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Abstract

The present paper deals with nonoscillation problem for the second-order linear
difference equation

cnxn+1 + cn−1xn−1 = bnxn, n = 1, 2, . . . ,

where {bn} and {cn} are positive sequences. All nontrivial solutions of this equation
are nonoscillatory if and only if the Riccati-type difference equation

qnzn +
1

zn−1

= 1

has an eventually positive solution, where qn = c2n/(bnbn+1). Our nonoscillation
theorems are proved by using this equivalence relation. In particular, it is focusing
on the relation of the triple (q3k−2, q3k−1, q3k) for each k ∈ N. Our results can also
be applied to not only the case that {bn} and {cn} are periodic but also the case
that {bn} or {cn} is non-periodic. To compare the obtained results with previous
works, we give some concrete examples and those simulations.
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1. Introduction

The Riccati transformation is a very important tool for studying nonoscillation
problem of second-order linear difference equations as well as ordinary differential
equations. It is known that there are several types of Riccati transformations. For
example, Hooker et al. [15, 16, 19] have presented three kinds of Riccati transfor-
mations for the second-order linear difference equation

cnxn+1 + cn−1xn−1 = bnxn, n = 1, 2, . . . , (1.1)
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where {bn} and {cn} are sequences satisfying bn > 0 for n ∈ N and cn > 0 for n ∈
N∪{0}, respectively. Those Riccati transformations are expressed by wn = xn+1/xn,
yn = cnxn+1/xn and zn = bn+1xn+1/(cnxn). Here, we assume that there exists an
M ∈ N such that xn > 0 for n ≥ M . The transformations lead to the first-order
non-linear difference equations

cnwn +
cn−1

wn−1

= bn,

yn +
c2n−1

yn
= bn

and

qnzn +
1

zn−1

= 1, qn =
c2n

bnbn+1

(1.2)

with n = M+1,M+2, . . . , respectively (see also the books [1, Chap. 6], [9, Chap. 7]).
Although the transformation

zn =
bn+1xn+1

cnxn

is the most complicated one out of those three, equation (1.2) is easiest to use
because the coefficient of (1.2) is only one.

It is clear that equation (1.1) has the trivial solution {xn}; that is, xn = 0 for
n ≥ 0. The others are called non-trivial solutions. A non-trivial solution of (1.1) is
said to be oscillatory if, for everyN ∈ N there exists an n ≥ N such that xnxn+1 ≤ 0.
Otherwise, it is said to be nonoscillatory . Hence, a nonoscillatory solution {xn} of
(1.1) satisfies that xn > 0 for n sufficiently large or xn < 0 for n sufficiently large.
Since equation (1.1) is linear, {xn} is a solution of (1.1) if and only if {−xn} is also
a solution of (1.1). Hence, it is sufficient to consider that a nonoscillatory solution
{xn} of (1.1) continues being positive for all large n.

As known well, Sturm’s separation theorem holds for equation (1.1). About
the proof of Sturm’s separation theorem concerning linear difference equations, see
[9, pp. 321–322] for example. From Sturm’s separation theorem it follows that if
one non-trivial solution of (1.1) is nonoscillatory, then all its non-trivial solutions
are nonoscillatory. Hence, oscillatory solutions and nonoscillatory solutions do not
coexist in equation (1.1).

Using equation (1.2) equivalent to (1.1), Hooker et al. [15] have proved the fol-
lowing results.

Theorem A. If qn ≥ 1/(4−ε) for some ε > 0 and for all sufficiently large n, then
all non-trivial solutions of (1.1) are oscillatory .

