Mem. Fac. Sci., Shimane Univ.,
13, pp. 17-22 Dec. 20, 1979

Remarks on Solvability of Lie Triple Algebras

Michihiko KIKKAWA

Department of Mathematics, Shimane University, Matsue, Japan
(Received September 8, 1979)

The class of Lie triple algebras contains Lie algebras and Lie triple systems as special classes.
Therefore, the study of Lie triple algebras may need to generalize various concepts in the theory
of Lie algebras and Lie triple systems to those in Lie triple algebras. In this paper, we try to
introduce the concept of solvability of Lie triple algebras (§1), although their detailed properties
are not yet found satisfactorily. = We show that both of the standard enveloping Lie algebra and
inner derivation algebra of a Lie triple algebra g are solvable if g is solvable. In §2, the existence
of the radical of Lie triple algebras is shown and some resulis about semi-simple Lie triple
algebras are given, under the solvability introduced in §1. The general theory of Lie triple
algebras seems to play an important role in the theory of analytic homogeneous systems since
it is proved in [1] that every connected and simply connected analytic homogeneous system is
characterized by its tangent Lie triple algebra.

§1. Solvability of Lie triple algebras

A Lie triple algebra (or a general Lie triple system in [3], [4]) g is a vector
space over an arbitrary field with a bilinear map denoted by XY of gx g into g and
a trilinear map denoted by D(X, Y)Z of g x g x g into g satisfying the following axioms:
(i) XX =0, (ii)) D(X, X)=0, (iii) S{(XY)Z+ D(X, Y)Z}=0 (S denotes the cyclic sum
with respect to X, Y, Z.), (iv) €D(XY, Z)=0, (v) D(X, Y)(ZW)=(D(X, Y)Z)W+
Z(DX, V)W), (vi) [D(X, Y), D(Z, W)]=D(D(X, Y)Z, W)+D(Z, D(X, Y)W) for X,
Y, Z, Win g, where D(X, Y) is an endomorphism of g called an inner derivation of
g. In the following we assume that g is a finite dimensional Lie triple algebra over a
field of characteristic zero. The standard enveloping Lie algebra of g is the Lie
algebra A=g@®D(g, g)’ with the bracket operation; [X, Y]=XY+D(X, Y), [U, X]
=UX=-[X, U], [U, V]=UV-VU for X, Yeg and U, Ve D(g, g), where D(g, g)
denotes the Lie algebra of endomorphisms of g consisting of all inner derivations and
is called the inner derivation algebra of g. By definition of the bracket operation of
A, D(g, g) is contained in A as a Lie subalgebra. A Lie triple algebra g is said to be
reduced to Lie algebra if D(g, g)=0. If g is reduced to Lie algebra, then g is a Lie
algebra with [X, Y]=XY. A Lie triple algebra g is said to be reduced to Lie triple
system if gg=0. In this case, g is a Lie triple system with [X, Y, Z]=D(X, Y)Z.

1) For two vector spaces 4 and B, we denote by A@B the direct sum of 4 and B and by 4+4B the
vector space spanned by AU B.
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If gg=0 and D(g, §)=0, g is called an Abelian Lie triple algebra. ~An ideal § of a Lie
triple algebra g is a Lie triple subalgebra of g satisfying gh<bh and D(g, hg<h. If
b is an ideal of g, then by (iii) of the axioms for Lie triple algebras, D(g, g)h<b is
assured, that is, §) is an invariant Lie triple subalgebra of g.

For an ideal b of g we define Lie triple subalgebras h() (i=0, 1, 2,...) inductively
as follows:

b®=b, H®=bh+D(g, ),
B+ =HOhO + D(H, HHO -+ D(g, HOWB.

PropoSITION 1. For each ideal b of g, HV’s form a chain h=HhO>pM>...
SHD ShUEtD .. of invariant Lie triple subalgebras of g such that each h0+1 is an
ideal of ) and that the quotient Lie triple algebra h)[H0+D is Abelian.

Proor. The relation BHU+tDch® is clear from their construction. Since
HOREHD cHORO <hGE+D and  DHUD, HEOHH < D(g, HPOHD <hi+D hold, we see
that h0+1) is an ideal of h(» and that each h is a Lie triple subalgebra of g. By
induction on i it is easy to show that each h® is an invariant subalgebra. The quo-
tient Lie triple algebra h()/h(i+1) is Abelian because of the relation HHH® 4 D(H®,
HOH ch+D, g.e.d.

