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Abstract. This paper presents sufficient conditions which guarantee that the
equilibrium of the damped harmonic oscillator

x′′ + h(t)x′ + ω2x = 0

is uniformly asymptotically stable, where h : [0,∞) → [0,∞) is locally inte-
grable. These conditions work to suppress the rapid growth of the frictional
force expressed by the integral amount of the damping coefficient h. The ob-
tained sufficient conditions are compared with known conditions for uniform
asymptotic stability. Two diagrams are included to facilitate understanding of
the conditions. By giving a concrete example, remaining problems are pointed
out.

1. Introduction

We consider the second-order linear differential equation

(1) x′′ + h(t)x′ + ω2x = 0,

where the prime denotes d/dt, the coefficient h is a nonnegative and locally in-
tegrable function on [0,∞), and the number ω is a positive constant. The only
equilibrium of (1) is the origin (x, x′) = (0, 0). Equation (1) is often called the
damped harmonic oscillator when h is a positive constant. Although the damped
harmonic oscillator has a very simple form, there are extremely wide applications
in science and engineering. Equation (1) has been studied as one of the important
physical phenomenon models by many researchers.

In the qualitative theory of differential equations, the study of asymptotic stabil-
ity and uniform asymptotic stability occupy very important positions. The purpose
of this paper is to present some growth condition about h for the equilibrium of (1)
to be uniformly asymptotically stable and to clarify the relationship between these
conditions. Before advancing to the main subject, it is useful to briefly describe the
history of study of the asymptotic stability of (1) and the results obtained.
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Since equation (1) is linear, if the equilibrium is attractive, then it is stable.
Hence, we need only show that each solution of (1) and its derivative tend to zero
as t → ∞ in order to prove that the equilibrium is asymptotically stable. Many
efforts have been made to find sufficient (also necessary and sufficient) conditions
which guarantee that the equilibrium of (1) is asymptotically stable (for example,
see [1,3,4,9–13,16,18,19,21,24–27,31]). Among them, we should mention especially
the criterion given by Smith [21, Theorems 1 and 2]. Let

H(t) =

∫ t

0

h(s)ds.

Then the following result holds.

Theorem A. Suppose that

(2) there exists an h > 0 such that h(t) ≥ h for t ≥ 0.

Then the equilibrium of (1) is asymptotically stable if and only if

(S)

∫ ∞

0

∫ t

0
eH(s)ds

eH(t)
dt = ∞.

When h satisfies condition (2), namely, h has a positive lower bound h, it is often
called large damping . Smith’s condition (S) is satisfied when h has an upper bound
h or h(t) = t. On the other hand, condition (S) is not satisfied when h(t) = t2

(for the proof, see [11]). From these facts, we see that condition (S) prohibits rapid
growth of the damping coefficient h. Since condition (S) is necessary and sufficient
for the asymptotic stability of (1), it is not too much to say that condition (S) is
very excellent. However, the weak point is that it is hard to check whether condition
(S) is satisfied or not. Although Artstein and Infante [1] did not point out this fact,
they gave another growth condition that guarantees the asymptotic stability of (1)
as follows.

Theorem B. Suppose that condition (2) holds . Then

(A) lim sup
t→∞

H(t)

t2
< ∞

implies that the equilibrium of (1) is asymptotically stable.

Artstein and Infante’s condition (A) requires that H has to grow more slowly
than t2. Artstein and Infante [1] also showed that the exponent 2 of t is best possible
in the sense that it cannot be replaced by 2+ ε for any ε > 0. Of course, condition
(A) is not as sharp as condition (S). For example, consider h(t) = (2+ t) log(2+ t).
Then it is clear that H(t)/t2 is unbounded. Hence, condition (A) is not satisfied.
However, by means of Ballieu and Peiffer’s result [3, Corollary 7], we can verify
that the equilibrium of (1) is asymptotically stable in this example.

The advantage of condition (A) is that it is easy to check. When an indefinite
integral H of h is found, we may judge whether condition (A) is satisfied or not.
By numerical computation, it may be easy to check condition (A). However, it is
very hard to confirm condition (S) even with numerical computation.