Theorem B. If qn ≤ 1/4 for all sufficiently large n, then all non-trivial solutions
of (1.1) are nonoscillatory .
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As can be seen from Theorems A and B, the constant 1/4 is a critical value that
divides oscillation and nonoscillation of solutions of (1.1). Such a value is called
an oscillation constant . It seems to be appropriate that the constant 1/4 appears
in Theorems A and B, because it often becomes the oscillation constant for some
ordinary differential equations. For example, it is well-known that all non-trivial
solutions of the Euler differential equation

x′′ +
γ

t2
x = 0

are nonoscillatory if and only if γ ≤ 1/4 (for example, see [14, 18, 21, 26]). In this
sense, it is not exaggeration even if we say that Theorems A and B have similarity
between the results of ordinary differential equations. After that, Hooker et al. [16,
19] improved the sufficient condition was given in Theorem A which guarantees that
all nontrivial solutions of (1.1) are oscillatory.

Equation (1.1) can be rewritten as the self-adjoint difference equation

∆(cn−1∆xn−1) + pnxn = 0, (1.3)

where ∆ is the forward difference operator ∆xn = xn+1 − xn and

pn = cn−1 + cn − bn

for n ∈ N. The oscillation and nonoscillation of (1.3) and more generalized equations
have been considered extensively by many authors. For example, see [1, 2, 3, 4, 5, 9,
12, 17] and the references cited therein. Chen and Erbe [4] discussed the oscillation
and nonoscillation properties of (1.3) and obtained oscillation and nonoscillation
criteria by using Riccati techniques. Their main assumptions were

lim sup
n→∞

1

n

n∑
k=1

k∑
j=1

pj > −∞ (1.4)

and others. Since the beginning of this century, oscillation and nonoscillation criteria
are now being actively reported for the self-adjoint difference equation

∆(cn−1Φ(∆xn−1)) + pnΦ(xn) = 0, (1.5)

which is a generalization of (1.3). Here, Φ(z) is a real-valued nonlinear function
defined by

Φ(z) =

{
|z|p−2z if z ̸= 0,

0 if z = 0

for z ∈ R with p > 1 a fixed real number. For example, see [7, 10, 11, 13, 20, 22,
23, 24, 27]. Equation (1.4) is often called a half-linear difference equation. Most of
these results emphasized similarity of difference equations (1.3) and (1.5) and the
differential equation (

c(t)x′)′ + p(t)x = 0
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and its generalization (
c(t)Φ(x′)

)′
+ p(t)Φ(x) = 0,

where c, p [a,∞) → R are continuous functions, c(t) > 0 for t ≥ a. The reader can
refer to the book [8] as a very good monograph concerning half-linear differential
equations and half-linear difference equations. In this book, along with the difficulty
of the study of half-linear difference equations, many analogies can be found about
the oscillation of half-linear differential equations and half-linear difference equations
(see also [6]).

After a series of work of Hooker et al. [15, 16, 19], there were few studies that
considered equation (1.2). Abu-Risha [3] gave the following result by focusing on
the relation between the values of three successive coefficients of (1.2).

Theorem C. All non-trivial solutions of (1.1) are nonoscillatory if there is an
N ∈ N such that

(
√
qn+1 +

√
qn)(

√
qn +

√
qn−1) ≤ 1 (1.6)

holds for n ≥ N.

If qn ≤ 1/4 for n sufficiently large, then it is clear that condition (1.6) holds.
Hence. Theorem C is superior to Theorem B. However, condition (1.6) imposes a
fairly strong restraint in the coefficient sequence {qn}. If there is an m ∈ N such
that

(
√
qm+1 +

√
qm)(

√
qm +

√
qm−1) = 1,

then qn+3k has to be equal to qn for all n ≥ m− 1 and k ∈ N.
By considering only the behavior of the pair (q2k−1, q2k) or (q2k, q2k+1) with k ∈ N,

the author and Tanaka [25] presented the following result.

Theorem D. Suppose that there exists an N ∈ N such that either

q2k−1 + q2k ≤
1

2

or

q2k + q2k+1 ≤
1

2

with k ≥ N. Then all non-trivial solutions of (1.1) are nonoscillatory .