For an ideal § of g, set B=bh@D(g, h). Then B is an ideal of the standard en-
veloping Lie algebra A=g@®D(g, g) of g generated by h. Now, put B;=h+ D(b, h)
+D(g, h®) for i=0, 1, 2,....

LemMMA 1. The chain B=8,>8,5--o>8B,58B;,,>:- is a chain of Lie
subalgebras of W such that each B, , is an ideal of B;,. In fact the following rela-
tions hold for i=0, 1, 2,...;

(D [B;, B1<=B;, ;.

Moreover, if the i-th derived ideal of the Lie algebra B is denoted by B®, the fol-
lowing relations hold for i=0, 1, 2,...;

©) BH B,

Proor. The inclusion relation %B;,,<%B; is clear from the definition of B/s.
The relation (1) is shown as follows:

[B;, B,1=hOh® +D(h, hH® + D(g, H)Hh
+D(H®, ) +[D(b, b), D(H, H)]
+[D(b, b), D(g, b)1+[D(g, H®), D(g, H)]
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<h**D+D(H, h)+D(g, D(h, HH®) +D(g, D(g, H*)h?)
<=h@*D+D(b, h)+D(g, H ) =B, ;.

The relation (2) is shown by induction on i: For i=1, we get B =[B, B]=[h

@D(g, b), b®D(g, h)] =hh+D(g, Hh+D(h, h)+[D(g, b), D(g, HI=H®+D(b, h) + D(g,
h1)=B,. Suppose that BWcB, holds. Then B+D=[BO, BO][B, B/]lc
B, is obtained by (1). g.e.d.

LemMA 2. For each ideal ) of g, i-th derived ideal Db, §) of the Lie algebra
D(b, b) satisfies the following;

)] DH, h)= X DOH®, hti=h), i=1,2,...

0<k<5
Proof. The following relations hold for non-negative integers k, I and m;
“) D(H®, HO)hm < pem+n,

In fact, the left hand side of (4) is contained in D(h, h)h™. We show the relation
(3) by induction on i: For i=1, DU, h)=[D(b, h), Db, h)] =D, D(h, hh) <
D(h, h1)).  Suppose that (3) holds for a positive integer i. By using (4) and axioms
for Lie triple algebra we get the following relations;

D@, h=[ X DOH®, §9), X DH™, hi=m)]

i
0<k<3 0<m<3

c T3 {DDEOH®, hu-mhem, pe-m)

0<ks<y 0<m<j
+ D™, D(H®), Hi-k)pt-m)}

= X {D(hemrD, hE=m)4 D(hm, hU-m+D)}
0<m<y

e 2 DO, peTn),

osk<i(i+1)
Thus (3) is shown. g.e.d.

Lemma 3. If § and m are ideals of g, then hnm and h+m are ideals of g
satisfying the following inclusion relations for i=0, 1, 2,...:

®) (B n ) chd nm,
©) G+m)Pch®+m®+hnm.

Proofr. It is easy to see that h N m and h+m are ideals of g. We show (5) and
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(6) by induction on i as follows: For i=1, (5) is valid as (h n m)W=(H n n)(h nm)
+D(g, hnm)BH nm)ch O nm®D. If (Hhnm)D<h® nm®, then (hnm)E+D=BH® n
m®)(HH 0 m@)+ DG nm, §n m) G N md) + D(g, hA n md)(HH 0 mO)c hi+d o
m0+D, Hence (5) is proved. As for the relation (6) we see that (h+m)c<hh
+mm+hm+D(g, Hh+D(g, mym+D(g, m)bh+D(g, hm=h®+m®+Hhnm, since h
and m are ideals of g. If (6) is valid for an integer i, then (h+m)C*D < (H® +m®
+hnm)HO+mB+hnm) +DH+m, h+m)HD+ mB+hnm)+ D(g, hO+mP+h
NGO +m® +hnm)chCrD +mEFD 4+ hnm, since hPch and mDcem. g.e.d.

An ideal ) of g is solvable if H? =0 for some integer i.

ProrosiTioN 2. If} isa solvable ideal of a -Lie triple algebra g, then the Lie
algebra B=H@DD(g, b) generated by b is a solvable ideal of the standard enveloping
Lie algebra W=g®D(g, g) of g.

Proor. If Hh¥=0 for some i, the Lie algebra B, in Lemma 1 is reduced to
D(, h), and so the relation (2) in Lemma 1 implies BE < D(h, h). From Lemma 2 it
follows that D(h, ) is a solvable Lie algebra if § is solvable. Thus BY =0 for suf-
ficiently large j. g.e.d.

