This is a post-peer-review, pre-copyedit version of an article published in *Bulletin of Engineering Geology and the Environment*. The final authenticated version is available online at: https://doi.org/10.1007/s10064-018-1334-2.

- 1 Analysis of Schmidt hammer rebound test results with repetitive impacts for determining the mechanical
- 2 characteristics of weathered pyroclastic rock surfaces: a case study along the Isotake coast, Japan
- 3
- 4 Tetsuya KOGURE*
- 5 Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane
- 6 University, 1060, Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
- 7
- 8 *Correspondence to: Department of Geoscience, Interdisciplinary Graduate School of Science and
- 9 Engineering, Shimane University, 1060, Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
- 10 E-mail address: kogure@riko.shimane-u.ac.jp
- 11 Phone: +81-852-32-6445
- 12 Fax: +81-852-32-6469
- 13 ORCID: 0000-0001-5895-5115

14 Abstract

15	Cliffs located along the Isotake coast, Shimane, Japan, are characterized by the development of indents
16	without rockfalls or by the occurrence of rockfalls without indents even though the geology is the same. An
17	analytical method was developed to determine the mechanical properties of the rock surfaces on these
18	coastal cliffs. Twenty continuous impact repetitions of the Schmidt hammer were applied normal to the cliff
19	surfaces in each test. The results of the tests (26 with indents and 22 without indents) showed a gradual
20	increase in the rebound as the number of repetitions increased. A new exponential equation was proposed
21	in this study to describe the features of the weathered surfaces. The changes in the results were well
22	approximated by the equation, and the approximation clearly distinguished between the two types of
23	weathered surfaces, with higher rebound values at the surface of the indents than those at the surface of
24	cliffs without indents. The homogeneity/heterogeneity of the surface and inner body of the cliff rock can
25	also be modelled by coefficients appearing in the equation.
26	

27 Keywords: Schmidt hammer; repetitive impacts; rhyolitic pyroclastic rocks; exponential equation; coastal

00	1:00	.1	•
28	cliff:	weathe	ring

30 Introduction

31	A rockfall accident that caused a human death occurred approximately 60 years ago at a cliff on the Isotake
32	coast of Shimane, Japan. The residents of this area have been aware of the danger of rockfalls, and they
33	have not approached the coastal cliffs since then, because rockfalls are common. Residents insist that the
34	rockfalls occur at cliffs composed of "soft rock" and do not occur at cliffs composed of "hard rock";
35	however, the descriptions of "soft" and "hard" are not derived from physical or mechanical tests on the
36	rocks but based on their personal opinion. First, the physical or mechanical properties of the cliff material
37	should be evaluated quantitatively to understand the mechanisms of the rockfalls in this area.
38	In situ measurements, including the Schmidt hammer rebound test (SH test), are appropriate for
39	measuring the mechanical properties of the rock materials because the lithology of the cliff mass is a
40	pyroclastic rock including gravel or boulders that are too large to provide specimens for laboratory tests.
41	The Schmidt hammer, which is a non-destructive apparatus for evaluating the hardness of rock in the
42	laboratory and <i>in situ</i> , has been widely used for engineering purposes and in scientific research. The SH
43	test is often used to determine the strength of rocks as an alternative to laboratory testing because the
44	rebound value is closely related to the uniaxial compressive strength (Aydin and Basu 2005). Aydin (2009)
45	states that it determines not only the rebound value at each measurement point but also the degree of
46	weathering of rock materials. Because it is difficult to drill or cut the surface of the cliff due to the hardness

47 of the surface or the risk of rockfalls, the SH test is a good way to evaluate the mechanical properties of the

48 cliff materials in the present study.

- 49 The aim of the present study is to determine the mechanical properties of the cliff materials in 50 this area by the SH test. For this purpose, an analytical method is proposed for characterizing weathered 51 surfaces from the results of the SH test.
- 52

