are associated with objective cognitive
deterioration, as some representative diagnostic criteria include this
variable as evidence for MCI or preclinical AD (Dubois et al., 2016;
Jessen et al., 2014; Petersen et al., 2001). Several studies have reported
links between SMC and brain biochemistry, structure, and function
(Sun et al., 2015; Hafkemeijer et al., 2013; Jessen et al., 2006). We
aimed to replicate and extend previous findings showing an association
between cognitive performance by exploring brain regions in which the
rs-FC correlates with the SMC index.

By definition, SMC must represent self-experienced persistent de-
cline in cognitive capacity, in comparison with a previously normal
status (Jessen et al., 2014). According to this rigorous definition, per-
haps our volunteer samples and questionnaire were not sufficient, and
we should have dichotomized normal and pathological aging. However,
previous SMC studies have used questionnaires similar to ours for as-
sessing SMC in healthy older adults (Jungwirth et al., 2004; Schultz
et al., 2015; Steinberg et al., 2013). With regard to the current topic, we
argue that distinguishing normal and pathological aging is not suitable
because the participants suspected for this condition would individually
appear as “cognitively normal,” as the external test would not be able to
detect the condition.

4.1. Behavioral associations with SMC

Our multiple regression analyses for behavioral data showed that,
with the exception of depression and apathy, the severity of SMC was
not associated with demographic and behavioral indices (Fig. 2). This
result was not ascribed to the integration of indices of executive func-
tion and/or transformation of data. Indeed, we demonstrated that the
level of SMC was not associated with the level of cognition, at least
regarding executive function. However, our additional longitudinal
analysis supports the notion that future cognitive decline might be

reflected by the current SMC, although these results have to be viewed
with caution due to the small sample size and possible bias in subject
selection. Nevertheless, the results imply that SMC are a very early
neuropsychological observation preceding cognitive deterioration.

Depression and apathy are significantly associated with the level of
SMC. Although depression and apathy are sometimes discussed as dis-
tinct components (Landes et al., 2001; Levy et al., 1998), there is
substantial overlap in their symptoms, such as diminished interest,
psychomotor retardation, fatigue/hypersomnia, and lack of insight
(Pagonabarraga et al., 2015). Therefore, we did not consider them as
distinct components in this study. Previous studies have shown that
negative emotions, such as depressive symptoms, are related to SMC
severity rather than actual neuropsychological performance (Jungwirth
et al., 2004; Crumley et al., 2014; Alegret et al., 2015). We have re-
plicated these results in our dataset using the SMS, a continuous mea-
sure of SMC. Such findings might suggest that participants who report
SMC are a “worried-well” population affected by their negative per-
sonality or emotional state. Alternatively, however, the SMS might
actually identify initial subtle changes that fall below the detection
thresholds of any of the cognitive tests, as the multiple regression model
which included current widely-available neuropsychological assess-
ments, could explain only 17% of the SMS variance. Therefore, we also
consider that SMS might capture a feature that is largely independent
from other variables, possibly representing a marker of early cognitive
changes in older adults (Crumley et al., 2014; Abner et al., 2015; Kaup
et al., 2015; Koppara et al., 2015).

4.2. Neural underpinnings of SMC

The interpretation of our behavioral results can be made more clear
if we consider the neuroimaging data. After controlling for AS and SDS
scores, MVPA indicated that four clusters in the brain were associated

Table 3
Whole-brain multivariate pattern analysis and seed-based functional connectivity analysis.