Since condition (A) is merely a sufficient condition for the asymptotic stability
of (1), it follows from condition (S). From another viewpoint, Hatvani et al. [11]
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verified that condition (A) implies condition (S). They proved that condition (S)
is equivalent to the discrete growth condition

(D)
∞∑

n=1

(
H−1(nc)−H−1((n− 1)c)

)2
= ∞ for any c > 0,

where

H−1(s)
def
= min

{
t ∈ [0,∞) : H(t) ≥ s

}
, s ∈ [0,∞),

provided that H(t) diverges to ∞ as t → ∞ (see [11, Theorem 1.1]). They also
showed that condition (A) implies condition (D) in the proof of Corollary 3.7 in
[11] (see also [1]). Moreover, they gave another growth condition,

(H)
∞∑

i=N

1∫ i

i−1
h(s)ds

= ∞,

for any fixed natural number N (their original form is slightly different) and clar-
ified that condition (H) implies condition (D) under certain conditions including
condition (2) (see [11, Corollary 3.6]). We can show that condition (A) implies
condition (H) by using Artstein and Infante’s result [1, Lemma] (for the proof, see
Appendix). To sum up, we have the following diagram.

(2)

↓
(A) =⇒ (H)

(2) −→ ⇓ ⇓ ←− lim
t→∞

x′(t) = 0, certain conditions

(D)⇐⇒(S)⇐⇒ [AS] ⇑
↑ ↑ (2)

lim
t→∞

H(t) = ∞ ⇐= (2)

Figure 1. The marks “−→”, “=⇒”, “⇐⇒” and [AS] mean “ad-
dition to”, “implies”, “if and only if” and the asymptotic stability
of (1), respectively.

The equilibrium of (1) is said to be asymptotically stable [AS] if

lim
t→∞

x(t) = lim
t→∞

x′(t) = 0

for every solution x of (1). As is well known, the equilibrium is not necessarily
uniformly asymptotically stable even if it is [AS]. We need to check that each
solution of (1) and its derivative converge to zero with the speed of the same level
in order to prove that the equilibrium is uniformly asymptotically stable. In this
sense, we need to pay close attention to the analysis of uniform asymptotic stability.

To strictly describe definitions, we give some notation. Let x(t) = (x(t), x′(t))
and x0 ∈ R

2, and let ‖ · ‖ be any suitable norm. We denote the solution of (1)
through (t0,x0) by x(t; t0,x0). The uniqueness of solutions of (1) is guaranteed for
the initial value problem.

The equilibrium is said to be eventually uniformly stable [EvUS] if for any ε > 0,
there exist an α(ε) ≥ 0 and a δ(ε) > 0 such that ‖x0‖ < δ and t0 ≥ α imply
that ‖x(t; t0,x0)‖ < ε for all t ≥ t0. If we can choose α(ε) = 0, the equilibrium is
said to be uniformly stable [US]. The equilibrium is said to be eventually uniformly
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attractive [EvUA] if there exist an α0 ≥ 0 and a δ0 > 0, and if for every η > 0 there is
a T (η) > 0 such that t0 ≥ α0 and ‖x0‖ < δ0 imply that ‖x(t; t0,x0)‖ < η for all t ≥
t0+T (η). If we can choose α0 = 0, the equilibrium is said to be uniformly attractive
[UA]. The equilibrium is eventually uniformly asymptotically stable [EvUAS] if it
is [EvUS] and [EvUA]. The equilibrium is uniformly asymptotically stable [UAS] if
it is [US] and [UA]. With respect to the various definitions of stability, the reader
may refer to the books [2, 5, 6, 15, 20, 32] for example.