53 Geological and geomorphological settings of the study cliff

54	Sandy beaches and coastal cliffs with heights exceeding 30 m have developed along the coastline at Ohda
55	City, Shimane, Japan (Fig. 1). The Isotake coastline runs ENE-WSW and faces the Sea of Japan to the north.
56	The geology of this area consists mainly of the Miocene Kuri Formation, which is composed of andesitic,
57	dacitic and rhyolitic lava and pyroclastic rocks and mudstone with maximum thicknesses of 700-800 m,
58	and the bedrock is the Paleocene Nojiro Granite (Kano et al. 1998). In the Kuri Formation, the cliffs are
59	composed of rhyolitic pyroclastic rocks. These rocks were erupted during the opening of the Sea of Japan,
60	which occurred mainly during the interval 16.1-14.2 Ma (Otofuji et al. 1991).
61	The study cliff is located on the Isotake coast (Fig. 1). The maximum height of the cliff is
62	approximately 40 m, and the top surface is covered by vegetation (Fig. 2a). The study cliff has some indents
63	characterized by brown-coloured surfaces in its seaward aspect, although the colour of the entire cliff
64	surface is greyish (Fig. 2a). Some cliffs in this area have similar indents on their vertical surfaces, with

65	maximum heights and breadths exceeding 10 m and a depth of several metres, at least on the seaward aspect.
66	Figure 2a shows some fallen blocks at the base of the study cliff. They must have been derived from the
67	cliff surface just behind them because the surface bears scars from collapse. On the other hand, no fallen
68	blocks exist in front of the largest indent, and the surface of the indent has no scars from collapse (Fig. 2a).
69	Hereafter, a cliff surface with an indent is referred to as Type A, and a cliff surface without indents as Type
70	B. Figure 2b shows the vertical profiles of the study cliff along the dotted lines in Fig. 2a. The profile along
71	Line VA includes an indent, which is a depressed section presented with a bold line.
72	Type A and Type B both have roughness that is due to the projection of clasts included in the
73	pyroclastic rock. There are some differences in the characteristics of the surfaces, however. The most
74	pronounced difference is in the colour of the surfaces, even though they have the same geology; the colour
75	is brown for Type A, (Fig. 3a) and grey for Type B (Fig. 3b). The petrological characteristics of the rocks
76	from both surfaces were confirmed by the observation of thin sections. Figure 4 shows photomicrographs
77	of the pyroclastic rocks from Types A and B. The photomicrographs reveal that rocks from both surfaces
78	have the same mineral composition. The type of rock at the surfaces is, of course, the same even though the
79	colour of each surface is different.
80	Brown crystals are precipitated on the surfaces of the indents (Fig. 5a). No brown crystals are found
81	on the surface of the cliffs without indents, however. Therefore, the brown crystals appear to cause the
82	difference in colour between the surfaces. The brown crystals exhibit several shapes: flower-like (Fig. 5a),

83	pillar-like, flattened, and amorphous. The maximum length of the projected crystals is approximately 10
84	cm. These crystals are easily broken by the impact of a rock hammer. X-ray diffraction analysis (XRD) was
85	conducted to identify the brown crystals. The XRD pattern was recorded by a Rigaku diffractometer (Rint
86	2000) using CuK α at 30 kV and 20 mA. The analysis was between 2° and 40° at 2 θ steps of 0.02 and a scan
87	speed of 2° per minute. Figure 5b shows the XRD pattern of a brown crystal. The pattern obtained in this
88	study was compared to those from the database provided by the RRUFF Project (Lafuente et al., 2015) in
89	order to identify the type of crystal. The analysis shows that the mineral that comprises the brown crystals
90	is calcite (Fig. 5b).
91	
92	Schmidt hammer rebound test
93	The hammer used in this study was a GS-type for rocks, made by Sanyo Testing Machines Co., Japan, and
94	is as same as the KS-type from Proceq, having an impact energy of 2.207 Nm. There have been several
95	studies on the multiple impact method for the SH test in order to evaluate the degree of weathering (Basu
96	et al. 2009; Matsukura and Aoki 2004). We followed the continuous (repeated) impact method proposed by
97	Matsukura and Aoki (2004). They explained that repeated impacts at the same point without any release of
98	the hammer from the rock surface generate an understanding of the degree of weathering of the surface and

100 repeated impacts increases, because weathered surfaces that are loose become firm due to compacting of

