TOPOLOGIES ON EQUICONTINUOUS FAMILIES OF MAPPINGS

By

Takashi KARUBE

Introduction

It is well-known that equicontinuous families of mappings are important in Analysis through Ascoli's theorem. On the other hand, the topologies on them are fundamental to consider the problem when a locally equicontinuous group of transformations of a space becomes a locally compact transformation group. The problem will be treated in T. Karube [5] to which the present paper is a preliminary. Because a set-entourage uniformity on the family of all continuous mappings of a uniform space into itself must be the uniformity of compact-convergence under natural conditions (T. Karube [4]), we will set importace on the compact-open topology.

Notations

- X: a topological space.
- Y: a uniform space.
- \mathfrak{S} : a family of subsets of X.
- $\mathfrak{S}_{\mathfrak{c}}$: the family of all compact subsets of X.
- $\mathfrak{F}(X; Y)$: the family of all mappings of X into Y.

 \mathfrak{F} : a subfamily of $\mathfrak{F}(X; Y)$.

 $\mathfrak{C}(X; Y)$: the family of all continuous mappings of X into Y.

 \mathbb{C} : a subfamily of $\mathbb{C}(X; Y)$.

- $\mathfrak{C}_{\mathfrak{S}}(X; Y)$: the family of all mappings of X into Y whose restriction to each set of \mathfrak{S} is continuous.
- τ : a topology on $\mathfrak{F}(X; Y)$.
- τ_p : the point-open topology on $\mathfrak{F}(X; Y)$.
- τ_c : the compact-open topology on $\mathfrak{F}(X; Y)$.
- $\tau_{\mathfrak{S}}^*$: the uniform topology induced by the uniformity of \mathfrak{S} -convergence.
- τ_p^* : the uniform topology induced by the uniformity of pointwise-convergence.

Takashi KARUBE

 τ_c^* : the uniform topology induced by the uniformity of compact-convergence. T(A, B): the family of all $u \in \mathfrak{F}(X; Y)$ such that $u(A) \subset B$, where A and B is a given subset of X and Y respectively.

 $W(A, \mathfrak{U})$: the set of all pairs (u, v) such that $u, v \in \mathfrak{F}(X; Y)$ and $(u(x), v(x)) \in \mathfrak{U}$ for any $x \in A$, where A is a given subset of X and \mathfrak{U} is a given entourage of Y.

These notations will keep the meanings throughout the paper.

§1. Topological properties of mapping spaces.

Definition. (\mathfrak{C} , τ) is *admissible* if the mapping $(u, x) \to u(x)$ of $\mathfrak{C} \times X$ into Y is continuous with respect to the relative topology of τ to \mathfrak{C} and the topologies of X and Y.

Lemma 1.1. If X is locally compact, then (\mathfrak{C}, τ_c) is admissible.

Proof. Since Y is a uniform space it satisfies T_3 -axiom. Hence (\mathfrak{C}, τ_c) is admissible by Lemma 2.3 of S. B. Myers [7].

Lemma 1.2. (R. Arens [1]) If (\mathfrak{C}, τ) is admissible, then τ is finer than τ_c on \mathfrak{C} .

Lemma 1.3. (N. Bourbaki [3]) $\mathfrak{C}_{\mathfrak{S}}(X; Y)$ is closed in $\mathfrak{F}(X; Y)$ under $\tau_{\mathfrak{S}}^*$.

Definition. A topological space X is a k'-space (resp. k-space) if a subset of X intersecting each compact set (resp. each closed compact set) in a closed set is always closed.

Proposition 1.4. Consider the following conditions :

(0) $\mathfrak{C}\mathfrak{S}(X;Y) = \mathfrak{C}(X;Y),$

(1) every point of X is interior to at least one set of \mathfrak{S} ,

(2) in X, a subset intersecting each set of \mathfrak{S} in a closed set is always closed,

(3) X is a k'-space,

(4) X is a k-space,

(5) X is a Hausdorff space which is locally compact or first countable,

(6) X is a locally compact Hausdorff space,

(7) X is a locally compact space.

