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ABSTRACT. In this paper we obtain new refinements and reverse inequalities
for the relative operator entropy S (A|B) of two positive invertible operators
when B > A. Applications for the operator entropy 7 (C) in the case of positive
contractions C' are also given.

1. INTRODUCTION

Kamei and Fujii [6], [7] defined the relative operator entropy S (A|B), for positive
invertible operators A and B, by

(11) S(A|B) == A% (n (A73BAE)) A%,

which is a relative version of the operator entropy considered by Nakamura-Umegaki
[15].

For the entropy function n(t) = —tInt, the operator entropy has the following
expression:

n(A)=—-AlnA=5(A|llg) >0

for positive contraction A. This shows that the relative operator entropy (1.1) is a
relative version of the operator entropy

In [18], A. Uhlmann has shown that the relative operator entropy S (A|B) can

be represented as the strong limit

Af;B— A

(1.2) S(A|B) = s-lim 0B =4
t—0 t

where
At B = AV (ATY2BATY2) AV2 )y e [0, 1]
1

is the weighted geometric mean of positive invertible operators A and B. For v = 3
we denote AfB.
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This definition of the weighted geometric mean can be extended for any real
number v with v # 0.

Following [11, p. 149-p. 155], we recall some important properties of relative
operator entropy for A and B positive invertible operators:
(i) We have the equalities:

1.3)  S(A|B)=—AY? (In AI/QB_IAI/Q) AY? = By (B_I/ZAB_I/Q) BY?,
ii) We have the inequalities
1.4) S(A|B) < A(In||B|| —InA) and S (A|B) < B — A;
iii) For any C, D positive invertible operators we have that
S(A+ B|C+ D) > S(A|C)+ S(B|D);
(iv) If B < C then

(
(
(
(

S(A|B) < S(A|C);
(v) If B, | B then

S(A|By) | S (A|B);
(vi) For a > 0 we have

S (aAlaB) = aS (A|B);
(vii) For every operator T we have
T*S(A|B)T < S(T*AT|T*BT) .
The relative operator entropy is jointly concave, namely, for any positive invert-
ible operators A, B, C, D we have
S({tA+(1—t)B[tC+(1—t)D) >tS(A|C)+ (1 —1t)S(B|D)

for any ¢ € [0,1].

For other results on the relative operator entropy see [3], [8], [12], [13], [14] and
[16].

For t > 0 and the positive invertible operators A, B we define the Tsallis relative
operator entropy (see also [10]) by

Af,B — A
We observe that, for the function
1 t—1
Fla) =2 -y = e s,
we have
AV (AVIBAT) AV = AT, (ATB) A= T, (AIB) (A7'5.B71) A

— T,(AB)(44,B) " A

for any positive invertible operators A, B and ¢t > 0.

The following result providing upper and lower bounds for relative operator
entropy in terms of 7} (+|-) has been obtained in [6] for 0 < ¢ < 1. However, it hods
for any ¢t > 0.
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Theorem 1. Let A, B be two positive invertible operators, then for any t > 0 we
have

(15) Ti (AlB) (A%B)™ A < S (A|B) < T, (A|B).

In particular, we have
(1.6) A—AB 'A< S(AIB) < B— A6
and
(1.7) 1a (1H - (B*Af) < S(AIB) < 2 (BA'B - A).

2 - — 2

The case t = 1 is of interest as well, since in this case we get from (1.5) that

(1.8) 2(1y — A(AfB)" ') A< S(A|B) <2(A4B - A) < B - A.

This inequality provides a refinement and a reverse for (1.4).
The following upper and lower bounds for the operator entropy also hold for any
positive invertible operator C' and any ¢ > 0:

(19) L0 (1 - 0) <0(C) < 1O (14— O
In particular, we have

(1.10) C(ly—C)<n(C)<1y—C,

(1.11) %CQH—Cﬂgn«ngéafﬁ—@
and

(1.12) 20 (15 — C'?) < (C) <2C"2 (14 — C*?).

Motivated by the above results, in this paper we obtain new refinements and
reverse inequalities for the relative operator entropy S (A|B) of two positive in-
vertible operators when B > A. Applications for the operator entropy 7 (C) in the
case of positive contractions C' are also given.