- 101 the grains. Each test involved 20 impact repetitions.
- 102 The SH test was conducted at 26 points for Type A (A1-A26) and 22 points for Type B (B1-B22) 103 surfaces along lines HA and HB (Fig. 2a). The impact of the Schmidt hammer was normal to the vertical 104 surfaces at all the measurement points. Some researchers have proposed that the measured surface should 105 be polished before impact, because the results may be influenced by the surface texture, with smooth planar 106 surfaces giving higher readings than rough or irregular surfaces (Williams and Robinson 1983); also, the 107 magnitude and repeatability of the hammer readings vary depending on the degree of polishing (Katz et al. 108 2000). In the present study, however, the SH test was performed without any polishing of the surfaces 109 before impact. Various sizes of particles from sand to boulders densely cover the surface of the study cliff 110 (Fig. 3). As a result, it was not possible to render the surface flat and smooth using the carborundum supplied 111 with the instrument. The test points were selected to avoid boulders which would prevent the hammer from 112 impacting the matrix directly. The impacted test points became flatter than those before the continuous 113 impacts for rocks from both Type A and Type B (Fig. 6). The processes causing flattening may include the 114 compacting of a weathered surface, detachment of small particles, and breaking of the matrix. These 115 processes are reflected in the changes in rebound values, especially in the early stage of repetitive impact, 116 which yields lower values than those from an intact rock.

118 **Results and discussion**

119 Approximation of the Schmidt hammer rebound value

120 Figure 7a shows the relation between the rebound value, R_n , and the number of impacts obtained from the

121 SH test for A12, A25 and B9 (Table 1). These sample points were shown as extreme examples in terms of

- 122 the scattering of plots: the smallest for B9, the second largest for A25 and the largest for A12. The weathered
- 123 surface for A12 seems to be very thin because R_n , except for R_1 , remains between 50 and 60, which
- 124 corresponds to the maximum rebound value, R_{max} , at other measurement points (Table 1). The values of R_n

125 increase gradually with increasing numbers of impacts. The value of R_n was obtained for the *n*-th (*n*=1-20)

- 126 impact; Fig. 7a plots R_n against (n-1). The quantitative modelling of the changes in R_n by an equation
- 127 appears to be useful to characterize both types of weathered surfaces. Considering that R_n appears to
- 128 converge to a constant value (Aoki and Matsukura (2007); present study), the equation should have an
- 129 intercept. Furthermore, some studies on weathering rates use exponential expressions to show the changes
- in the rates which decrease with increasing time (e.g., Matsukura and Matsuoka 1991), which is similar to
- 131 those in R_n . Therefore, an exponential equation with an intercept is proposed as:
- 132

133
$$R_n = a(1 - \exp(-b(n-1))) + R_1$$
 (1)

135	Here, R_1 is the rebound value measured at the first impact, and a and b are constants. The constants are
136	calculated by mathematical software in which users can define a type of approximate equation
137	(KaleidaGraph by Synergy Software Inc. was used in this study). Equation (1) was used to model all data
138	from the SH test. Table 1 lists the values of a and b obtained using Eq. (1), except for A12, which was not
139	suitable because of the large scattering in the plots (Fig. 7a). Figure 7a shows an example of this curve-
140	fitting with the highest and lowest values of the coefficient of determination, R ² , which are 0.98 for B9 and
141	0.50 for A25.
142	
143	Surface conditions of the study cliff
144	The values of R ² were generally higher for B1-B22 than for A1-A26 (Table 1); the mean values were 0.91
145	(standard deviation: 0.061) for B1-B22, and 0.81 (standard deviation: 0.096) for A1-A26. These results
146	indicate that the Type B cliff surfaces are more homogeneous than the Type A surfaces. If there is a large
147	deformation of the surface or exfoliation of surface material, such features may prevent the hammer from
148	making consistent impacts with the surface. The lower value of R^2 for Type A suggests that this problem is
149	more common for Type A.
150	Figure 7b shows the relation between the minimum rebound value, R_{\min} , and R_{\max} , as obtained
151	from the plots of R_n -change for each impact point; an example is shown in Fig. 7a for B9. At every impact
152	point, R_1 corresponds to R_{\min} . The open and filled circles show the data from A1-A26 and B1-B22,