It is well known that the equilibrium of (1) is uniformly asymptotically stable if
and only if it is exponentially asymptotically stable [ExpAS]; namely, there exists a
κ > 0 and, for any ε > 0, there exists a δ(ε) > 0 such that t0 ≥ 0 and ‖x0‖ < δ(ε)
imply that ‖x(t; t0,x0)‖ < ε exp(−κ(t− t0)) for all t ≥ t0. If the equilibrium of (1)
is [ExpAS], then the existence of a good Lyapunov function V (·, ·) : [0,∞)×R

n → R

that satisfies the following conditions is guaranteed:

(i) a(‖x‖) ≤ V (t,x) ≤ b(‖x‖),
(ii) V̇(1)(t,x) ≤ − c(‖x‖) or V̇(1)(t,x) ≤ − d V (t,x),

(iii) |V (t,x1)− V (t,x2)| ≤ f(t)‖x1 − x2‖
on [0,∞) × R

n, where a, b and c are continuous increasing and positive definite
functions, d is a positive constant and f is a positive suitable function (this is called
a converse theorem on [UAS]). However, if the zero solution of (1) is merely only
asymptotically stable, such a good Lyapunov function does not necessarily exist.
This is a big difference between [UAS] and [AS]. By using the converse theorem on
[UAS], we can show that the uniform asymptotic stability is maintained even if a
small perturbation term is added to equation (1). Small errors cannot be ignored in
model design. For this reason, it is necessary to consider the perturbation problem
in actual phenomena analysis. From this point of view, the study of [UAS] is very
important.

In this paper, we use the terminology “uniformly with respect to σ ≥ 0”. This
means the following: Let fσ : R → R be a family of functions parametrized by
σ ≥ 0. We say that limt→∞ fσ(t) = ∞ uniformly with respect to σ ≥ 0 if, and only
if, for any M > 0 there exists a T ≥ 0 such that σ ≥ 0 and t ≥ T imply fσ(t) ≥ M .
We also use the symbol [c] to mean the greatest integer that is less than or equal
to a real number c.

Sugie and Onitsuka [30, Theorem 1.1] gave the following result.

Theorem C. Suppose that

(3) lim inf
t→∞

∫ t+d

t

h(s)ds > 0 for every d > 0.

If

(4) lim
t→∞

∫ t+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds = ∞ uniformly with respect to σ ≥ 0,

then the equilibrium of (1) is uniformly asymptotically stable.

When condition (3) holds, the damping coefficient h is said to be integrally
positive. The concept of the integral positivity was introduced by Matrosov [14]
(see also [7–9,17,24,28,29]). It is obvious that condition (2) implies condition (3).
However, the converse is not always true. Integrally positive functions are allowed to



[UAS] OF DAMPED HARMONIC OSCILLATORS 35

have an infinite number of zeros. A typical example of integrally positive functions
is sin2 t.

Let us compare condition (4) with condition (S). We notice that both are double
integrals of exp(H(τ )−H(s)). Condition (4) requires that this double integral di-
verges uniformly with respect to σ. On the other hand, condition (S) only needs to
diverge when σ = 0. Hence, we may say that (4) is a uniform divergence condition.
A growth condition similar to condition (4) was first presented by Hatvani [9, The-
orem 2.5] as a sufficient condition for the zero solution of a certain two-dimensional
linear system to become asymptotically stable.

By the same method as in the proof of Theorem C, we can obtain the following
result.

Theorem D. Suppose that condition (3) holds . If

(SU)
there exists an m ≥ 0 such that lim

t→∞

∫ t+σ

σ

∫ s

σ
eH(τ)dτ

eH(s)
ds = ∞

uniformly with respect to σ ≥ m,

then the equilibrium of (1) is eventually uniformly asymptotically stable.

For nonlinear differential equations, the concept of [EvUAS] is different from
that of [UAS]. Of course, the equilibrium is uniformly asymptotically stable, so
it is eventually uniformly asymptotically stable; namely, [UAS] implies [EvUAS].
Strauss and Yorke [22, Lemma 2.7] gave a necessary and sufficient condition for the
converse to be true as follows (see also [23]).

Theorem E. Suppose that the equilibrium is eventually uniformly asymptotically
stable. Then it is uniformly asymptotically stable if and only if the zero function is
a unique solution defined on the interval [t0,∞).

Since equation (1) is linear, from Theorem E it turns out that [EvUAS] is equiv-
alent to [UAS]. Hence, condition (SU) is a growth condition on uniform asymptotic
stability. In this paper, based on the uniform divergence condition (SU), we in-
tend to present other growth conditions on uniform asymptotic stability and give
a correlation diagram showing their relation.

