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Some properties of discrete Green potentials and discrete harmonic functions on an infinite
network are discussed in this paper from the point of view of the standard potential tl_leory. Our
results serve a further characterization of the infinite network by the classes of discrete harmonic
functions.

Introduction

Discrete potential theory has been developed by Beurling and Deny [1], Blanc
[2], Duffin [5; 6], Hundhausen [7], Saltzer [10] and many other mathematicians.
Most of their results were concerned with the Laplace difference equation on a lattice
domain in the n-dimensional Euclidean space. In the study of some classes of discrete
harmonic functions on an infinite network which can be regarded as a generalization
of the lattice domain, we often need a theory which is similar to the (continuous)
potential theory as in [3] and [11] (see for instance [13]). 1In this paper, we present
a discrete potential theory on an infinite network for the further study of some graph-
theoretic properties of an infinite network. Most of our results have analogies in the
standard books in potential theory. Our presentation is elementary by virtue of the
discreteness, but our methods are essentially the same as in [3] and [11].

Some definitions and notation related to network theory are given in §1. Several
functional spaces related to discrete harmonic functions and known results will be
stated there. Elementary properties of (discrete) superharmonic functions are resumed
in §2. We shall discuss the existence of the Green function of an infinite network in
§ 3 in relation to the classification of infinite networks in [13] and the existence of a
non-constant positive superharmonic function. We obtain a new characterization of
the Green function by the aid of the notion of flows. Discrete analogies of the Royden
decomposition theorem and the Riesz decomposition theorem will be given in §4 and
§ 5 respectively. - We shall study some fundamental properties of Green potentials in
§ 5 and give a classification of infinite networks by the classes of harmonic functions in
§ 6, which is a special case of [8].

§1. Prelimiaries

Let X be a countable set of nodes, Y be a countable set of arcs and K be a func-
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tion on X x Y satisfying the following conditions:
(1.1) The range of Kis {—1, 0, 1}.

(1.2) For each yeV, e(y)={xeX; K(x, y)#0} consists of exactly two nodes x;, x,
and K(x;, y)K(x,, y)=—1.

(1.3) Foreach xe X, Y(x)={yeY; K(x, y)#0} is a nonempty finite set.

(1.4) For any x, x' € X, there are xy,..., x,€X and y,,..., y,4+; €Y such that e(y;)
={x;_1, X;}, j=1,..., n+1 with xo=x and x,,,; =x".

Let r be a strictly positive real function on Y. Then N={X, Y, K, r} is called an
infinite network.

Let X’ and Y’ be subsets of X and Y respectively and K’ and ' be the restrictions
of K and r onto X’ x Y’ and Y’ respectively. Then N'={X’', Y’', K’, v’} is called a
subnetwork of N if (1.2), (1.3) and (1.4) are fulfilled replacing X, ¥, K by X', Y, K’
respectively. In order to emphasize the sets of nodes and arcs of N’, we often write
N=<X',Y'>. Incase X’ (or Y') is a finite set, N'=<X', Y’'> is called a finite
subnetwork.

A sequence {N,} (N,= <X, Y,>) of finite subnetworks of N is called an exhaus-
tion of N if

(1.5) X=UX, and Y=10 Y,
n=1 n=1

(1.6) Y)Y, forall xelX,.
For x € X, let us put
X(x)={zeX; K(z, y)#0 for some y € Y(x)}.

For a subset A4 of X, denote by ¢, the characteristic function of 4, i.e., g,(x)=1 if
xeAand g, (x)=0if xe X—A4. In case A={a}, we set g,=¢,.

Let L(X) and L(Y) be the sets of all real functions on X and Y respectively. For
u e L(X), we define Eu e L(Y) by

Eu(y)= T KCx, pux)=ulx) —u(xy),

where K(x;, y)=1 and K(x,, y)=—1. For u, ve L(X), the support Su of u, the
Dirichlet integral D(u) of u and the inner product (u, v) of u and v are defined by

Su={xeX; u(x)#0},
D(w)= %, r(y)'[Eu(y)],

yeY

(u, )= X r(y)"'[Ew(y)] [Ev(y)].

yeY
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The Laplacian du e L(X) of u is defined by
du(x)=— Ey r(y)"1K(x, y)[Eu(y)].