Then, $(6) \Rightarrow (5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (0)$, $(6) \Rightarrow (7)$, and $(1) \Rightarrow (2)$. If $\mathfrak{S} = \mathfrak{S}_c$, then $(3) \Rightarrow (2)$, and $(7) \Leftrightarrow (1)$. If X is Hausdorff, then $(3) \Rightarrow (4)$, and $(7) \Rightarrow (6)$.

Proof. They are easy to see or trivial.

Corollary 1.5. Under each condition of (1), (2),..., (7), where $\mathfrak{S} = \mathfrak{S}_c$, $\mathfrak{C}(X; Y)$ is closed in $\mathfrak{F}(X; Y)$ under any topology finer than τ_c^* .

Lemma 1.6. (R. Arens [1]) $\tau_c^* = \tau_c$ on \mathbb{C} . And for each $u \in \mathbb{C}$,

 $\{W(K, \mathfrak{U})(u) \cap \mathfrak{C} \mid K \text{ is a compact subset of } X \text{ and } \mathfrak{U} \text{ is an entourage of } Y\}$

forms a fundamental system of neighborhoods of u in \mathfrak{C} under τ_c .

Lemma 1.7. $\tau_p^* = \tau_p$ on $\mathfrak{F}(X; Y)$.

Proof. It is easy to see.

§ 2. Fundamental properties of equicontinuous families.

Definition. \mathbb{C} is *equicontinuous* if, for each entourage $\mathbb{1}$ of Y and each point x of X, there exists a neighborhood U of x in X such that $(u(x), u(x')) \in \mathbb{1}$ for any $x' \in U$ and any $u \in \mathbb{C}$.

Lemma 2.1. If \mathfrak{C} is equicontinuous. then (\mathfrak{C}, τ) is admissible for any topology τ finer than τ_p .

Proof. Since (\mathfrak{C}, τ_p^*) is admissible (cf. N. Bourbaki [3], Corollary 4 in p. 286), (\mathfrak{C}, τ_p) is admissible also.

Lemma 2.2. If \mathbb{C} is equicontinuous, then $\tau_c = \tau_p$ on \mathbb{C} .

This is well-known. It follows from Lemmas 2.1 and 1.2 also.

Lemma 2.3. Let \mathbb{C} be an equicontinuous subfamily of $\mathfrak{F}(X; Y)$ and $\overline{\mathbb{C}}$ be the closure of \mathbb{C} under $\tau_{\mathfrak{C}}^*$ in $\mathfrak{F}(X; Y)$. Then $\overline{\mathbb{C}}$ is contained in $\mathfrak{Ce}(X; Y)$. And if for any fixed $x \in X$ the mapping $u \to u(x)$ of $\mathfrak{Ce}(X; Y)$ into Y is continuous at any $u \in \overline{\mathbb{C}}$ with respect to $\tau_{\mathfrak{C}}^*$, then $\overline{\mathbb{C}}$ is equicontinuous.

Proof. The first assertion follows from Lemma 1.3. Let x_0 be any fixed point of X, \mathfrak{U} be any entourage of Y, and \mathfrak{U}' be an entourage of Y such that $\overline{\mathfrak{U}'^2} \subset \mathfrak{U}$. Since \mathfrak{C} is equicontinuous, there exists a neighborhood U of x_0 such that

$$(u(x_0), u(x)) \in \mathfrak{U}'$$
 for any $x \in U$ and any $u \in \mathfrak{C}$. (1)

By our assumption, for any $u' \in \overline{\mathbb{C}}$ there exists a $\tau^*_{\mathfrak{S}}$ -neighborhood W of u' in $\mathfrak{C}_{\mathfrak{S}}(X; Y)$ such that

$$(u'(x_0), u(x_0)) \in \mathfrak{U}'$$
 for any $u \in W$. (2)

For any directed set $\{u_{\alpha}\} \subset \mathbb{C}$ converging to u', there is a α_0 such that $u_{\alpha} \in W$ for any $\alpha \geq \alpha_0$. Then from (2) we have

$$(u'(x_0), u_a(x_0)) \in \mathfrak{U}' \text{ for any } \alpha \geq \alpha_0.$$
 (3)

From (1) and (3), we have

 $(u'(x_0), u_{lpha}(x)) \in \mathfrak{U}'^2$ for any $lpha \geqq lpha_0$ and any $x \in U$.