The purpose of this paper is to improve the nonoscillation theorems given in
[3, 25]. To obtain desired results, we pay attention mainly to the relation of the
triple (q3k−2, q3k−1, q3k) with k ∈ N.

Let α be a real number that is larger than 1 and let α∗ be the conjugate number
of p; namely,

1

α
+

1

α∗ = 1.

Then α∗ is also greater than 1.
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Theorem 1.1. Suppose that there exists an N ∈ N such that for any k ≥ N there
is a sequence {αk} with αk > 1. If

α∗
kq3k−2 < 1 (1.7)

and
q3k−1 ≤ (1− α∗

kq3k−2)(1− αk+1q3k), (1.8)

then all non-trivial solutions of (1.1) are nonoscillatory .

Remark 1.1. Theorem 1.1 improves Theorems C and D in the sense that the weak-
nesses of Theorems C and D are overcome (see Section 4).

2. Proof of the main theorem

By virtue of Sturm’s separation theorem, in order to prove Theorem 1.1, we have
only to show that there exists an integer N ≥ M such that equation (1.2) has a
solution {zn} satisfying zn > 0 for all n ≥ N .

Proof of Theorem 1.1. Consider a solution {zn} of (1.2) satisfying z3N−3 ≥ αN >
1. Then we have

z3N−2 =
1

q3N−2

(
1− 1

z3N−3

)
≥ 1

q3N−2

(
1− 1

αN

)
=

αN − 1

αNq3N−2

> 0.

Hence, by (1.7) we obtain

z3N−1 =
1

q3N−1

(
1− 1

z3N−2

)
≥ 1− α∗

Nq3N−2

q3N−1

> 0,

and therefore,

z3N =
1

q3N

(
1− 1

z3N−1

)
≥ 1

q3N

(
1− q3N−1

1− α∗
Nq3N−2

)
.

From (1.8) it follows that

1− q3N−1

1− α∗
Nq3N−2

≥ αN+1q3N .

Hence, we see that z3N ≥ αN+1. Similarly, we can easily check that

zn ≥



αk − 1

αkq3k−2

if n = 3k − 2

1− α∗
kq3k−2

q3k−1

if n = 3k − 1

αk+1 if n = 3k

with k ≥ N . Hence, the solution {zn} of (1.2) is positive for n ≥ 3N − 3. We
therefore conclude that all non-trivial solutions of (1.1) are nonoscillatory. □

By the same way, we have the following results (we omit the proof).
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Theorem 2.1. Suppose that there exists an N ∈ N such that for any k ≥ N there
is a sequence {αk} with αk > 1. If

α∗
kq3k−1 < 1

and
q3k ≤ (1− α∗

kq3k−1)(1− αk+1q3k+1),

then all non-trivial solutions of (1.1) are nonoscillatory .

Theorem 2.2. Suppose that there exists an N ∈ N such that for any k ≥ N there
is a sequence {αk} with αk > 1. If

α∗
kq3k < 1

and
q3k+1 ≤ (1− α∗

kq3k)(1− αk+1q3k+2),

then all non-trivial solutions of (1.1) are nonoscillatory .

3. Corollaries

To apply Theorem 1.1 to a concrete example, we need to find a suitable sequence
{αk} satisfying conditions (1.7) and (1.8) from the coefficient sequence {qn} of the
Riccati-type difference equation (1.2). For each k sufficiently large, it will be natural
to think that αk is determined by q3k−2, q3k−1 and q3k. The following result provides
a method of determining αk.

Corollary 3.1. Suppose that there exists an N ∈ N such that

q3k−2 + q3k < 1 (3.1)

and

q3k−1 ≤

(
1− q3k−2 −

√
q3k(1− q3k−2)

q3k−2(1− q3k)
q3k−2

)(
1− q3k −

√
q3k+1(1− q3k+3)

q3k+3(1− q3k+1)
q3k

)
(3.2)

with k ≥ N. Then all non-trivial solutions of (1.1) are nonoscillatory .