Seed Direction Region MNI coordinates Voxel Z

a. Multivariate pattern analysis
N/A R Lingual gyrus [4, −60, 4] 20 4.07

L Cuneus [−10, −78, 24] 25 3.98
L Anterior insula [−34, 24, −10] 22 3.84
L Superior parietal lobule [−34, −44, 62] 18 3.77

b. Seed-based connectivity analyses (Regressor: SMS)
R Lingual gyrus Negative R Precuneus

R Calcarine
R Cuneus

[6, −58, 10] 144 4.28

L Cuneus [−10, −78, 26] 83 4.13
R Cuneus [−10, −78, 26] 91 3.92

L Cuneus Negative L Precentral gyrus
L Medial precentral gyrus

[−6, −28, 74] 168 4.96

B Posterior cingulate gyrus
L Lingual gyrus

[4, −42, 6] 98 4.75

L Postcentral gyrus
L Precentral gyrus

[−44, −18, 64] 110 4.56

R Posterior cingulate cortex
R Lingual gyrus

[18, −40, 4] 118 4.47

R Fusiform gyrus
R lingual gyrus

[22, −82, −12] 55 4.27

B Lingual gyrus
B Calcarine

[−12, −74, 0] 53 3.98

R Postcentral gyrus [14, −38, 78] 52 3.81
B Precuneus [2, −76, 46] 47 3.65

L Superior parietal lobule Negative R Superior parietal lobule [24, −54, 68] 330 4.83
L Superior parietal lobule
L Postcentral gyrus

[−26, −48, 70] 90 4.02

L Superior parietal lobule [−30, −54, 58] 49 3.80

(a) Peak activation clusters based on whole-brain multivariate pattern analysis and regressed by the level of subjective memory complaints.
(b) Seed-based functional connectivity analyses. The association with subjective memory scores is depicted. Results of three analyses were thresholded by setting
p < 0.05 with false detection rate-correction at the cluster level and uncorrected p < 0.001 at the peak level.
MNI: Montreal Neurological Institute; L: left; R: right; B: bilateral.
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with SMS, according to their multivariate rs-FC pattern with other
voxels in the brain. In contrast, no structural differences were asso-
ciated with the degree of SMC, even using a liberal threshold.

4.2.1. Brain function
Our main finding was that participants with higher level of SMC

show stronger rs-FC within occipital regions seeded at the lingual gyrus
and cuneus. The occipital area is a region that shows relative resistance
to atrophic changes (Risacher et al., 2009). However, a previous study
reported hypoperfusion in the occipital lobe in individuals with clini-
cally defined MCI (Ding et al., 2014), and a recent previous meta-
analysis demonstrated that activation (amplitude of low-frequency
fluctuations) in the cuneus decreases in association with the level of
cognitive impairment (Pan et al., 2017). These results suggest that
functional alterations in individuals with MCI may be observed in this
area. This is partly supported by behavioral evidence demonstrating the
early decline of visual functions in older adults. For example, in in-
dependently-living older adults, including those with MCI, working
memory capacity tends to degrade in the visual domain rather than the
verbal domain (Kawagoe and Sekiyama, 2014; Kumar and Priyadarshi,
2013). Also, visual perceptual capacity is affected in the initial stages of
the AD continuum (e.g., MCI) (Bublak et al., 2011). Against such de-
cline, a previous study also reported that individuals in very initial

stages (amyloid-negative) of MCI show hypermetabolism, pre-
dominantly in the occipital cortex, which might reflect a compensatory
response to neural damage occurring early in the neurodegenerative
process (Ashraf et al., 2015). Thus, we consider that our rs-FC results
might reflect such a compensatory mechanism. This is consistent with a
previous study reporting increased rs-FC in the medial visual network in
older adults with SMC (Hafkemeijer et al., 2013). Therefore, although
previous reports have shown inconsistency regarding the direction of
activation/metabolism in the occipital area, we speculate that this re-
gion is functionally important during the very early stages of cognitive
decline.

As in the case of the occipital visual area, we found that connectivity
in the interhemispheric SPL is associated with the degree of SMC. The
SPL is part of the parietal association area involved in several higher-
order brain functions. The parietal region is uniquely affected in the
early stages of AD (Geldmacher, 2003; Salimi et al., 2018) and plays a
compensatory functional role in pre-symptomatic neurodegenerative
diseases (Kloppel et al., 2009). Thus, interhemispheric SPL connectivity
might also play a compensatory role in the initial stages of memory
decline. Given that visuospatial function is affected early in the con-
tinuum of AD, and its dysfunction constitutes an accurate diagnostic
clue (Salimi et al., 2018), brain regions related to this function may
undergo changes in the initial stages of cognitive decline that are

Fig. 3. Resting-state functional connectivity associated with the level of subjective memory complaints when each region of interest was seeded.
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related to pathological changes. Therefore, the increased connectivity
within/between occipital and parietal regions may represent an early
physiological alteration resulting from neurodegenerative processes.