153	respectively. The open and filled circles appear in different areas. The values of R_{\min} for A1-A26 vary from
154	13 to 36, and they vary for B1-B22 from 12 to 18. The scatter in R_{\min} is larger for A1-A26 than for B1-B22.
155	However, the tendency in the scatter for R_{max} is different from that for R_{min} . The values of R_{max} for A1-A26
156	vary from 54 to 63, and they vary for B1-B22 from 28 to 48. The relation between R_{\min} and R_{\max} for A1-
157	A26 and B1-B22 therefore has certain characteristics: "horizontal scattering" for A1-A26 and "vertical
158	scattering" for B1-B22. Here, "horizontal scattering" means that changes in R_{\min} are large compared to
159	those in R_{max} and conversely for "vertical scattering". On the basis of these patterns, surface conditions are
160	estimated as follows: (1) the inner body of Type A is homogeneous, whereas the surface condition is
161	heterogeneous and (2) the inner body of Type B is heterogeneous whereas the surface condition is
162	homogeneous (Table 2). Studying the changes in petrological/mineralogical features (e.g., statistics for clast
163	sizes, shapes, roundness, matrix properties, and minerals) and physical/mechanical properties (e.g., porosity,
164	density, and strength) from the surface to the inner body before and after the SH test reveals more details
165	about the nature of the rebound values.
166	Figure 8 shows the relation between the results of the SH test and the exponential model, Eq. (1).
167	The constants a and b have the physical interpretation that a affects the magnitude of R_n and b controls the
168	rate of change of R_n . Figure 8a shows the relation between the constants a and b. The value of a for A1-

169 A26 varies from 19.3 to 42.0, and for B1-B22 from 12.4 to 30.9, while the value of b has almost identical

170 ranges for Type A and Type B. The similar ranges for b indicate that the numbers of impacts required for

171 R_n to converge are similar in Type A and Type B.

A good correlation was found between the ratio of R_{max} to R_{min} ($R_{\text{max}}/R_{\text{min}}$) and the constant a 172 173 (Fig. 8b). The values of $R_{\text{max}}/R_{\text{min}}$ and a may both reflect the difference in rebound values of weathered 174 surface and compressed weathered surface (or intact inner body if the weathered surface is relatively thin), because R_n is initially lower for a weathered surface but then increases as the surface becomes denser and 175 176 more consolidated due to the repeated hammer impacts. In Fig. 8b, the value of a for A1-A26 is higher than 177 that for B1-B22 at the same value of R_{max}/R_{min} . These plots clearly distinguish the characteristics of the 178 changes in R_n for the two distinct types of weathered surface. Two linear trend lines are shown in Fig. 8b, 179 relating to the plots for A1-A26 and B1-B22. Of the data for Type A, A3, A13, A14, A16 and A24 are plotted 180 around the line for B1-B22. They have R_{min} values of 13-15, which are in the range of R_{min} variation for 181 B1-B22, i.e., 12-18. The values are significantly smaller than the mean value of R_{min} for A1-A26 (Table 1). 182 This result may be due to high surface roughness. The value of R_1 is small if the first impact is upon particles 183 that are easily removed. The plots of A3, A13, A14, A16 and A24 consequently move leftward, to be plotted 184 around the other line when the SH test is conducted at a smoother surface where the value of $R_{\text{max}}/R_{\text{min}}$ is 185 small. 186 The results of the repeated SH test and its successful modelling by an exponential equation

187 proved useful in distinguishing the surface conditions of Type A and Type B (Table 2). The surfaces of Type

188	A and Type B consist of weathered rock with a loose matrix and become consolidated due to the compacting
189	effects of the repeated impacts. The repeated SH test is capable of detecting the difference in characteristics
190	of the two kinds of weathered surface conditions, as manifest in the changes in R_n .
191	
192	Conclusions
193	The Schmidt hammer rebound test was conducted in order to determine the mechanical properties of the
194	weathered surface of a cliff on the Isotake coast of Shimane, Japan, as the first step to understand the
195	rockfall mechanism for the cliff. Approximating the results of the Schmidt hammer rebound test by the
196	exponential equation proposed in this study clearly distinguished two types of weathered surfaces, with
197	higher rebound values at the surface of the indents than those at the surface of cliffs without indents.
198	The analysis of the results of the Schmidt hammer test in this study can be applied to any type of
199	rock surface. Data from different types of rock with differing degrees of weathering will improve this
200	method and provide better future estimates of the characteristics of weathering as determined by the
201	Schmidt hammer test.
202	
203	Acknowledgements
204	The author appreciates Dr. Hiroto Ohira in Shimane University for technical support on XRD analysis. This
205	study was supported partly by JSPS KAKENHI Grant Number 15H05350 through TK. This is a post-peer-