Proof. From (3.1) it follows that q3k−2 < 1 and q3k < 1 for k ≥ N . Hence, we can
choose

αk = 1 +

√
q3k−2(1− q3k)

q3k(1− q3k−2)

for k ≥ N . It is clear that αk > 1. Note that

α∗
k =

αk

αk − 1
= 1 +

√
q3k(1− q3k−2)

q3k−2(1− q3k)
.
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By (3.1) again, we have

q3k−2q3k < (1− q3k−2)(1− q3k)

for k ≥ N . Hence, we get

q3k−2 <

√
q3k−2(1− q3k−2)(1− q3k)

q3k
= (1− q3k−2)

√
q3k−2(1− q3k)

q3k(1− q3k−2)

for k ≥ N . Using this estimation, we obtain

α∗
kq3k−2 < 1;

namely, condition (1.7) holds. Since

αk+1 = 1 +

√
q3k+1(1− q3k+3)

q3k+3(1− q3k+1)
,

we can rewrite (3.2) as

q3k−1 ≤ (1− α∗
kq3k−2)(1− αk+1q3k);

namely, condition (1.8). Hence, all non-trivial solutions of (1.1) are nonoscillatory
by Theorem 1.1. □

Let us choose αk as a fixed number α > 1. Then we have the following corollary
of Theorem 1.

Corollary 3.2. Let α be a real number that is greater than 1. Suppose that there
exists an N ∈ N such that

α∗q3k−2 < 1 (3.3)

and
q3k−1 ≤ (1− α∗q3k−2)(1− α q3k) (3.4)

with k ≥ N. Then all non-trivial solutions of (1.1) are nonoscillatory .

Since αα∗ = α + α∗, condition (3.4) can be rewritten as

q3k−1 + α q3k(1− q3k−2) + α∗q3k−2(1− q3k) ≤ 1.

The following result is an immediate consequence of Corollary 3.2.

Corollary 3.3. Suppose that there exists an N ∈ N such that

q3k−2 <
1

2
(3.5)

and
q3k−1 ≤ (1− 2q3k−2)(1− 2q3k) (3.6)

with k ≥ N. Then all non-trivial solutions of (1.1) are nonoscillatory .

If qn ≤ 1/4 for all sufficiently large n, then it is clear that conditions (3.5) and
(3.6) are satisfied. Hence, Corollary 3.3 contains Theorem B completely.
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4. Comparison between previous studies and the obtained results

To illustrate our results, we give some examples in this section. We first give
an example that can be applied to Corollary 3.3 but cannot be applied to previous
works.

Example 4.1. Let c0 =
√
3 and let

cn =



√
3 if n = 9k − 8,

4 if n = 9k − 7,

2 if n = 9k − 6,

2 if n = 9k − 5,

4 if n = 9k − 4,√
2 if n = 9k − 3,√
2 if n = 9k − 2,

4 if n = 9k − 1,√
3 if n = 9k

and bn =



6 if n = 9k − 8,

5 if n = 9k − 7,

5 if n = 9k − 6,

8 if n = 9k − 5,

5 if n = 9k − 4,

5 if n = 9k − 3,

4 if n = 9k − 2,

5 if n = 9k − 1,

5 if n = 9k

with k ∈ N. Then all non-trivial solutions of (1.1) are nonoscillatory.

Since

qn =
c2n

bnbn+1

=


0.1 if n = 3k − 2,

0.64 if n = 3k − 1,

0.1 if n = 3k,

we see that

q3k−2 = 0.1 <
1

2

and
q3k−1 = 0.64 = (1− 0.2)(1− 0.2) = (1− 2q3k−2)(1− 2q3k)

with k ∈ N. Hence, conditions (3.5) and (3.6) are satisfied. Thus, by Corollary 3.3,
all non-trivial solutions of (1.1) are nonoscillatory.