4.2.2. Brain structure
In contrast to brain function, our results clearly demonstrate that

brain structure is not associated with SMC severity. This was surprising
because previous studies have indicated structural differences between
individuals with SMC and healthy controls (Hafkemeijer et al., 2013;
Jessen et al., 2006; Schultz et al., 2015). This discrepancy might be due
to the cognition threshold that was set during the selection of partici-
pants. Unlike the threshold set in previous studies (Hafkemeijer et al.,
2013; Schultz et al., 2015), we recruited participants who were leading
independent lives and were considered to be “healthy” based on their
health checkup. Because of this, our sample might have not yet ex-
hibited any cognitive decline. In addition, there are differences in the
analysis methods used. Our study used whole-brain regression analysis,
while previous studies have used group comparisons and/or seed-based
analysis (Jessen et al., 2006; Schultz et al., 2015). Therefore, we did not
find any association between SMC and structural data in our popula-
tion. Moreover, we captured the level of SMC as a continuous variate.
Categorization simplifies the interpretation or presentation of results,
but it might ignore some information and increases the risk of false
positive results (Altman and Royston, 2006). Although our analysis
might have a greater risk of false negative results and considering the
relatively large sample size, the absence of SMS-associated regions
using even a very liberal threshold (uncorrected, p < 0.001), and de-
spite the fact that both univariate analysis and MVPA did not show any
significant associations, we argue that functional alterations should
precede structural brain changes.

4.2.3. Aging effect
Although we covaried out the factor of age in all analyses, as it

strongly affects cognition, SMC, functional connectivity, and structural
integrity (Kumar and Priyadarshi, 2013; Onoda et al., 2012; Salthouse,
2009), its effect might have remained in the imaging analyses. To test
this, we directly investigated the effect of age on functional and
structural imaging data. We found that connectivity in many regions
was associated with age. However, there was no overlap with the re-
sults of the MVPA, in which the target variables were SMC with SDS,
AS, and age covaried out. With regard to the structural data, we also
found a significant relationship with age, and several brain regions
were associated with age; though, our original analysis did not find any
association with SMC. Considering these results, we conclude that the
effect of age was correctly covaried out from the original analyses.

4.3. Limitations

Some limitation should be considered when interpreting our results.
First, we employed only one type of OMS to assess memory function,
based on the verbal test from the Wechsler Adult Intelligence Scale.
Using this test, we assessed only verbal short-term associative memory,
but not principal memory function in daily life. The lack of tests to
assess a wider range of memory functions might explain why the SMS
was almost an independent variable in this study. Second, we did not
directly assess if the participants expressed SMC, but instead we de-
duced it from their answers to the questionnaire. Because this proce-
dure might have not reflected reality in their daily life, we should
consider combining our results with those of previous studies, in which
participants were divided as those with and those without SMC. As
mentioned above, we found several changes in brain function asso-
ciated with SMC. However, these were not associated with the default-
mode network, which might be the most important region in the aging
brain (Sheline and Raichle, 2013; Wang et al., 2013). This result could
also be due to the continuous measurement of SMC.

4.4. Conclusions

SMC may represent a very early psychological indication of patho-
logical cognitive decline. In this study, we demonstrated that SMC are
independent from general cognitive functions and brain structure in
healthy older adults but associated with the rs-FC within the occipital
and parietal brain regions. SMC may constitute a useful marker for
preclinical neurodegenerative diseases, such as MCI and AD. Further
longitudinal studies are necessary to confirm the reliability and ade-
quacy of SMC for screening.
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