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This paper is a comtinuatiom of the previous. paper [1l]. Krishna lyemgar [2] has showm that a 

regular semigroup is D-compatible if and only if it is a semilattice of bisirnple semigroups. In 

this paper, the structure of bisimple orthodox semigroups, especially that of H-compatible bi-

simple orthodox semigroups, is clarifiecl. Further, we investigate the structure of orthodox 

sernigroups S on whicll some of the Greem's relations ~~ps, ~s, ~s and ~s are compatible 

A semigroup S is said to be H [L, R, D]-compatible if the Green's H [L, R, D]-

relation ~s [~s, ~s, ~s] on S is a congruence 

In the previous paper [1l], one of the authors has clarified the structure 'of H [L, 

R]-compatible orthodox semigroups. On the other hand, it has been shown by 
Krishna lyengar [2] that a regular semigroup is D-compatible if and only if it is a 

semilattice of bisimple semigroups. Accordingly, it is obvious that an orthodox 

semigroup is D-compatible if and only if it is a semilattice of bisimple orthodox semi-

groups. In the first half of this paper, the structure of bisimple orthodox semigroups, 

especially that of H-compatible bisimple orthodox semigroups, will be clarified. By 

using the results obtained in the first half, we shall next investigate the structure of 

orthodox semigroups S on which some of the Green's relations ~s, ~s, ~s and ~s 

are compatible. Throughout the whole paper, the set [the band] of idempotents of 

a regular [an orthodox] semigroup S will be denoted by Es 

S 1. H-compatible bisirnple orthodox semigroups 

If f is a regular semigroup A onto a regular semrgroup B, then the collection 

{ef-1 : e e EB} of subsemigroups ef-1 (ee EB) of A is called the kernel of f and is 

denoted by Kerf. 

Let T be an inversive semigroup (that is, an orthogroup (orthodox union of 

groups)), and F an inverse semigroup. If a regular semigroup S contains T and if 

there exrsts a surjective homomorphism ~ : S->F such that 

*) An abstract of this paper has been announced in Surikalseki Kenkyusho Kokyuroku. 292 (1977). 
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(C1) U Ker ~ U {~~ I ~ e Er} = T and 

(C2) the structure decomposition (.see [7], [1l]) of T is given as T-Z{~~-1 : A e Er}, 

then S is called a regular extension of T by F (see [1l]) 

The following results have been given by the previous paper [8] and [1l] : 

A. An orthodox semigroup is a regular extension of a band by an inverse semigroup, 

and vice-versa. 

B. An H-compatible orthodox semigroup is a regular extension of a strictly inversive 

semigroup (.that is, an orthodox band of groups; see [7], [1l]) by an H-degenerated 

inverse semigroup, and vice-versa 

Now, Iet S be a regular extension of a strictly inversive semigroup T by an inverse 

semigroup F. By the definition of a regular extension, it follows that S ::) T and there 

exrsts a surJective homomorphism ~ : S->F such that U Ker ~ ~ U {~~-1 : ~ e Er} = T 

and the structure decomposition of T is given as T - ~{~~-1 : A e Er}' (That is, T is 

a semilattice Er Of the rectangular groups ~~-1.) 

For each a e S, put a~=d. Then, the following result can be proved by slightly 

modifying the proof of Lemma I of [9] 

LEMMA 1. a ~s b ifand only ifd ~~r b. 

PROOF The "only if" part rs obvlous. The "if" part : Let a, b be elements 

of S such that ~ ~r b. Let a.*, b* be inverses of a, b, respectively. Since r is an 

inverse semigroup, a*a = b*b. Also since (a*a)~~1 is a rectangular group, a*a ~s b*b 

Hence, a ~s a,*a ~s b*b~s b, that is, a ~s b. Dually if d ~r b (a, b e S), then 

a ~s b. Therefore, a~ ~r ~ implies a ~s b 

By usmg Lemma I and the results A, B above, we can obtain the following 
theorem . 

THEOREM 2. (1) A bisimple ol'thodox semigl'oup is a regulal' extension of a 

band by a bisilnple inverse sem,igroup, and vice-versa. (2) An H-colnpatible bisimple 

orthodox semigl'oup is a regu.lal' extension of a strictly inversive semigroup by an 

H-degenel'ated bisillxple invel'se selnigl'oup, and vice-vel'sa. 