ProrosiTiON 3. If}) is a solvable ideal of g, then D(g, b) is a solvable ideal of
the Lie algebra D(g, g) of inner derivations of g.

Proor. Since §) is an invariant subalgebra of g, [D(g, g), D(g, )] =D(g, b)
follows directly from the axiom (vi) for Lie triple algebras, which shows that D(g, b)
is an ideal of D(g, g). By induction on i, we can prove easily the following relation;

)] DG)X(g, h)=D(b, h)+D(g, b)),  i=0,1,2,....
Now, if } is solvable, then (7) implies D¢)X(g, §) = D(H, h) for some integer i and so, by
Lemma 2, it is seen that D(g, b) is a solvable Lie algebra. g.e.d.

Proposition 2 and Proposition 3 imply the following;

THaeoreEM 1. Assume that a Lie triple algebra g is solvable. Then, its standard
enveloping Lie algebra =g+ D(g, g) is solvable and its inner derivation algebra
D(g, g) is a solvable Lie subalgebra of .

ReMARrk 1. If g is reduced to Lie algebra, i.e., D(g, g)=0, then g is the i-th
derived ideal of the Lie algebra g=% and the fact that [ is a solvable Lie triple algebra
ideal of g means that it is a solvable ideal of the Lie algebra g.

ReEMARK 2. Let g be a Lie triple algebra which is reduced to Lie triple system,
ie., gg=0. In this case, the following relations hold for g and its standard enveloping
Lie algebra A:  g=D(g, g)g=[D(g, g)g] =[AD), A]= AW, g»=D(g, g)gV’=[D(g,
g), gV [AD), AD]=CIAD and, in general, gi*DV=[D(g, g), gO]=[AD), Ci-1
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AD]=CIAD for i=1, 2,.... If Ais a solvable Lie algebra, then AN is nilpotent,
that is, C'UM =0 for some i, and the relations above imply that g is solvable. Thus
we have the following theorem which shows that, in the case of Lie triple system,
solvability of Lie triple algebras introduced in this section is reduced to solvability in
the sense of W. G. Lister [2] (cf. Cor. 2.6 in [2]).

THEOREM 2. Let g be a Lie triple system. The standard enveloping Lie algebra
A=g@®D(g, g) is solvable if and only if g is solvable as a Lie triple algebra.

§2. Semi-simple Lie triple algebras

ProposITION 4.  If two ideals b and m of a Lie triple algebra g are solvable,
50 is h+m.

Proor. If h) =m() =0 for sufficiently large i, then the relation (6) in Lemma 3
implies (h+m)P <h nm and (5) in the same lemma implies (§+m)2D <h® nm =0,
which proves the proposition. g.e.d.

The proposition above establishes the existence of a unique maximal solvable
ideal of g which is the radical of g. A Lie triple algebra is semi-simple if its radical
is zero. :

PROPOSITION 5. Let t be the radical of a Lie triple algebra g. The quotient
Lie triple algebra g/t is semi-simple.

ProoOF. Let f: g—g/r be the natural homomorphism of Lie triple algebras. If
b is an ideal of g/r, then h= f~1(}) is an ideal of g, and f~1(HD)=hD +r (i=1, 2,...).
If b is solvable, then h¥=0 for some i and h(¥cr. Since t is solvable, h)=0 for
some j, that is, b is contained in r. Hence h= f(h)=0 so that the radical of g/r is
zZero. q.e.d.

THEOREM 3. Let g be a Lie triple algebra and W=g®D(g, g) its standard
enveloping Lie algebra. If W is a semi-simple Lie algebra, then g is semi-simple.

Proor. Let r be the radical of g. From Proposition 2 it follows that the Lie
subalgebra B=r@D(g, r) is a solvable ideal of . If A is semi-simple, then B=0
and so r must be zero. g.e.d.

Let n={X eg|D(X, g)=0} be the nullity subspace of a Lie triple algebra g (cf.
[1]). If b and m are two ideals of g contained in n, then it is evident that the ideal
h+m is also contained in n. Thus there exists a unique maximal ideal n, contained
in n, which will be called the nullity ideal of g.

THEOREM 4. Let g be a Lie triple algebra. If the inner derivation algebra
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D(g, g) is semi-simple and if the nullity ideal of g is zero, then g is semi-simple.

Proor. Let r be the radical of g. Proposition 3 impli'es'th_at D(g, ¥) is a solva-
ble ideal of D(g, g). Since D(g, g) is assumed to be semi-simple, r must be contained

in the nullity ideal of g. Hence t=0. , g.e.d.
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