Hence $(u'(x_0), u'(x)) \in \overline{\mathfrak{U}'^2} \subset \mathfrak{U}$ for any $x \in U$.

And so $(u'(x_0), u'(x)) \in \mathfrak{l}$ for any $x \in U$ and any $u' \in \overline{\mathbb{G}}$.

Lemma 2.4. Let \mathfrak{S} be a family of subsets of X that covers X, \mathfrak{S} an equicontinuous subfamily of $\mathfrak{F}(X; Y)$, and $\overline{\mathfrak{S}}$ the closure of \mathfrak{S} under $\tau_{\mathfrak{S}}^*$ in $\mathfrak{F}(X; Y)$. Then $\overline{\mathfrak{S}}$ is equicontinuous.

Proof. Since $(\mathfrak{C}_{\mathfrak{S}}(X; Y), \tau_{\mathfrak{S}}^*)$ is jointly continuous on each member of \mathfrak{S} (cf. e. g. pp. 228, 229 of J. L. Kelly [6]) and \mathfrak{S} covers X, the condition in Lemma 2.3 is satisfied.

By Lemm 1.7 and Lemma 2.4 we have the following

Proposition 2.5. Let \mathfrak{C} be an equicontinuous subfamily of $\mathfrak{F}(X; Y)$ and $\overline{\mathfrak{C}}$ be the closure of \mathfrak{C} in $\mathfrak{F}(X; Y)$ under any topology finer than τ_p on $\mathfrak{F}(X; Y)$. Then $\overline{\mathfrak{C}}$ is equiconinuous.

Lemma 2.6. Let \mathfrak{C} be an equicontinuous subfamily of $\mathfrak{F}(X; Y)$ and τ any topology finer than τ_p on $\mathfrak{F}(X; Y)$. Then the closure of \mathfrak{C} in $\mathfrak{F}(X; Y)$ under τ coincides with the closure of \mathfrak{C} in $\mathfrak{C}(X; Y)$ under τ .

Proof. Note that the closure of \mathfrak{C} in $\mathfrak{F}(X; Y)$ under τ is contained in $\mathfrak{C}(X; Y)$ by Proposition 2.5.

Proposition 2.7. Let \mathfrak{C} be an equicontinuous subfamily of $\mathfrak{F}(X; Y)$. Then the closures of \mathfrak{C} in $\mathfrak{C}(X; Y)$ under $\tau_c, \tau_c^*, \tau_p, \tau_p^*$, and the closures of \mathfrak{C} in $\mathfrak{F}(X; Y)$ under $\tau_c, \tau_c^*, \tau_p, \tau_p^*$, are all equal, and equicontinuous.

Proof. Use Lemmas 1.6, 1.7, 2.2, 2.6, and Proposition 2.5.

$\S 3$. Equicontinuity and compactness.

We will generalize Ascoli's theorem.

Theorem 3.1. Consider the following two conditions :

i) \mathfrak{C} is equicontinuous and $\overline{\mathfrak{C}(x)}$ is compact for each $x \in X$, and

ii) the closure of \mathbb{C} in $\mathbb{C}(X; Y)$ under τ_c is compact.

Then i) implies ii). If X is locally compact, then ii) implies i).

Proof. i) implies ii) : By Tychonoff's theorem, the topological product of $\{\overline{\mathfrak{C}(x)} \mid x \in X\}$ is compact under the relative product topology. Since the set contains the τ_p -closure $\operatorname{Cl}_p \mathfrak{C}$ of \mathfrak{C} in $\mathfrak{F}(X; Y)$, $\operatorname{Cl}_p \mathfrak{C}$ is τ_p -compact. $\operatorname{Cl}_p \mathfrak{C}$ is equicontinuous by Proposition 2.5, and so τ_p coincides with τ_c on $\operatorname{Cl}_p \mathfrak{C}$ by Lemma 2.2. Hence $\operatorname{Cl}_p \mathfrak{C}$ is τ_c -compact. On the other hand, the τ_c -closure $\operatorname{Cl}_c \mathfrak{C}$ of \mathfrak{C} in $\mathfrak{F}(X; Y)$ is contained in $\operatorname{Cl}_p \mathfrak{C}$. Hence $\operatorname{Cl}_c \mathfrak{C}$ is τ_c -compact. Consequently from the fact that $\operatorname{Cl}_c \mathfrak{C}$ coincides with the τ_c -closure of \mathfrak{C} in $\mathfrak{C}(X; Y)$, the condition ii) follows.