A function u € L(X) is said to be harmonic (resp. superharmonic) on a set A4 if du(x)
=0 (resp. du(x)<0) for all x € A4.
We shall be concerned with the following classes of functions on X:

Lo(X) ={ueL(X); Su is a finite set},

B(X) ={uelL(X);u isbounded on X},

D(N) ={ueL(X); D(u)<oo},

H(N) ={ueL(X);u is harmonic on X},
SH(N) ={u € L(X); u is superharmonic on X},
HB(N)=H(N)nB(N), HD(N)=H(N)nD(N),
HBD(N)=H(N) n B(N) n D(N).

For a subset C of L(X), denote by C* the subset of C which consists of non-negative
functions. We shall consider the subsets L{(X), L*(X), H*(N), SH*(N) etc. For
a subset C of L(X), denote by O the collection of those infinite networks N for which
C consists only of constant functions.

Let xoeX. For every u, ve D(N), we define an inner product ((u, v)) and a
norm ||| by

((u, v))=(u, v)+u(xo)v(xo),
lull = [((u, u))]/2=[D(u) +u(xo)*]*/>.
We have by [12; Lemma 1]

LemMA 1.1. For every finite subset F of X, there exists a constant M(F) such
that Y. |u(x)| < M(F)||u] for all ue D(N).
xeF

By this fact and by a standard argument, we can prove

THEOREM 1.1. D(N) and HD(N) are Hilbert spaces with respect to the inner
product ((u, v)).

Denote by Dy(N) the closure of Ly(X) in D(N) with respect to the norm |ul|,
i.., ue Dy(N) if and only if there is a sequence {f,} in Ly(X) such that [|u—f,|—0
as n—oo. Note that Dy(N) does not depend on the choice of x,.

We have by [12; Lemma 3]
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LemMA 1.2. For any ue D(N) and fe Ly(X),
W=~ 5 O [Au()].
From this lemma and the definition of Dy(N), we obtain
LemMA 1.3. (v, h)=0 for every ve Dy(N) and he HD(N).

We shall call a function T on the real line R into itself a normal contraction of
Rif TO=0 and |Ts, — Ts,| <|s, —s,| for any s,, s, € R. Define Tu € L(X) for u € L(X)
by (Tu) (x) = Tu(x).

We have by [12; Lemma 2]

LemMA 1.4. Let T be a normal contraction of R and ueD(N). Then Tu
e D(N), D(Tu)<D(u) and || Tu| < |u].

ReEMARK 1.1. 1In case N is the lattice domain of R" (n>3), Dy(N) contains the
set of all O-chains which are regular at infinity in Saltzer’s sense (cf. [10]).

§2. Superharmonic functions

We shall study some properties of discrete superharmonic functions which are
very analogous to the continuous case. In order to rewrite the Laplacian in a more
familiar form as in [7], let us put W,=X(a)—{a} for ae X,

(G5, @)= 3 10) K, YK (@, )l for x£a,
Ha)= Eyr(y)'llK(a, I
Then 1(x, a)=1(a, x), ¥, i(x, a)=1(a) and
2.1) Au(@)=~fau(@+ T i(x, Du(x).

We shall prove the following minimum principle:

LeMMA 2.1. Let X' be a finite subset of X. If u is superharmonic on X' and
u>0o0n X—X', then u>0 on X.

Proor. Suppose that min {u(x); xe X'}=u(a)<0 for éome aeX'. Since
Au(a) <0 and u(x)>u(a) for all x € X, we have by (2.1)

t(a)u(a)> ZW t(x, a)u(x)> ZW t(x, a)u(a)=t(a)u(a),

so that u(x)=u(a) for all xe X(a). If (X—X")nX(a)#®, then we arrive at a con-
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tradiction. 1In case (X —X’)n X(a)=0, we see by the same reasoning as above that
u(x)=u(a) for all xeX,= U{X(b); be X(a)}. By repeating this procedure a finite
number of times, we obtain u(x)=wu(a) for some xe X —X’. This is a contradiction.
Thus >0 on X.

