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It is shown that a large class of Heisenberg systems with random exchange interactions 

can be solved in a systematic formulation for the bond-annealed case. As tractable examples, 

the critical concentrations of dilute ferromagnets and ferro-antiferro magnetic alloys are 

derived for the g.eneral spin magnitude S 

Recently, Thorp and Beemanl) proposed a general formulation for solving the 

effects of random exchange interactions on magnetic ordering in terms of Ising model 

with spin magnitude 1/2 on each lattice site. In this note, we show that a similar 

general formulation can be given in the case of Heisenberg systems with random 

exchange interactions and with spin magnitude S on each lattice site. With several 

different exchange integrals {Jl} between the nearest neighbor pairs, Hamiltonian can 

be expressed in the form 

H= ~ Hij, H12=~~JltlS1･S2-~pltl' (1)  

where /ll is the chemical potential per bond and the indicator parameter tl equals unity 

if the exchange interaction of the 

 pair is Jl and zero otherwise, satisfying the identity ~1 tl = I so that only a single exchange interaction is associated with each bond. 

Let us now mtroduce the resultant states of two spins associated with the 

 bond, as 

ISo m0> ~ 6~.,~*+~.C(ml m21So mo) I S1 1 (2) m > IS2 m2> , 
~',,". 

with the . Clebsch-Gordan coefiicient. C(ml, m2 1 So mo) and the one-spin states IS1 

ml>, IS2 m2 > , where the eigenvalues of the magnitude and z-component of each 

spm are, respectively, denoted by the labells S and m's. Doing the partial traces over 

all possible { tl} on one-bond density matrix, we get the expression of Fisher's manipu-

lation2) innovated for Heisenberg bond model, 

~1 exp (PJISI ･ S2 + plll) = A exp (GSI ･ S2) , (3) 

A~d(s.) = rl (~ exp [PJJ(So) + Ppl])d(so), (4) *" 
s*=0 l 
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exp {[f(So) ~f(.O)] G} = ~1 exp [PJJ(So) + ppl]/~1 exp [PJl f(O) + p~l] ' (5) 

with 

S1 . S21So m,0> =f(So) I So mo > , (6) 

f (So) = So(So + 1)/2 - S(S + 1) , 

where d(So)=2S0+1 and p=1lkBT. 
Then we may write the grand partition function as 

. -* =Tr Trexp [-pH]=A'*N/2Trexp(G ~ Si.Sj) A' N/2Z(G) ' (7) ~ 
{_t,} {s*} {s*} - * * 

* where Z(G) is the partition function for a regular Heisenberg model with interaction 

parameter G, the coordination number zl and the total bond number zlN/2. The 

bond occupation fractions {tl} are obtained from 

2 alnE alnA . aG fi
= ZIN a/ll = apl +8 apl ' (8) 

Where e(G) denQtes two-spin correlation function of the regular Heisenberg model, 

 ~' _ Elimin~Lting exp [Plll] fr_oilXl (4), (5),and (8), we obtain 

~
/Q(PJ G, e)=1, ' ' ' ' (9~) 

where 

Q(X, 8) ~~ ~ d(So) exp [( f (So) ~ f (O))X]/~d(So) + e{exp [X] - I } . 

s. 

Replacing the temperature-independent discrete fraction 

 by the probability distribution increment P(J)dJ for the continuous J, we obtain 

JdJ P(J)/Q( PJ - G, 8) = I . ( I O) 

From (10), GG6) is soluble for any P(J) and for any known 8(G) of the regular reference 

systems. 

From (4), (5) and (10), we may calculate the thermodynamic quantities such as 

entropy, internal energy and specific heat, e.g., the internal energy per bond E can be 

found as follows : 

2 aln ~~ E= -~Jl
 ='- zlNfi ~JI aJl 

~ 

= --~1 

 JJ(PJl~ G, 8) , 
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which, in the continuous case, reduces to 

= j -E - dJ P(J) Jf(pJ - G, 8) , (11) 

where 

f(.X, e)Q(X, 8) ~ ~s d(So)f(So) exp [(f(So) ~f(O))X]/~s d(So) 

+ e ' { f(1) exp [X] -f(O)} . 