Theorem B cannot be applied to Example 4.1, because

q3k−1 = 0.64 >
1

4
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for k ∈ N. Note that the assumption (1.4) of Chen and Erbe [4] is not satisfied. In
fact, we can easily check that

pn = cn−1 + cn − bn =



2
√
3− 6 if n = 9k − 8,√
3− 1 if n = 9k − 7,

1 if n = 9k − 6,

− 4 if n = 9k − 5,

1 if n = 9k − 4,√
2− 1 if n = 9k − 3,

2
√
2− 4 if n = 9k − 2,√
2− 1 if n = 9k − 1,√
3− 1 if n = 9k

with k ∈ N. Hence, we obtain

n∑
j=1

pj =



2
√
3− 6 = − 2.535898384862246 . . . if n = 1,

3
√
3− 7 = − 1.803847577293368 . . . if n = 2,

3
√
3− 6 = − 0.803847577293368 . . . if n = 3,

3
√
3− 10 = − 4.803847577293368 . . . if n = 4,

3
√
3− 9 = − 3.803847577293368 . . . if n = 5,√
2 + 3

√
3− 10 = − 3.389634014920273 . . . if n = 6,

3
√
2 + 3

√
3− 14 = − 4.561206890174082 . . . if n = 7,

4
√
2 + 3

√
3− 15 = − 4.146993327800988 . . . if n = 8,

4
√
2 + 4

√
3− 16 = − 3.41494252023211 . . . if n = 9.

Let n be an integer greater than 9. Then there exist an m ∈ N and an ℓ ∈ N with
0 ≤ ℓ ≤ 8 such that n = 9m+ ℓ and

n∑
j=1

pj = m(4
√
2 + 4

√
3− 16) +

ℓ∑
j=1

pj < 0.

We conclude that

1

n

n∑
k=1

k∑
j=1

pj = p1 +
n− 1

n
p2 +

n− 2

n
p3 + · · ·+ 2

n
pn−1 +

1

n
pn

< p1 + p2 + p3 + · · ·+ pn−1 + pn

which tends to −∞ as n → ∞. Thus, the assumption (1.4) does not hold in
Example 4.1. Since

(
√
q3k +

√
q3k−1)(

√
q3k−1 +

√
q3k−2) = (

√
0.1 +

√
0.64)2

= 1.245964425626941 · · · > 1
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for k ∈ N. Hence, Theorem C is also inapplicable to Example 4.1. Moreover,
Theorem D is of no use, because

q6k−1 + q6k = 0.64 + 0.1 >
1

2

and

q6k−2 + q6k−1 = 0.1 + 0.64 >
1

2
for k ∈ N.

Let us denote by {xn} a solution of (1.1) with the sequences {bn} and {cn} that
were given in Example 4.1 (see Figure 1). To make the motion of a solution of (1.1)
more visible, we connect the dots xn−1 and xn with a line segment and draw a line
graph.
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Figure 1: This line graph displays the motion of a solution {xn} of (1.1) given in Example 4.1.
The initial condition of the solution is (x0, x1) = (1, 3).

Figure 1 shows that xn > 0 for all n ∈ N ∪ {0}. Hence, this solution {xn}
is nonoscillatory. Recall that if equation (1.1) has a non-trivial solution which is
nonoscillatory, then all non-trivial solutions are nonoscillatory.

Next, we give an example of Corollary 3.1.

Example 4.2. Let c0 = 2
√
5 and let

cn =


2 if n = 3k − 2,

1 if n = 3k − 1,

2
√
5 if n = 3k

and bn =



5 if n = 6k − 5,

4 if n = 6k − 4,

25 if n = 6k − 3,

2 if n = 6k − 2,

10 if n = 6k − 3,

10 if n = 6k − 2

with k ∈ N. Then all non-trivial solutions of (1.1) are nonoscillatory.