Similarly we can prove

LeEmMA 2.2. Every non-constant superharmonic function does not attain its

minimum on X. -
If u, and u, are superharmonic on a set 4 and if « is a positive number, then

auq, Uy +u, and min (u,, u,) are superharmonic on A.
We can easily prove

LemMmA 2.3. Let {u,} be a sequence in L(X) which converges pointwise to
u e L(X), i.e., u,(x)-u(x) as n—oo for every xe X. Then {du,} converges pointwise
to Au.

LemMA 2.4. Let {X,} be an increasing sequence of subsets of X whose union
is equal to X and let {u,} be an increasing sequence in L(X) which converges point-
wise to u. If u, is superharmonic on X,, then either u=oo or ue SH(N).

§3. Green function of an infinite network

An infinite network N is said to be of parabolic type (of order 2) in [13] if there
exists a nonempty finite subset A of X for which the value of the following extremum
problem vanishes:

3.1 d(A4, o)=inf {D(u); ue Ly(X), u=1 on A}.

This definition does not depend on A. Let Oy be the collection of infinite networks
which are of parabolic type. We say that N is of hyperbolic type if it is not of para-

bolic type. .
We have by [13; Theorem 3.2]

LemmMA 3.1.  An infinite network N is of parabolic type if and only if any one
of the following conditions is fulfilled:

(3.2) 1eDy(N).
(3.3) Dy(N)=D(N),

COROLLARY. Assume that N is of hyperbolic type. If ueDy(N) and D(u)=0,
then u=0.

Let 4 be a nonempty finite subset of X and let {N,} (N,= <X,, ¥,>) be an ex-
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haustion of N such that Ac=X,. Consider the following extremum problem:
(3.4 Find d(4, X—X,)=inf {D(u); ue L(X; 4, X-X,)},

where L(X; A, X—X,)={ueL(X); u=1on 4, u=00n X—X,}. We see by Lemma
1.4 and Dirichlet principle [12; Theorem 2] that there exists a unique optimal solution
u,=u of problem (3.4) and that u, has the following properties:

(3.5) u,=1on A4 and 0<u,<1 on X.
(3.6) d(4, X - X,)=D(u,)=— 2 Au,(x)=(uy, v)
xed

forallve L(X; 4, X—X,).
(3.7 u, is harmonic on X,—A.

From the relation D(u,,;—u,)=D(u,)—D(u,.,), it follows that {u,} is a Cauchy
sequence in Dy(N). There exists u4 € Dy(N) such that |u4—u,|—0 as n—o0. No-
tice that d(4, X—X,)—d(A4, ) as n—oo by [9; Theorems 2.1 and 2.2] and [13;
Lemma 4.5]. Thus we see that u4 has the following properties:

(3.8) ui=1on A and 0<u4<1 on X.
3.9 d(4, 0)=Du4)=— %Au"(x).

(3.10) u4 is harmonic on X —A.
Now we shall prove
THEOREM 3.1. N €Oy if and only if N € Ogg+.

Proor. First we assume that NeOg. Then D(u4)=0, so that u4=1 on X.
Suppose that there exists a non-constant positive superharmonic function v on X and
put t=min {v(x); xe A}. Then we have >0 and u2<v/t on X by Lemma 2.1, so that
1<v/ton X. Thus v attains its minimum value ¢ at a point of 4. This is a contradic-
tion by Lemma 2.2. Thus N e Ogg+. Next we assume that N is of hyperbolic type.
Taking A={a} in the above observation and noting that d(4, 0)>0, we see by (3.8),
(3.9) and (3.10) that u4 is a non-constant positive superharmonic function on X.
Thus N does not belong to Ogy+.

DerINITION 3.1. We say that a function g, L(X) is the Green function of N
with pole at ae X if

(.11 9. € D{(N)=Do(N) n L*(X),
(3.12) dg (x)=—¢g(x) on X.
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We show the uniqueness of the Green function if it exists. Let g, and g, be
Green functions of N with pole at a and put v=g,—g,. Then N is of hyperbolic type
by Theorem 3.1 and v belongs to both HD(N) and Dy(N), so that D(v)=(v, v)=0
by Lemma 1.3. Thus v=0 by the Corollary of Lemma 3.1, hence g,=g,.