4

ii) implies i) : It is shown first that $\overline{\mathbb{C}}$ is equicontinuous as follows. Let x_{0} be any fixed point of X. For any given entourage \mathfrak{U} of Y take a symmetric entourage \mathfrak{U}_{1} of Y such that $\mathfrak{U}_{1}^{2} \subset \mathfrak{U}$. Since $(\overline{\mathbb{C}}, \tau_{c})$ is admissible (cf. Lemma 1.1), for each $u \in \overline{\mathbb{C}}$ there exist a τ_{c} -neighborhood W(u) of u in $\mathbb{C}(X; Y)$ and a neighborhood U_{u} of x_{0} such that

 $(u(x_0), u'(x)) \in \mathfrak{U}_1$ for any $u' \in W(u)$ and any $x \in U_u$.

Since $\overline{\mathbb{C}}$ is compact, we can choose a finite covering $\{W(u_i) \mid i=1, 2, \ldots, n\}$ of $\overline{\mathbb{C}}$. Put $U = \bigcap_{i=1}^{n} U_{u_i}$. Then

 $(u'(x_0), u'(x)) \in \mathfrak{l}$ for any $u' \in \overline{\mathfrak{C}}$ and any $x \in U$.

Consequently $\overline{\mathbb{C}}$ is equicontinuous, a fortiori \mathbb{C} is equicontinuous. On the other hand, $\mathbb{C}(X; Y)$ is admissible and $\overline{\mathbb{C}}$ is compact under τ_c . Hence $\overline{\mathbb{C}}(x)$ is compact. Since the closure of a compact set in a uniform space is compact, $\overline{\mathbb{C}}(x)$ is compact. And so $\overline{\mathbb{C}}(x)$ is compact. Q. E. D.

Remark. Several generalizations of Ascoli's theorem are well-known under some additional conditions on X and Y (cf. e. g. J. L. Kelley [6], and H. Schubert [8]). Moreover the condition ii) implies the condition i) in the case where

a) X is first countable, or

b) X is a Hausdorff k-space and Y is a Hausdorff uniform space.

This is a generalization of a result of S. B. Myers [7].

Definition. A uniform space Y is uniformly locally complete if there exists an entourage \mathfrak{U} in Y such that $\mathfrak{U}(y)$ is complete for any $y \in Y$.

Lemma 3.2. Let X be a connected space, and Y be a locally compact and uniformly locally complete uniform space. If \mathfrak{C} is equicontinuous and $\overline{\mathfrak{C}(x_0)}$ is compact for at least one $x_0 \in X$, then $\overline{\mathfrak{C}(x)}$ is compact for each $x \in X$.

Proof. Let $\overline{\mathbb{C}}$ be the closure of \mathbb{C} in $\mathbb{C}(X; Y)$ under τ_c . Since $\overline{\mathbb{C}}$ is equicontinuous (cf. Proposition 2.5), $(\overline{\mathbb{C}}, \tau_c)$ is admissible (cf. Lemma 2.1). Hence $\overline{\mathbb{C}}(x_0)$ has compact closure. Let E be the set of all $x \in X$ such that $\overline{\mathbb{C}}(x)$ has compact closure. E is not empty. If Y is locally compact, then E is open. In fact, let \tilde{x} be any point of E. There exists a compact neighborhood V of $\overline{\mathbb{C}}(\tilde{x})$, and an entourage \mathfrak{U} of Y such that $\mathfrak{U}[\overline{\mathbb{C}}(\tilde{x})] \subset V$. Since $\overline{\mathbb{C}}$ is equicontinuous, there exists a neighborhood U of \tilde{x} such that

 $(u(\widetilde{x}), u(x)) \in \mathfrak{U}$ for any $u \in \overline{\mathfrak{C}}$ and any $x \in U$.