It is easy to check that

qn =
c2n

bnbn+1

=


0.5 if n = 3k − 2

0.01 if n = 3k − 1

0.4 if n = 3k.
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Hence, we see that
q3k−2 + q3k = 0.5 + 0.4 < 1

and (
1− q3k−2 −

√
q3k(1− q3k−2)

q3k−2(1− q3k)
q3k−2

)(
1− q3k −

√
q3k+1(1− q3k+3)

q3k+3(1− q3k+1)
q3k

)

=

(
1− 0.4−

√
0.5(1− 0.4)

0.4(1− 0.5)
× 0.4

)(
1− 0.5−

√
0.4(1− 0.5)

0.5(1− 0.4)
× 0.5

)

=
(3−

√
6)2

30
= 0.01010205144336439 · · · > 0.01 = q3k−1

with k ∈ N; namely, conditions (3.1) and (3.2) hold. Thus, by Corollary 3.1, all
non-trivial solutions of (1.1) are nonoscillatory.

Since

q3k−2 = 0.5 ≥ 1

2
and

q3k−1 = 0.01 > 0 = (1− 2q3k−2)(1− 2q3k)

with k ∈ N, conditions (3.5) and (3.6) are not satisfied. Hence, Corollary 3.3 is not
applicable to Example 4.2.

To make sure, we give a simulation of a solution {xn} of (1.1) with the sequences
{bn} and {cn} that were given in Example 4.2 (see Figure 2).
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Figure 2: This line graph displays the motion of a solution {xn} of (1.1) given in Example 4.2.
The initial condition of the solution is (x0, x1) = (1, 3).

We can also verify Example 4.2 by using Corollary 3.2. In fact, we choose α as
56/25. Then, α∗ = 56/31. Hence, we can check that

α∗q3k−2 =
56

31
× 0.5 =

28

31
< 1

and

(1− α∗q3k−2)(1− α q3k) =

(
1− 28

31

)(
1− 56

25
× 0.4

)
= 0.01006451612903226 · · · > 0.01 = q3k−1
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with k ∈ N. Hence, conditions (3.3) and (3.4) are satisfied, and therefore, by
Corollary 3.2, all non-trivial solutions of (1.1) are nonoscillatory.

5. Relation between Corollary 3.1 and Corollary 3.2

As was verified in the preceding section, Example 4.2 can be applied to both
Corollary 3.1 and Corollary 3.2. To tell the truth, Corollary 3.1 and Corollary 3.2 are
equivalent when the coefficient sequence {qn} of the Riccati-type difference equation
(1.2) is periodic with period 3. In this section, We will prove this equivalence
relation.

For the sake of simplicity, we assume that N = 1 (if necessary, we have only to
shift the suffix of qn by a constant value). Since {qn} is periodic with period 3,

qn =


q1 if n = 3k − 2

q2 if n = 3k − 1

q3 if n = 3k.

We first show that conditions (3.1) and (3.2) imply conditions (3.3) and (3.4)
with

α = 1 +

√
q1(1− q3)

q3(1− q1)
.

From (3.1) it follows that q1 + q3 < 1. Hence, we have

q1q3 < (1− q1)(1− q3).

Using this inequality, we can check that

1

α∗ − q1 =
α− 1

α
− q1 =

√
q1(1−q3)
q3(1−q1)

1 +
√

q1(1−q3)
q3(1−q1)

− q1

=
1

1 +
√

q1(1−q3)
q3(1−q1)

{√
q1(1− q3)

q3(1− q1)
− q1 − q1

√
q1(1− q3)

q3(1− q1)

}

=
1

1 +
√

q1(1−q3)
q3(1−q1)

{√
q1(1− q1)(1− q3)

q3
− q1

}

=

√
q1(1− q1)√

q3(1− q1) +
√

q1(1− q3)

{√
(1− q1)(1− q3)−

√
q1q3

}
> 0.