If N is of hyperbolic type, then we see that u4/D(u4) satisfies (3.11) and (3.12)
with 4={a} by our construction. Thus g,=u4/D(u4) with A={a}. We have proved

THEOREM 3.2. The Green function g, of N with pole at a exists if and only if N
is of hyperbolic type.

We can easily prove

THEOREM 3.3. (g, v)=0(a) for every ve Dy(N).

COROLLARY. ¢,(b)=g,(a) for all a, be X.

ReMARK 3.1. For ae X, let us put

g™ =u,/D(u,) with wu,=uf and A={a}.

Then we have
(3.13) 4gP(x)=—g,(x) on X,
(3.19) g (x)=0 on X-X,.

A function which satisfies (3.13) and (3.14) is determined uniquely by Lemma 2.1. We
call (™ the Green function of N, with pole at a. By Lemma 2.1, g{” <g{"*1 on X.
If N is of hyperbolic type, then {g{”} converges pointwise to g,.

Now we give a new characterization of the Green function g, by using the concept
of flows from {a} to the ideal boundary co of N. For we L(Y), let us put

1w %)= 3, K (v y)w0)
HOD= 3 ry)w(y)*

We say that we L(Y) is a flow from {a} to oo if I(w; x)=0 for all xe X, x#a.
Denote by F({a}, o) the set of all flows from {a} to co. Consider the following
extremum problem:

(3.15) and d*({a}, oo)=inf {H(w); we F({a}, ), I(w; a)=1}.

If N is of hyperbolic type, then we can prove that problem (3.15) has a unique optimal
solution and d*({a}, co)=d({a}, o)1 (cf. [9; Theorem 5.1]). Let us put w,(y)=
"(y)"1Eg,(y) for yeY. Then I(w,; x)=—4g,(x)=¢,x) and H(w,)=D(g,)=d({a},
) '=d*({a}, ). Thus w, is the optimal solution of problem (3.15). Let P=



38 Maretsugu YAMASAKI
(Cx(P), Cy(P), p) be a path from {a} to {x} (cf. [12]). Then we have
2 T MPIW(Y)=9ux) — gu(a) = g4(x) — d*({a}, ).

yeCy(P)

Thus we have

THEOREM 3.4. Assume that N is of hyperbolic type and let w, be the optimal
solution of problem (3.15) and let P be a path from {a} to {x} (x#a). Then

9da)=d"((a}, ), gx)=_ T rPM)+d*((a), ),

where p is the path index of P.
As an application of this theorem, we show

ExampLE 3.1. Let us take X={x,; n=0, 1, 2,...} and Y={y,; n=1,2,...} and
define K(x, y) by K(x,-, y)=—1, K(x,, y,)=1 for n=1, 2,... and K(x, y)=0 for
any other pair. Let r be a strictly positive function on Y Then N={X, Y, K, r} is
an infinite network. Notice that N € Oy if and only if Z r(y,)=o0 (cf. [9; Propom-
tion 2.1] and [13; Theorem 4.1]). Assume that 2 ;(y,,)<oo and put ¢,= Z‘, (V)
If we F({x,,}, ) and I(w; x,,)=1, then w(y,)=0 for k<m and w(y)=-1 for k>m
+1. Thus d*({x,}, ©)=c,+; and g, (x)=cus+; if 0<k<m and G, (X)) =
- i 1r(y,,)+cm+1=c,c+1 if k>m+1 by Theorem 3.4.

n=m+

§4. Royden decomposition theorem

In this section we always assume that N is of hyperbolic type. First we shall
prove the following discrete analogy of the well-known Royden decomposition theorem:

THEOREM 4.1. Every ueD(N) can be decomposed uniquely in the form: u
=v+h, where ve Dy(N) and he HD(N).

Proor. Denote by D'(N), Dy(N) and HD'(N) the quotient spaces of D(N),
Dy(N) and HD(N) respectively with respect to the equivalence relation D(u—v)=0.
Then Dy(N)=Dy(N) by the Corollary of Lemma 3.1. We see easily that D’(N) and
HD'(N) are Hilbert spaces with respect to the inner product (u, v). Since D{(N)
and HD'(N) are orthogonal by Lemma 1.3, our assertion follows from the orthogonal
decomposition theorem.