2. SOME REFINEMENTS
We start with the following sequence of scalar inequalities:

Lemma 1. For any y > 1 we have the inequalities

1 2(y—1 1
(2.1) 0 < ¥t 2=y vt
Yy y+1 VY
R R
y=1_y <V <y 1
y+1 4y 2y

Proof. We prove only the third, fourth and fifth inequalities, the other ones are
obvious due to the fact that y > 1.
We use the first Hermite-Hadamard inequality for convex functions, namely [5]

(22) () < [ rom
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where f : [a,b] — R is a convex function.
If we take in (2.2) a =1 and b = y, then we get the third inequality in (2.1).
It is known that, if G (a,b) := Vab is the geometric mean of a, b > 0 and

lnll::ilna lf b 7& a,
L(a,b) =
aifb=a

is the logarithmic mean of a, b, then
(2.3) G (a,b) < L(a,b).

Now, if we take in (2.2) f (¢) = %, a = 1 and b = y, then we get the fourth inequality
in (2.1).
By arithmetic mean-geometric mean inequality,

ETIUE Tl S (L)y_ﬂzi
y+1 4y = y+1 4y VY

for y > 0, which proves the fifth inequality in (2.1). &

The following result provides an improvement of (1.5) in the case that B > A.

Theorem 2. Let A, B be two positive invertible operators and B > A, then for
any t > 0 we have

(2.4) 0<T,(AB)(At,B)"' A
< 2T, (A|B) (A$,B+ A)" A
< S(A|B) < T, (AB) (Aty2B) " A
<T,(AB)(Af;,B+ A) " A+ %Tgt (A|B) (At,B)"" A
< Ty (A|B) (A, B)"" A< T, (A|B).

Proof. Let z > 1 and t > 0, then by taking y = z' in (2.1) we get

=1 2(z'—1) zt—1
2.5 0< < <Inr<-——+
(2:5) =Tt S ttrl) S

-1 -1 2 -1  2t-1

< < <
“t(at+1) T S o S
Using the functional calculus for the operator X > 1p, then by (2.5) we get

Xt—1 X' -1 -

(2.6) 0<— X’fgz%(){tw)lgmx
Xt—1 (Xt—1) 11X
< X< (X1 - X
: ST W) Ty
X*-1 o, X1

- 2t t
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If B > A, then by multiplying both sides by A~Y/? we get A~V/2BA~Y2 > 1y
and if we write the inequality for X = A"Y/2BA~1/2 we get

(2.7 < :

A2 BATR)
< 2<( t ) ) ((A_1/2BA_1/2)t+1>
<In(A7Y/2BA™'?)
< (A_l/QBA_l/Q)t —1 (A’l/ZBA’l/Q)_t/Z
- t

((A—1/2BA—1/2)'5 _ 1)

(A—1/2BA—1/2)—t

-1

-1

(DA (g
_ o 2t
+%(A 1/2314;1/2) -1 (A*WBA*W)%
_ 12
< (A 2BA 1/2) -1 (A71/23A71/2)*t
- 2t
_(ABATR) 1
J— t .

Now, by multiplying both sides of (2.7) with A2, we get

(A—1/2BA—1/2)t 1 (A‘l/QBA‘l/Z)ft e
t

((A—1/2BA—1/2)75 _ 1)

t
< A2 (ln (A*1/2BA*1/2)) AL/2

(A71/2BA71/2)t 1

(2.8)  0< A2

S 2A1/2

((A—l/zBA—uQ)t I 1>1 AL/2

< AL (A—I/QBA—l/Q)_t/Q AL/2
- t
A-12BA-12)" 1 _
< AV? << t ) ) <(A—1/2BA—1/2)t X 1) 1141/2
+ 1A1/2 (A71/2BA71/2)21€ —1 (A_1/2BA_1/2)_t Al/2
2 2t
_ /o2
< AL/2 (A '?BA 1/2) - 1 (A—1/2BA—1/2)—t Al/2
- 2t

(A—1/2BA—1/2)t _
t

< A1/2 1A1/2.
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Observe that

(A—1/2BA—1/2>75 1
t

=T, (A|B) (A™'4,B™") A =T, (A|B) (A%;B) "'

A1/2

(A—l/QBA—l/Q)_t AL/2

((A 2B A~ 1/2)