As examples tractable comparatively, we have such as 

p 6(J - Jo) + (1 - p) ~(J) , (dilute ferro.) 

p ~(J - Jo) + (1 - p) ~(J + Jo) ' (ferro-antiferro.) 

[O(J - Jo + A) - O(J - Jo ~ A)]/2A , (rectangular) 

(312lcA 2)1/2 exp [ - 3(J - Jo)2/2A 2] , (Gaussian) 

where p is the ferromagnetic bond concentration and, 6(J) and 6(J) are the Dirac delta 

function and unit step function, respectively. For the dilute ferromagnets, from 

(10) and (12), the concentration p is given by 

p [1 -Q(-G, e)]/[1 Q( G e)/Q(PJ G 8)] (13) 
Putting P = p*->ao, G = G. and e = e., we obtain the critical value p. below which the 

ferromagnetic phase does not exist, 

p. = I - Q( - G*, 8.) (14) 
where G. and e. are the values at the critical point of the regular system. The internal 

energy E and its critical value E. are given from (11) and (12), respectively, by 

E= - Jo Pf(pJo ~ G, 8) , (15) 
E. = - S2JoP*-

In the case of S = 1/2, (14) gives very simple expression for the critical concentra-

tion ; 

p. = (8. + 3/4) [1 - exp ( - G~] ･ (16) 

So far no approximation has been made to deduce the critical concentration of 

the bonds p. of (16). The Green function method or an improved molecular field 

method is exploitable for the treatment of the reference regular Heisenberg model to 

practice actual computation of G. and 8.. For instance, the constant-coupling ap-

proximant3,4) gives 
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f(G., O)=e. and e.=S(S+1)/(zl-1).3) (17) 

This is the unprecedented and perfect generalization of the well known result for 

S = 1/2, G* = In [zl/(zl-4)] and e. = 3/[4(zl-1)].4) By substituting the S0lution of 

(17) into (14), p* can be evaluated for any S. In the case of S = 1/2, we find a quite 

decent value of p. = 3/(zl ~ 1) which concludes that there is a critical concentration only 

for zl > 4. For cubic lattices we have p*=0.600 (SC), 0.429 (BCC) and.0.273 (FCC). 

Furthermore, for S = I we have p. = 0.565 (SC), 0.406 (BCC) and 0.261 (FCC), the 

ferromagnetic phase appearing into the circumstances of lower concentration. 

For the fp_rro-antiferro-magnetic alloys, p and p* are given, from (10) and (12), 

as follows : 

p = [1 - Q(- PJo ~ G, 8)]/[1 - Q(- pJo ~ G e)/Q(pJ G e)] (18) 

p. = 4S(S + 1)/(2S + 1)2 + e.. (1 9) 
In the case of S = 1/2, (19) with (17) gives a critical concentration p* = 3zl/[4(zl - 1)] 

for _'1>4. The results (14) and (19) can be generalized into the omnibus expression 

for the fractions of ferro-magnetic bonds F, missing bonds D and antiferromagnetic 

bonds A. At the critical point these fractions satisfy the following equations : 

D/Q( - G., e.) + A/[(2S + 1)-2 - e.] = 1, (20) 

F+D+A=1; 
with 

J " = Jo- p( J)d J. (2 1 ) 
-
f
 

- :-
F = P(J)dJ, A _ P(J)dJ, D 

" 

Actual computations for S > I are currently underway. Finally we note that the 

present formulation can be generalized for the anisotropic case, including X Y model 

and Ismg model, and could also be extended to ceal with a quenched case to investigate 

spin glasses. 

The author expresses his gratitude to Professor H. Mori and Dr. H. Okamoto 

of Kyushu University for suggesting this problem, and for helpful discussion and 

critical reading of the manuscript 
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