Denote by Py(N) the subset of Dy(N) which consists of superharmonic functions
on X, ie., Py(N)=Dy(N)nSH(N). In order to characterize Py(N) like Beurling
and Deny [1], we begin with
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THEOREM 4.2. Let T be a normal contraction of R and let ue Dy(N). Then
Tu € Dy(N) and D(Tu) < D(u).

Proor. In view of Lemma 1.4, we have only to prove that Tu e Dy(N). There
exists a sequence {f,} in Lo(X) such that |Ju—f,| -0 as n—>oco. Then Tf, e Ly(X) and
ITEI< .| by Lemma 1.4. Thus {|Tf,||} is bounded. We can find a weakly con-
vergent subsequence of {Tf,} in Do(N). Denote it again by {Tf,} and let u’e Dy(N)
be the limit. For any x€ X, g, € Dy(N) and

((Tfna gx)) = Tfn(x) + gx(xo) Tfn(xo) H]
((u’: gx)) = UI(X) + gx(xo)” '(xo)

by Theorem 3.3, so that {Tf,} converges pointwise to u’. It follows from Lemma 1.1
that

| /(%) — Tu(x)| <1 /o) — ()| < M{xP| fu—ul »

so that {Tf,} converges pointwise to Tu. Therefore Tu=u'eDy(N) and ((Tf, v))
—((Tu, v)) as n—oo for every v e Dy(N). :

Taking Ts=max (s, 0) for s R in the above proof, we can easily obtain

LeMMA 4.1. For every ueD§(N), there exists a sequence {u,} in L{(X) such
that (u,, v)~>(u, v) as n—>oo for all ve Dy(N).

We have
LemMA 4.2. Py(N)={ueDyN); D(u+v)>D(u) for all ve DF(N)}.

ProoF. Let ueDy(N). Assume that D(u+v)>D(u) for all veD§(N). For
each x € X and >0, we have e, € D§(N) and

D(u) < D(u + te,)=D(u) + 2t(u, &)+ 12D(e,),

so that 0<(u, ex)% —Au(x). Thus uePy(N). Next we assﬁme that u e Py(N) and
let ve D§(N). We can find a sequence {v,} in L§(X) such that (v,, u)—(v, u) as n—o0
by Lemma 4.1. It follows from Lemma 1.2 that

(Un’ ll) =- ZX‘U"(X) [Au(x)] = 05
and hence (v, ©)=>0. Thus D(u +v)>D(u).
TaeoreM 4.3. Py(N)=SH*(N).

Proor. Let uePy(N). Then |u|eD§(N) and D(Ju])<D(u) by Theorem 4.2.
Since |u| —u € D§(N), we have by Lemma 4.2 D(u) < D(u + (lu| —u)) =D(|u[), and hence
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D(lu])=D(u). By using Lemma 4.2 again, we have
D(u)< D(u+(ju] —u)/2) < D(u+ |u])/4+ D(u — |u})/4
= [D(u)+D(lul)]2=D(),

so that D(u—|u[)=0. Thus u=|u| by the Corollary of Lemma 3.1, and hence ue
L*(X).

THEOREM 4.4. HD(N)={u;—u,; u,, u, e HD(N)}.

ProoF. LetueHD(N). Then —u*=min(—u, 0) and —u~=min (u, 0) belong
to both I(N) and SH(N). By the Royden decomposition theorem, there exist
v;€ Dy(N) and h;e HD(N) such that —u*=v,+h; and —u"=v,+h,. Then v;e
Py(N), so that v,e L*(X) by Theorem 4.3. Therefore —h,e HD*(N). From the
relation u=u*—u~"=(v,—v,)+(h, — I;) and the uniqueness of the Royden decomposi-
tion, we conclude that v, =v, and u=h,—h,.

§5. Green potentials

In this section we shall study the classes SH*(N) and Po(N). Thus we always
assume that N is of hyperbolic type. Denote by g, the Green function of N with pole
at ae X. The results in this section are discrete analogies of the well-known results
in potential theory (cf. [3] or [11]).