206	review, pre-copyedit version of an article published in Bulletin of Engineering Geology and the
207	Environment. The final authenticated version is available online at: https://doi.org/10.1007/s10064-018-
208	1334-2.
209	
210	References
211	Aoki H, Matsukura Y (2007) A new technique for non-destructive field measurement of rock-surface
212	strength: an application of the Equotip hardness tester to weathering studies. Earth Surf Process Landf
213	32:1759–1769. doi:10.1002/esp.1492
214	Aydin A (2009) ISRM Suggested method for determination of the Schmidt hammer rebound hardness:
215	Revised version. Int J Rock Mech Min Sci 46:627–634. doi:10.1016/j.ijrmms.2008.01.020
216	Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1-14.
217	doi:10.1016/j.enggeo.2005.06.006
218	Basu A, Celestino TB, Bortolucci AA (2009) Evaluation of rock mechanical behaviors under uniaxial
219	compression with reference to assessed weathering grades. Rock Mech Rock Eng 42:73-93.
220	doi:10.1007/s00603-008-0170-2
221	Kano K, Matsuura H, Sawada Y, Takeuchi K (1998) Geology of the Iawami-Ōda and Ōura Districts with
222	geological sheetmap at 1:50000. Geological Survey of Japan, Tsukuba (in Japanese with English
223	abstract).

- 224 Katz O, Reches Z, Roegiers J-C (2000) Evaluation of mechanical rock properties using a Schmidt Hammer.
- 225 Int J Rock Mech Min Sci 37:723–728. doi:10.1016/S1365-1609(00)00004-6
- 226 Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In:
- 227 Armbruster T, Danisi RM (eds) Highlights in Mineralogical Crystallography, Walterde Gruyter, Berlin
- 228 (http://rruff.info/about/downloads/HMC1-30.pdf)
- 229 Matsukura Y, Aoki H (2004) The Schmidt hammer: a brief review and some problems in geomorphology.
- 230 *Trans Jpn Geomorph Union* 25:175–196 (in Japanese with English abstract)
- 231 Matsukura Y, Matsuoka N (1991) Rates of tafoni weathering on uplifted shore platforms in Nojima-Zaki,
- Boso Peninsula, Japan. Earth Surf Process Landf 16:51–56. doi:10.1002/esp.3290160106
- 233 Otofuji Y, Itaya T, Matsuda T (1991) Rapid rotation of southwest Japan paleomagnetism and K-Ar ages
- of Miocene volcanic-rocks of Southwest Japan. Geophys J Int 105:397-405. doi:10.1111/j.1365-
- 235 246X.1991.tb06721.x
- 236 Williams RBG, Robinson DA (1983) The effect of surface texture on the determination of the surface
- hardness of rock using the Schmidt Hammer. Earth Surf Process Landf 8:289-292.
- 238 doi:10.1002/esp.3290080311

240	Cantio	ons
210	Captin	, 110

- 241 **Table 1** Results of the Schmidt hammer test
- 242
 Table 2 Summary of the characteristics of cliff surfaces in terms of the Schmidt hammer rebound values
- 243
- Fig. 1 Location of the study cliff. The cliff is included in an area of distinct relief indicated by an arrow
- Fig. 2 Study cliff: (a) vertical surfaces of the study cliff with indents on the seaward part and rockfalls on
- the inland side and (b) vertical profiles of the study cliff, with indents along Lines VA and VB in Fig.
- 247 2a. The picture was taken from the west
- 248 Fig. 3 Close-up photos of cliff surfaces: (a) Type A and (b) Type B
- 249 Fig. 4 Photomicrographs of pyroclastic rocks from Type A and Type B. The abbreviations "Pl" and "Qtz"
- 250 denote plagioclase and quartz, respectively
- Fig. 5 Brown crystal on the surface of an indent: (a) photograph and (b) XRD pattern
- 252 Fig. 6 Close-up photos of the SH test points after impacts for (a) Type A and (b) Type B
- **Fig.** 7 Results of the Schmidt hammer rebound test using the repeat method. (a) Examples of changes in R_n
- for Type A and Type B. Of the data, A25 and B9 have the smallest and largest coefficients of
- determination, R²: 0.50 for A25 and 0.98 for B9. A12 exhibits greater scattering and is not suitable for
- approximation by Eq. (1). (b) The relation between R_{max} and R_{min} . The plots for A1-A26 and B1-B22
- show "horizontal scattering" and "vertical scattering", respectively