REMARK. A method of constructing all possible regular extensions of T by F 

for a given strictly . inversive semigroup T and a given inverse semigroup F has been 

given by [10] ; in particular for the case where T is a band, see also [8]. The structure 

of bisimple inverse semigroups has been also clarified by Reilly [4] and Reilly and 

Clifford [5]. Hence, we can know the gross structure of bisimple orthodox semi-

groups from Theorem 2, (1). A somewhat different construction of bisimple orthodox 

semrgroups has been also given m Clifford [1], by extending Reilly's construction (see 

[4]) of bisimple inverse semigroups to bisimple orthodox semigroups 
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By Theorem 2, (2) and Remark above, the problem of describing all H-compatible 

bisimple orthodox semigroups is reduced to that of describing all H-degenerated 

bisimple inverse semigroups. Therefore, we shall investigate the construction of 

H-degenerated bisimple inverse semigroups from now on 

Let E be a uniform semilattice, that is, a semilattice satisfying the following 

condition (C3) 

(C3) For any e, feE, eE is isomorphic to fE; eE ~; fE 

Put E x E=A, and take an isomorphism ~(.,f) of eE onto fE for each (e, f) e A 

Assume that FA(E) = {~(.,f) : (e, f) e A} satisfies the conditions (3), (4) of (3.1) of [1l], 

that rs, the conditions 

(C4) (1) ~(.,f) rs the identity mapping on eE for each e e E 

(2) for (e, f), (h, t) e A, 

~((fh)~(f )'(fh)~(h *)) _ , = ~(.',f)*~(h,t)1(fh)~(f,')E. 

Then, it is easily seen from [1l] that FA(E) is an H-degenerated inverse subsemigroup 

of the symmetnc mverse semigroup fE(*) on E. Further, we have ~(.,f)*~(f,') = ~(',') 

and ~(f,')*'~(.,f) = ~(f,f) for any (e, f) e A . Hence, any two idempotents ~(.,.) and ~(f,J') 

are contained m the same ~F*(E)-class. This implies that FA(E) is bisimple 

REMARK. Thts result rs closely related with Theorem 3.2 of Munn [3] 

Now, we have the following main theorem 

THEOREM 3. Any H-degen,erated bisimple invel'se sem,igl'oup js isomorphic to 

some FA(E) constl'ucted as above. 

PROOF . Let S be an H-degenerated bisimple inverse semigroup and E its basic 

semilattice. Put ~={(e, f) : xx*=e, x*x = f for some x e S, e, feE} (where x* is an 

inverse of x in S). Then, by Munn [3] we have Q=ExE=A. Let (e, f) e A. There 

exists a unique x e S such that xx*=e and x*x=f. Define ~(.,f) : eE->fE by u~(.,f) 

= x*ux, u e eE. It is obvious from Munn [3] that ~(.,f) rs an isomorphism of eE 

onto fE. Put FA(E) = {~(.,f) : (e, f) e A } . First, it is obvious that FA(E) satisfies the 

condition (1) of (C4). Let (e, f), (h, t) e A . There exist x, J' such that xx*=e, x*x 

=f, yy*=h and y*y=t. Since (.fh)~(f,')=xfhx*=xyy*x* and (fh)~(h,t)=y*fhy 
=y*x*xy, it follows that ~~((fh)~(f")'(fh)~(h,,)) rs an isomorphism of xhx*E onto y*fyE, 

and u~((fh)~(f")'(fh)~(h,,))=(xy)*ri(xJ;) = y*x*uxy =u~(.,f)*~(b,t) for u e xh,x*E. Thus, 

~((fh)~(f")'(fh)~(h,,)) = ~(.,f)~~(h,t) I (fh)~(f,')E. Therefore, FA(E) satisfies the condition (2) 

of (_C4). Then FA(E) is an H-degenerated inverse subsemigroup of fE(*) . Define 

ip : S~~FA(E) by aip=~(~.･,.･.). For a, b e S, (ab)ip=~(~bb'.',b'.'~b) = ~((fh)~(f")'(fh)~(h,,)) 

(where aa* = e, a*a ~ f, bb* = h and b*b = t) = ~(./)*~(h,t) = ~("',~")*~(bb',b'b) =(aip)*(bip). 
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Then it follows from the above that ip is an isomorphism of S onto FA(E) 

S 2. Relationship betweem Green9s relations ; aJnd some remarks 

By using Krishna lyengar [2] and [7], [1l], firstly we have the following theorem 

which shows the structure of orthodox semigroups S on which some of the Greenis 

relations ~s, ~s, ~s and ~s are compatible 

THEOREM 4. Let S be an orthodox selnigroup 

(1) If S is L[R]-colnpatible, then S is D-colnpatible. 