) ( 1/QBA—1/2)t+1>1A1/2

A1/2
t
( A 12 A~ 1/2 )
_ AI/QA 1/2
t
( <A1/2 A-12BA- 1/2) A1/2—|-A) A_1/2>—1 AL/2
N e s T
— A A /2A 1/2
t

A2 <A1/2 (A—I/QBA—l/Q)t A2y A>_1 AL/2 A1/
=T,(A|B) (Af,B+ A) " A,

_ 1/t
AL/2 (A 2BA 1/2) —1 (A—1/QBA—1/2)—75/2 AL/?
t
_ 1/t
— A1/2 (A 1/2BA 1/2) — ]'AI/QA—I/Q <A1/2B_1A1/2)t/2 A—1/2A1/2A1/2
t
— T, (A|B) (A'4sB™") A =T, (A|B) (At,oB) "' A
and
_ _1/9\2t
AL/2 (A 2BA 1/2) —1 (Afl/QBA’l/Q)_t Al/2
2t
_ _1/9\ 2t
— A1/2 (A 1/2BA 1/2) 1A1/2A71/2 (A1/2B71A1/2)tA71/2A1/2A1/2
2t

— Ty (A|B) (A1,8)"
By using the inequalities (2.8) we get the desired result (2.4). 1
If we take in (2.4) t = 3, then we get the inequalities
(2.9) 0<2(ly—A(AEB) ) A
< 4(AtB— A) (AtB+ A)~!

< S(A|B) < 2(AfB - Aﬂﬂwﬁ)l

A
< 2(AEB — A) (AtB + A)~ (—Aﬂﬂm*
< (B— A)(A$B)™" A < 2(AtB — A)
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for any positive invertible operators with B > A. This provides a refinement of
(1.8).
If we take in (2.4) t = 1, then we get

(2.10) 0<(B-—A)B'A<2(B-A)(B+A) A
< S(A|B) < (B—-A)(AzB) " A
(B—A)(B+A) A+ i (B— AB™'A)
1
2

IN

(B—AB™'A) < B— A4,

for any positive invertible operators with B > A. This provides a refinement of
(1.6).
If we take in (2.4) ¢ = 2, then we get

1 “1p —1 42
(211) 0< 2(BA B—A)(B'A)
< (BAT'B—A)(BA'B+A)' A

< S(A|B) < 1 (BA7'B—A)B'A
< % (BA™'B—A) (BA'B+A) " A+ % ((BA) B = 4) (B74)’
<1 ((BA)Y B-4) (B74) < (BA B A),

for any positive invertible operators with B > A. This provides a refinement of

(1.7).

Corollary 1. Let C' be a positive invertible operator and C' < 1y, then for any
t > 0 we have

(2.12) 0< %C (1g —C")

<20 (1n =€) (1 + 0 4 1 (1 - O¥)
1

S g (1H - C2t) Cl—t S %Cl—t (]-H . Ct) )
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If we take in (2.12) t = £, then we get
(2.13) 0<20 (1 — CV?)
<4C (1 = CV?) (g +CY2) 7
<n(C)<2(1y —CY?)
g:ﬂj(lH-—Cﬂm)(1H—%Cﬂﬂ)_1+—%(1H——CQCﬂ”
< (ly —C)CY* <20 (1y — CV?)

for any C' be a positive invertible operator with C' < 1g, which is better than
(1.12).
If we take in (2.12) ¢ = 1, then we get

(2.14) 0<C(lg—C) <201y —C) (g +C)!
<n(C) < (ly—C)C*?

gcuH—muH+m*+iuH—@)

<-(lg—-C* <1y —-C,

DO | —

for any C' be a positive invertible operator with C' < 1g, which is better than
(1.10).
Finally, if we take in (2.12) ¢ = 2, then we get

(2.15) ogéc(hr—cﬂ
<Cp-C (g+c®)™
<(C) < 5 (lu - )

<30 (1 =) (1n +C) 4§ (1 - 0
<1 (ly—CY O < S0 1y - 7).

for any C' be a positive invertible operator with C' < 1g, which is better than
(1.11).

3. SOME REVERSES
We have:

Lemma 2. For any y > 1 we have the inequalities

2_q 1(y —1)° 1
(3.1) o< ¥ _lny<_(y ) (y+1)

2y 8 y?
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and

20 -1 _1y-1)"(+1

y+1 —38 & '
Proof. We use the following reverse of the second Hermite-Hadamard inequality
obtained in [2]:

(3.3) osf(a)Q _a/f é fL) = fi (@) (b—a).

(3.2) 0<lny-—

If we take in this inequality f () = 7, then we get

a+b Inb—Ina _1(b—a)*(b+a)
3.4 0< — < —
(3:4) ~ 2ab b—a ~ 8 a?h?

for any a, b > 0.

If in this inequality we take a =1 and b =y > 1, then we get the desired result
(3.1).

Further, we use the following reverse of the first Hermite-Hadamard inequality
obtained in [1]:

(3.5) 0<—/f dt—f(a;b)_é(f() fi(a)) (b —a).