And so $\overline{\mathbb{C}}(x) \subset V$ for any $x \in U$. Since \overline{V} is compact, $\overline{\mathbb{C}}(x)$ is compact for any $x \in U$ i. e. $U \subset E$. If Y is uniformly locally complete, then E is closed also.

Takashi KARUBE

In fact, it is shown as follows that $\overline{\mathbb{C}}(\widetilde{x})$ is totally bounded for any $\widetilde{x} \in \overline{E}$. Let \mathfrak{U}_0 be any entourage of Y, and \mathfrak{U} be a symmetric entourage of Y such that $\mathfrak{U}^4 \subset \mathfrak{U}_0$. Since $\overline{\mathbb{C}}$ is equicontinuous, there exists a neighborhood U of \widetilde{x} such that

 $(u(\widetilde{x}), u(x)) \in \mathfrak{l}$ for any $u \in \overline{\mathfrak{C}}$ and any $x \in U$.

There exists a point x_1 in $U \cap E$. As $\overline{\mathbb{C}}(x_1)$ has compact closure, there exist finite number of points y_1, \ldots, y_n in $\overline{\mathbb{C}}(x_1)$ such that $\{\mathfrak{U}(y_i) \mid i = 1, \ldots, n\}$ cover $\overline{\mathbb{C}}(x_1)$. Then $\overline{\mathbb{C}}(\widetilde{x})$ is covered by finite number of \mathfrak{U}^4 -small and so \mathfrak{U}_0 -small sets $\mathfrak{U}^2(y_i)$ ($i = 1, \ldots, n$). Now we may suppose without loss of generality that $\mathfrak{U}_0(y)$ is complete for any $y \in Y$. Then from the fact that $\overline{\mathbb{C}}(\widetilde{x}) \subset \bigcup_{i=1}^n \overline{\mathfrak{U}_0(y_i)}$, we can show that $\overline{\mathbb{C}}(\widetilde{x})$ is complete. Consequently $\overline{\mathbb{C}}(\widetilde{x})$ is compact i. e. $\widetilde{x} \in E$. The set E is open, closed, and non-empty in the connected space. Therefore E coincides with X.

Corollary 3.3. If X is a locally compact connected space, and Y is a locally compact and uniformly locally complete uniform space, then the following two conditions are equivalent :

- i) \mathfrak{C} is equicontinuous and $\overline{\mathfrak{C}(x_0)}$ is compact for at least one $x_0 \in X$, and
- ii) the closure of \mathfrak{C} in $\mathfrak{C}(X; Y)$ under τ_c is compact.

This corollary is more convenient than Theorem 3.1 to make compact topological transformation groups of many equicontinuous transformation groups by means of the compact-open topology.

Proposition 3.4. Let X be a connected space, Y be a locally compact space, and \mathfrak{C} a subfamily of $\mathfrak{C}(X; Y)$. If $\mathfrak{C}(x)$ has compact closure for at least one $x \in X$, and if there exists a uniformly locally complete compatible uniformity of Y under which \mathfrak{C} is equicontinuous, then \mathfrak{C} is equicontinuous for any compatible uniformity of Y.

Proof. It is similar to that of S. B. Myers [7].

6

References

- [1] R. Arens: A topology for spaces of transformations. Ann. Math., 47 (1946), 480-495.
- [2] N. Bourbaki: General Topology, Part 1. Hermann, Paris and Addison-Wesley, Reading (1966).
- [3] ibid. Part 2.
- [4] T. Karube: Uniformities for function spaces and continuity conditions. Proc. Japan Acad., 47 (1971), 285-290.
- [5] T. Karube: Topologies on locally equicontinuous families of mappings. (To appear.)
- [6] J. L. Kelley : General Topology. D. Van Nostrand, Toronto-New York-London (1955).
- [7] S. B. Myers: Equicontinuous sets of mappings. Ann. Math., 47 (1946), 496-502.
- [8] H. Schubert : Topologie. B. G. Teubner Verlag., Stuttgart (1964).