We take L*(X) for the set of all non-negative Radon measures in potential theory
and define the Green potential Gu of ue L*(X) and the mutual energy G(u, v) of u, ve
LX) by

Gu(x)= nggb(x)u(b) ,
G(v, W= x‘/EZx[Gu(x)JV(x) .

Clearly G(v, w)=G(u, v) for all u, ve L*(X). We call G(u, p) the energy of u. Let us
consider subsets of L*(X) which are related to Green potentials:

M(G)={peL*(X); Gue L(X)},
E(G)={pe L*(X); G(u, p) <o} .

Then L}(X) < E(G) = M(G).
We can easily prove

LemMA 5.1. Let {N,} (N,= <X, Y,>) be an exhaustion of N and let pe M(G)
and p,=pex . Then G(u,, p,)->G, ) as n-»w, Gu,<Gu,,, on X and {Gu,}
converges pointwise to Gp.
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COROLLARY. {Gpu; ue M(G)} =cSH*(N).
LEMMA 5.2. AGu= —yu for every ue M(G).

Proor. Let {N,} (N,=<X,, Y,>) be an exhaustion of N and let ue M(G) and
,=pey,. Then

AGu,.(x)=A[b§ gu(x)u(b)] =b§ [4g,()]pu(b)= — p,(x) .
Our assertion follows from Lemmas 2.3 and 5.1.

Now we shall prove a discrete analogy of the Riesz decomposition theorem:

THEOREM 5.1. Every ueSH*(N) can be decomposed uniquely in the form:
u=Gu+h, where pe M(G) and he H*(N). In this decomposition, p=—Au and h
is the greatest harmonic minorant of u, i.e., ' <h on X for all i’ e H(N) such that
h<uonX.

Proor. Let {N,} (N,=<X,, Y,>) be an exhaustion of N and let u e SH*(N).
Denote by g the Green function of N, with pole at a (cf. Remark 3.1). Let us
put u=—Au,

u()= 2 gi"(x)u(b) and h,=u—u,
€Xn .

Then Au,= —p on X, and u,=0 on X — X, so that h, is harmonic on X, and /,>0 on
X—X,. Thus h,>0 on X by Lemma 2.1. Since g{"<g{"*D on X, we have h,
>h,,,; on X. Let h(x) be the limit of {h,(x)} for each xe X. Then he H*(N) by
Lemma 2.3. By Remark 3.1, we see that {u,} converges pointwise to Gu. Thus we
have u=Gu+h. The uniqueness of the decomposition follows from Lemma 5.2.
Finally we show that h is the greatest harmonic minorant of u. Assume that h’ € H(N)
and h'<u on X. Since h,—h’ is harmonic on X, and h,—h'=u—h">0 on X -X,,
we see by Lemma 2.1 that h,>h' on X, and hence 2>h’ on X.

In order to characterize Py(N) as a set of Green potentials, we prepare some
lemmas. We can easily prove

Lemma 5.3. If peL}(X), then GueDy(N) and (Gu, v)= b}_“, vo(b)u(b) for all
eX
veDy(N).

COROLLARY. G(u, v)=(Gu, Gv) and G(u, 1)=D(Gp) for every p, ve L¥(X).
LemMa 5.4. If peE(G), then GueDy(N) and D(Gu)=G(u, p).

Proor. Let {N,} (N,=<X,, Y,>) be an exhaustion of N and put u,=pey, and
u,=Gp,. Then u,eDy(N) by Lemma 5.3 and we have for any p>0
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D(un) = Gty 1) < Gty 4 p) < D(thy 4 ) < G(pt, ) <0
by the Corollary of Lemma 5.3, so that
N[t — 14 1 1| = D(ttyy =t 1 p) + [(X0) =ty p(X0) ]
< D(ty 4 p) = D(uty) + [1(x0) — ty 4 o(X0) 1>

Since {u,(x,)} converges to Gu(x,) by Lemma 5.1, we see that {u,} is a Cauchy se-
quence in Dy(N). There exists v € Dy(N) such that |Ju,—v|—0 as n—co. Since {u,}
converges pointwise to v, we conclude that Gu=v e Dy(N) by Lemma 5.1. It follows
that D(u,)— D(Gp) as n— o0, so that D(Gu)= G(u, ) by Lemma 5.1.