If we take in this inequality f () = 7, then we get

Inb—Ina 2 <1(b—a)2(b+a)

. < — —
(3.6) 0< b—a a+b 8 a2b?

for any a, b > 0.
If in this inequality we take a = 1 and b =y > 1, then we get the desired result
(3.2). n

We also have:

Theorem 3. Let A, B be two positive invertible operators and B > A, then for
any t > 0 we have

(3.7) 0< TQt (A|B) (AﬁtB)il A—S(AlB)
g T, (A|B) (A7 = (Af,B) ') A(A™" = (A4, B) ) (LB + A)
and

(38) 0< S(A|B)—2ﬂ(A|B)(Ajth+A) A
< LT AB)y (A7 = (A8BYT) A (AT (ARB)Y) (ABB + A).

OO

Proof. From inequality (3.1) for y = ' with x > 1 and ¢ > 0, we have
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that is equivalent to

for any x > 1 and ¢t > 0.
By using the functional calculus, we have

(A—I/ZBA—1/2)2t _1
2t

_ _ t
é((A 1/2B/§f 1/2)f _ 1) (1_ (A_l/QBA_l/z)t>2

(3.9) 0< (AV2BATY2) ™ —In (A7/2BATY?)

IN

(s 1)

for any A, B positive invertible operators with B > A and for any ¢ > 0.
If we multiply both sides with A'/2, then we get

(A_1/QBA—1/2)2t 1
2t

(A71/2BA71/2>—t AL/2

((A—l/QBA—l/Q)t ~1

R T

((Afl/ZBAfl/Q)t 4 1) nel
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Observe that

_ _ t
1 ((A 12 A1) - 1) 2 g1

8 t
<A1/2 (A—l _ AL (Al/ZB—1A1/2)t A‘1/2> A1/2>2
(Afl/z <A1/2 (Afl/zBAfl/z)tAUerA) A71/2) AL/2

_ _ t
L <<A apA12) 1) o

8 t
A—1/2 A1/2 (A—l AL (A1/2B—1A1/2)tA—1/2> AL/2
AL/2 (Afl _ A2 (A1/2BflA1/2)t A71/2) AL/2

A-1/2 <A1/2 (A—l/zBA—1/2)t A2 4 A) A-1/2 7172

_ _ t
_ 1A1/2 <(A '?BA 1/2> — 1) AL/2
8

t
< A2 A1/2B 1A1/2) A—1/2>A
( A-1/2 Al/QB 1A1/2) A*1/2>
<A1/2 A2 A~ 1/2) A1/2—|—A>

= th (AIB) (A7" = (At B) ") A (A™! = (A5:B) ) (AL B + A)

and by (3.10) we get the desired result (3.7).
The inequality (3.8) follows in a similar way and we omit the details. B

If we take in (3.7) and (3.8) ¢ = 1, then we get

(3.11) < (B—A)(AfB) " A— S (A|B)
}1 (AfB — A) (A™" — (A4B) ") A (A7 — (A¢B) ") (A2B + A)
and

(312)  0<S(AB)—4(A4B—A)(AtB+A)" A
< }1 (AfB — A) (A7 — (AtB) ™) A (A — (A4B) ") (A4B + A)

for any positive invertible operators with B > A.
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If we take in (3.7) and (3.8) t = 1, then we get
(3.13) 0< % (B— AB'A) — 5(AB)
< % (B—A) (A" =B )AA =B ) (B+A)
and
(3.14) 0<S(AB)—2(B—A)+ (A,B+A)" A

< % (B—A) (A" =B YAA =B ") (B+A4)

for any positive invertible operators with B > A.
Similar inequalities may be stated if we take ¢ = 2 in Theorem 3, however the
details are omitted.

Corollary 2. Let C' be a positive invertible operator and C' < 1y, then for any
t > 0 we have

(3.15) 0< % (lg—Cc*)C't—n(C) < éc”t (1-c)*(1+¢Y
and

(316) 0<n(C)~2C (ly— ") (1 +C')

1

1
<0 (- e (1+¢Y).
If we take in this corollary t = %, then we get

(3.17) 0<(lg—C)CY2—p(C) < ;1 (1 _ 01/2)3 (1 i 01/2)

and

(3.18)  0<n(C)—4C (15 —CV?) (1g +CY?) " < = (1=CV?)’ (1+ C?)

1 =

while, if we take t = 1, then we get

(3.19) 0< % (1g —C?*) —n(C) < é()‘l (1-CP(1+0)
and
(3200  0<y(C)—2C(1y—C)(n+C) ' < %01 (1—CP(1+0).
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