(2) If S is botl7. L-compatible and R-com.patible, then S is H-coln.patible. 

(3) S is both H-compatible an.d L[R]-compatible if and on,ly if S is a strictly 

inversive selnigroup in which the set Es of idelnpoten.ts is a right [left] semi-

regular band (.th.at is, a ban-d satisfying the identity xyzx=xyzxyxzx [xyzx 

= x yxzx yzx]). 

(4) S is both H-compatible and D-compatible if and only If S is a sem,ilattice of 

H-compatible bisimple ort,170dox selnigroups and the un,ion of maxim.al sub-

group5 of S is a st/'ictly inversive subsemigroup. 

PRooF. (1) : Let S be an L [R]-compatible orthodox semigroup. . Then, by 

[1l] S is a semilattice of rectangular groups. Then, by Krishna lyengar [2] it ,.is 

D-com patible . 

(2) : This is obvlous 

(3) : Let S be a both H-compatible and L-compatible orthodox semigroup and 

Es the set ofidempotents of S. Then, by [1l] S is an inversive semigroup (that is, an 

orthogroup). Since S is H-compatible, it rs a strictly mversive semigroup. Next, note 

that Es is L-compatible. Then it follows from [6] that Es is a right semiregular band 

Conversely, Iet S be a strictly inversive semigroup in which the set Es Of idempotents is 

a right semiregular band. Then, by [7] S is a band of groups, hence it is H-com-

patible. Since Sl~~s is isomorphic to Es, it follows that Sl~~s is a right semiregular 

bahd, that'is, S/~s is a right regular band of left zero semigroups. Then it is easily 

seen that S is a right regular band of left groups. Hence, by [1l] it is L-compatible 

(4) : This follows from [2] and [1l]. 

REMARKS. I . An orthodox semigroup which is a semilattice of H-compatible 

orthodox semigroups is not necessarily H-compatible. For example, an inversive 

semigroup (that is, an orthogroup) S is a semilattice of rectangular groups (accordingly, 

a semilattice of H-compatible bisimple otthodox semigroups), but not necessarily 

H-compatible. S is H-compatible only when S is strictly inversive 

2._ An. H-compatible orthodox semigroup is not necessarily D-compatible. Let 

A, B be two sets such that A n B = [] and IAI = IBj (where IXI means the cardinality of 

X). For X, Y = A or p, Iet Hx,Y be_ the set of all 1-1 mappings of X onto Y. P_ut 



Orthodox Semigroups on which Green's Relations are Compatible 1 5 

HA,A U HB,B U HA,B U HB,A U {O} (where . O is a .symbol which rs different from any ele 

m~nt of Hx,Y, X; Y = A or B) = S. For: 6, ~ e S, define the product ~*~ as follows 

O if (1) 6eHA,A, ~eHB,E; (2) ~eHA,A, ~e,HB,B; 

6*~= . (3)_~, ~eHA.B Or ~, ~eHB,A; or (4) 6_=0 or ~=0, 

resultant composition, otherwise. 

Then, in the resulting ~~ystem S(*), the ~s~classes are HA.A U HB.B U ~A.B U HB,A 

and {O}.. _ . On the .other 'hand, the ~~s~classes are HA,4, HA,B, HB.A, HB.B and {O} 

Now, we can easily seen that this semigroup S(*). is H-compatible but not D-compatible 

3. The full transformation semigroup jdrx on the set X = {a, b} is an orthodox 

semigroup which is D-compatible but not H-compatible 

4. A band B is H-compatible but not necessarily L -compatible [R-compatible] 

It has been shown by [6] that B is L [R]-compatible if and only if B is a right [left] 

semiregular band 

ab ab 5. Consider j'rx above. j'rx consists of four transformations a b ' b a 

ab 
and ; that is Jcrx = The set ba 

b a = R1 is a subgroup of j~x and the set a a ' b b = Ro is a right zero 

semrgroup Further Jarx is a semilattice {O, 1} of the ~~~*-classes R and R 

Hence, j'rx is R-compatible but not H-compatible. Similarly, there exists an 

orthodox semigroup which is L-compatible but not H-compatible 

6. A bicyclic semigroup is both D-compatible and H-compatible but neither 

L-compatible nor R-conrpatible 

7. A right semiregular band B is both H-compatible and L-compatible but not 

necessarily R-compatible. In fact, B is R-compatible if and only if B is a regular 

band. Similarly, there exists an orthodox semigroup which is R-compatible but not 

L-com patible 

Problem . Determine the structure of H-compatible regular semigroups 

[1] 

[2] 

[3] 
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