- We shall prove
THEOREM 5.2. Py(N)={Gu; ne E(G)}.

Proor. On account of Lemmas 5.2 and 5.4, it suffices to show that Py(N)
c{Gu; neE(G)}. Let uePy(N). Then ueSH*(N) by Theorem 4.3. By the
Riesz decomposition theorem, there exist pe M(G) and he H*(N) such that u=Gu
+h. Consider an exhaustion {N,} (N,=<X,, ¥,>) of N and put u,=pey and
u,=Gu,. Then

D(ut) = G(thyy 1) < G, p1,) < gxu(x)un(x) =(u, u,)
< [D(u)]*/2[D(u,)]'/?

by Lemma 5.3, so that G(u,, u,)<Du)<o. We see by Lemma 5.1 that G(u, u)<
D(u), and hence pe€ E(G). It follows from the Royden decomposition theorem that
u=Gu.

CoROLLARY. D(u)=— Y u(x)[du(x)] for every u e Py(N).

§6. The classes HP(N) and HBD(N)
Let us put

HP(N)={uecH(N); u=u, —u, with u,, u, e H*(N)}.
Then we have
THEOREM 6.1. HB(N)<HP(N).

ProoF. Let ue HB(N) and let ¢ be a constant such that |u|<c¢ on X. Then
u;=(c+u)/2 and u,=(c—u)/2 belong to H*(N) and u=u, —u,. Thus ue HP(N).

COROLLARY. Opp<Oyp.
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THEOREM 6.2. For every ueHID(N), there exists a sequence {h,} in HBD(N)
such that |u—h,||—0 as n—co.

Proor. In case N is of parabolic type, HID(N) consists only of constant func-
tions, so that our assertion is clear. We consider the case where N is of hyperbolic
type. Let ue HD*(N). Then u,=min (u, n)e D(N)nSH™*(N). By the Royden
decomposition theorem, we can find v, € Dy(N) and h, € HD(N) such that u,=uv,+ h,.
Noting that v, € P,(N), we see by the Riesz decomposition theorem and Theorem 5.2
that v, and h, belong to L*(X) and h, is the greatest harmonic minorant of u,, so that
0<h,<h,,{<u,,,<uon X and h,e HBD(N). By Lemma 1.3 we have D(u—u,)=
D(v,)+D(u—h,). Since D(u—u,)—0 as n—oo by [13; Lemma 3.1], we have D(v,)—0
and D(u—h,)—0 as n—oo. By the relations

D(Un_ Un+p)g2[D(vn)+D(vn+p)] )
0 S vn+p(x0)g Un(xo) S “(xo) < 0,

we see that {v,} is a Cauchy sequence in Dy(N). There exists veDy(N) such that
|v,—v]| =0 as n—»>oc0. We have D(v)=0, and hence v=0 by the Corollary of Lemma
3.1. Thus {h,(x,)} converges to u(x,) and

lle = 1,12 = D(u = hy) + [(x0) — hu(x0)]> — O

as n—oo. Now we consider the case where u e HD(N) is of any sign. There exist
u', u” e HD*(N) such that u=u'—u" by Theorem 4.4. By the above observation,
we can find sequences {h,} and {h,} in HBD(N) such that ||u’— h,||—0 and |u”—h%|
—0 as n—>oo. Writing h,=h;,—h,, we see that h,e HBD(N) and |u—h,|—0 as
n— 0.

COROLLARY. Ogp=O0ggp.

From the obvious relations H*(N)cSH*(N), HP(N)cH(N) and HBD(N)c
HB(N), it follows that Ogy+ <Opp, Oy =Opp and Oxg<=Oyxpp,. Thus we have the
following classification of infinite networks by the corollaries of Theorems 6.1 and 6.2
and Theorem 3.1:

THEOREM 6.3. OG=OSH+ COHPCOHBCOHBD-—_—OHD.
U
Og

The inclusion relations in this theorem are strict, i.e., there exist infinite networks
which are contained in one of the class but not in the preceding one (cf. [8]).
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