From (3.1) it follows that

q2 ≤

(
1− q1 −

√
q3(1− q1)

q1(1− q3)
q1

)(
1− q3 −

√
q1(1− q3)

q3(1− q1)
q3

)
.
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Since

α∗ = 1 +

√
q3(1− q1)

q1(1− q3)
,

we see that
q2 ≤ (1− α∗q1)(1− α q3).

Thus, conditions (3.3) and (3.4) hold provided that {qn} is periodic with period 3.
We next show that conditions (3.3) and (3.4) imply conditions (3.1) and (3.2).

From (3.3) and (3.4) it turns out that q1 < 1/α∗ and q3 < 1/α. Hence, we have

q1 + q3 <
1

α∗ +
1

α
= 1; (5.1)

that is, condition (3.1) is satisfied. From (3.4) it follows that

q2 ≤ (1− α∗q1)(1− α q3) < 1.

Hence, because α∗ = α/(α− 1), we obtain the quadratic inequality

q3(1− q1)α
2 − (1− q1 − q2 + q3)α + 1− q2 ≤ 0. (5.2)

Let
f(x) = q3(1− q1)x

2 − (1− q1 − q2 + q3)x+ 1− q2

for x ∈ R. Since f(0) = 1 − q2 > 0 and f(1) = q1(1 − q3) > 0, we see that there
exists a real number α > 1 satisfying (5.2) if and only if

1− q1 − q2 + q3
2q3(1− q1)

> 1

(1− q1 − q2 + q3)
2 ≥ 4q3(1− q1)(1− q2). (5.3)

Arranging these inequalities, we obtain

1− q1 − q2 − q3 + 2q1q3 > 0 (5.4)

and
(1− q1 − q2 − q3)

2 ≥ 4q1q2q3. (5.5)

From (5.5) it turns out that there are two case to be considered:

(i) 1− q1 − q2 − q3 ≥ 2
√
q1q2q3;

(ii) 1− q1 − q2 − q3 ≤ − 2
√
q1q2q3.

13



However, case (ii) does not occur. In fact, from (ii) and (5.1) it follows that

q2 − 1 ≥ 2
√
q1q2q3 − (q1 + q3) > 2

√
q1q2q3 − 1.

Hence, we have √
q2 > 2

√
q1q3. (5.6)

On the other hand, from from (ii) and (5.4) it follows that

− 2q1q3 < 1− q1 − q2 − q3 ≤ − 2
√
q1q2q3,

and therefore, √
q2 ≤

√
q1q3 < 2

√
q1q3.

This contradicts (5.6). Note that (5.4) is satisfied inevitably from (i). From (5.3)
we obtain

q22 − 2(1− q1 − q3 + 2q1q3)q2 + (1− q1 − q2)
2 ≥ 0.

This inequality leads to one of the following estimations:

q2 ≤ 1− q1 − q3 + 2q1q3 −
√
(1− q1 − q3 + 2q1q3)2 − (1− q1 − q3)2 (5.7)

= 1− q1 − q3 + 2q1q3 − 2
√
q1q3(1− q1)(1− q3);

q2 ≥ 1− q1 − q3 + 2q1q3 + 2
√
q1q3(1− q1)(1− q3).

However, the latter is not true, because

q2 ≥ 1− q1 − q3 + 2q1q3 + 2
√
q1q3(1− q1)(1− q3) > 1− q1 − q3,

which contradicts (i). From (5.7) it turns out that

q2 ≤ 1− q1 − q3 + 2q1q3 −

√
q3(1− q1)

q1(1− q3)
q1(1− q3)−

√
q1(1− q3)

q3(1− q1)
q3(1− q1)

= 1− q1 −

√
q3(1− q1)

q1(1− q3)
q1 −

(
1− q1 −

√
q3(1− q1)

q1(1− q3)
q1

)
q3

−

(
1− q1 −

√
q3(1− q1)

q1(1− q3)
q1

)√
q1(1− q3)

q3(1− q1)
q3

=

(
1− q1 −

√
q3(1− q1)

q1(1− q3)
q1

)(
1− q3 −

√
q1(1− q3)

q3(1− q1)
q3

)
.