258	Fig. 8 Relations between parameters estimated from the model of Eq. (1). (a) Relation between a and b in
259	Eq. (1). (b) Relation between $R_{\text{max}}/R_{\text{min}}$ and a . The plots for A1-A26 and B1-B22 are clearly
260	distinguished, although some data from Type A with smaller R_{\min} are plotted at the extension of B1-
261	B22

Table	1

No.	$R_{\rm max}$	$R_{\rm min}$	$R_{\rm max}/R_{\rm min}$	а	b	R^2	No.	$R_{\rm max}$	$R_{\rm min}$	$R_{\rm max}/R_{\rm min}$	а	b	R^2
A1	60	36	1.67	19.3	0.54	0.61	B1	36	12	3.00	22.2	0.42	0.88
A2	62	19	3.26	38.3	0.29	0.83	B2	41	14	2.93	23.9	0.47	0.91
A3	58	13	4.46	39.4	0.68	0.75	B3	42	16	2.63	24.9	0.19	0.94
A4	61	27	2.26	28.9	0.56	0.80	B4	40	16	2.50	22.4	0.32	0.96
A5	54	30	1.80	20.7	0.46	0.82	B5	48	16	3.00	28.6	0.62	0.92
A6	60	23	2.61	33.9	0.37	0.89	B6	38	12	3.17	21.8	0.57	0.89
A7	56	25	2.24	27.6	0.31	0.81	B7	48	14	3.43	30.9	0.45	0.94
A8	59	24	2.46	29.5	0.69	0.80	B 8	40	17	2.35	21.4	0.72	0.96
A9	59	35	1.69	20.7	0.63	0.85	B9	34	15	2.27	18.0	0.28	0.98
A10	54	27	2.00	21.7	0.64	0.78	B10	35	12	2.92	23.0	0.21	0.96
A11	59	25	2.36	30.6	0.44	0.90	B11	41	18	2.28	21.2	0.27	0.84
A12	60	31	1.94	-	-	-	B12	37	12	3.08	22.4	0.35	0.93
A13	62	15	4.13	42.0	0.45	0.88	B13	38	18	2.11	18.9	0.71	0.97
A14	55	15	3.67	35.3	0.36	0.78	B14	42	13	3.23	27.2	0.75	0.96
A15	62	29	2.14	27.6	0.84	0.78	B15	40	18	2.22	20.2	0.31	0.91
A16	59	14	4.21	39.9	0.58	0.89	B16	34	17	2.00	15.2	0.31	0.90
A17	62	28	2.21	32.2	0.18	0.71	B17	36	14	2.57	19.6	0.58	0.85
A18	63	28	2.25	30.4	0.43	0.87	B18	30	12	2.50	15.1	0.42	0.72
A19	61	28	2.18	27.8	0.80	0.70	B19	28	15	1.87	12.4	0.26	0.86
A20	58	26	2.23	32.9	0.15	0.85	B20	33	14	2.36	17.8	0.31	0.95
A21	62	28	2.21	30.5	0.45	0.84	B21	31	14	2.21	15.0	0.51	0.83
A22	60	23	2.61	33.5	0.88	0.85	B22	37	16	2.31	19.5	0.77	0.91
A23	58	21	2.76	34.2	0.49	0.90							
A24	57	14	4.07	37.6	0.52	0.86							
A25	56	30	1.87	20.4	0.26	0.50							
A26	57	20	2.85	33.8	0.73	0.92							
	50.0	24.4	2.60	20.7	0.51	0.01		27 7	140	250	21.0	0.45	0.01
A1-A26 M.V.	39.U 2.6	24.4 6 1	2.00	50.7	0.31	0.006	B1-B22 M.V.	51	14.0	2.39	21.0 1.6	0.43	0.91
A1-A26 S.D.	2.0	0.4	0.83	0.3	0.20	0.096	B1-B22 S.D.	5.1	2.1	0.44	4.0	0.18	0.061

^{*}M.V. stands for mean value

**S.D. stands for standard deviation

	Rebour	nd value	Estimated condition			
Cliff surface	$R_{\rm max}$	$R_{\rm max}$ $R_{\rm min}$ Inner body		Surface		
Type A	54-63	13-36	Intact and homogeneous	Heterogeneous		
Туре В	28-48	12-18	Not intact and heterogeneous	Not intact and homogeneous		

Figure 1

Figure 3

Open nicols

Crossed nicols

Туре А

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8