Hence, condition (3.2) is satisfied.
Thus, we could conclude that Corollary 3.1 and Corollary 3.3 are equivalent in

the case that {qn} is periodic with period 3.
To clarify the difference between Corollary 3.1 and Corollary 3.3, we give an

example in which {qn} is periodic with period 6.
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Example 5.1. Let c0 = 2 and let

cn =



5 if n = 6k − 5,

3 if n = 6k − 4,

4 if n = 6k − 3,

4 if n = 6k − 2,√
2 if n = 6k − 1,

2 if n = 6k

and bn =



2 if n = 6k − 5

25 if n = 6k − 4

20 if n = 6k − 3

2 if n = 6k − 2

20 if n = 6k − 1

5 if n = 6k

with k ∈ N. Then all non-trivial solutions of (1.1) are nonoscillatory.

In Example 5.1, the sequence {qn} satisfies

qn =
c2n

bnbn+1

=



0.5 if n = 6k − 5

0.018 if n = 6k − 4

0.4 if n = 6k − 3

0.4 if n = 6k − 2

0.02 if n = 6k − 1

0.4 if n = 6k.

Since

q6k−5 + q6k−3 = 0.5 + 0.4 < 1

and

q6k−2 + q6k = 0.4 + 0.4 < 1

for k ∈ N, condition (3.1) is satisfied. We also check that(
1− q6k−5 −

√
q6k−3(1− q6k−5)

q6k−5(1− q6k−3)
q6k−5

)(
1− q6k−3 −

√
q6k−2(1− q6k)

q6k(1− q6k−2)
q6k−3

)

=

(
1− 0.5−

√
0.4(1− 0.5)

0.5(1− 0.4)
× 0.5

)(
1− 0.4−

√
0.4(1− 0.4)

0.4(1− 0.4)
× 0.4

)

=
3−

√
6

30
= 0.0183503419072274 · · · > 0.018 = q6k−4

and (
1− q6k−2 −

√
q6k(1− q6k−2)

q6k−2(1− q6k)
q6k−2

)(
1− q6k −

√
q6k+1(1− q6k+3)

q6k+3(1− q6k+1)
q6k

)

=

(
1− 0.4−

√
0.4(1− 0.4)

0.4(1− 0.4)
× 0.4

)(
1− 0.4−

√
0.5(1− 0.4)

0.4(1− 0.5)
× 0.4

)

=
3−

√
6

25
= 0.02202041028867289 · · · > 0.02 = q6k−1
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for k ∈ N. Hence, condition (3.2) is satisfied. Thus, by Corollary 3.1, all non-trivial
solutions of (1.1) are nonoscillatory.

The following figure is a simulation of a solution {xn} of (1.1) with the sequences
{bn} and {cn} that were given in Example 5.1.

PSfrag repla
ements

x
n

n
0 5 10 15

20

20

40

60

80

Figure 3: This line graph displays the motion of a solution {xn} of (1.1) given in Example 4.1.
The initial condition of the solution is (x0, x1) = (2, 5).

Finally, we show that condition (3.4) does not hold in Example 5.1. For this
reason, we cannot use Corollary 3.2 to Example 5.1. To verify that condition (3.4)
holds, we have to find a real number α > 1 satisfying

q6k−4 ≤ (1− α∗q6k−5)(1− α q6k−3)

and

q6k−1 ≤ (1− α∗q6k−2)(1− α q6k).

Taking into account that α∗ = α/(α− 1), we obtain

100α2 − 441α + 491 ≤ 0.

from the first inequality. However, there are no real numbers which satisfy this
quadratic inequality.
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