2. Conditions for suppressing the rapid growth of h

As mentioned in Section 1, Hatvani et al. [11] presented the discrete growth
condition for the asymptotic stability of (1), which is equivalent to Smith’s condition
(S). Inspired by this result, Sugie and Onitsuka [30, Theorem 4.2] gave the discrete
growth condition

(5) lim
n→∞

n+N∑
i=N

(
H−1(i)−H−1(i− 1)

)2
= ∞ uniformly with respect to N ∈ N,

for uniform asymptotic stability of (1) and proved that condition (5) implies the
uniform divergence condition (4) under the assumption (3). Using the same idea,
we can show that

(DU)
there exists an N∗∈ N such that lim

n→∞

n+N∑
i=N

(
H−1(i)−H−1(i− 1)

)2
= ∞

uniformly with respect to N ≥ N∗
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implies condition (SU). We may regard condition (DU) as a discrete version of (D).
Unfortunately, in general, it is not so easy to check whether a given h satisfies

conditions (SU) and (DU). In this section, we propose other growth conditions
corresponding to conditions (A) and (H) given by Artstein and Infante [1] and
Hatvani et al. [11], respectively. We also reveal implications between conditions
(SU), (DU) and these new growth conditions.

Theorem 1. Suppose that limt→∞ H(t) = ∞. If

(AU)

there exists an ε0 > 0 and an m ≥ 0 such that

lim sup
t→∞

1

t2−ε0

∫ t+τ

τ

h(s)ds < ∞ uniformly with respect to τ ≥ m,

then condition (DU) holds .

Remark 1. If condition (3) is satisfied, then limt→∞ H(t) = ∞. Condition (AU) is
a uniform convergence version of condition (A) of Artstein and Infante [1].

Theorem 2. Suppose that

(6) there exists an N ∈ N such that an
def
=

∫ n

n−1

h(s)ds > 0 for all n ≥ N.

If condition (AU) is satisfied , then

(HU)
there exists an N∗∈ N such that lim

n→∞

n+N∑
i=N

1∫ i

i−1
h(s)ds

= ∞

uniformly with respect to N ≥ N∗.

Remark 2. Condition (3) implies condition (6). Condition (HU) is a uniform di-
vergence version of condition (H) of Hatvani et al. [11].

Theorem 3. Suppose that

(7)

there exists a T > 0 such that 1/h is a bounded function on [T,∞)

and (1/h)′ is a function on [T,∞) that is bounded from above.

Then condition (HU) yields condition (SU).

Combining Theorems 1, 2 and 3 with Theorems D and E, we can give the diagram
for [UAS] shown in Figure 2:

(3) =⇒ (6)

↓ (2) =⇒ (3)
(AU) =⇒ (HU) ⇑

lim
t→∞

H(t) = ∞ −→⇓ ⇓ ←− (7)

⇑ (DU) =⇒(SU)=⇒ [UAS]

(3) ↑ ↑
(3) (3)

Figure 2. The marks “−→”, “=⇒”, “⇐⇒” and [UAS] mean “ad-
dition to”, “implies”, “if and only if” and the uniform asymptotic
stability of (1), respectively.
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3. Proofs

Proof of Theorem 1. Let t0 = 0 and tn = H−1(n) for all n ∈ N. Since limt→∞ H(t)
= ∞, the sequence {tn} is increasing and diverges to ∞ as n → ∞. Hence, we can
choose an N∗∈ N so that

tN∗−1 ≥ m.

Define Δtn = tn − tn−1. In order to show condition (DU), it suffices to show that
for any L > 0 there exists an M(L) ∈ N such that n ≥ M implies that

n+N∑
i=N

(Δti)
2 > L

for any N ≥ N∗. From (AU) it follows that

(8)
there exists a K > 0 and a T > 0 such that τ ≥ m

implies that

∫ t+τ

τ

h(s)ds < Kt2−ε0 for t ≥ T.
For any L > 0, let

(9) M(L) = max

{
1,
[
KT 2−ε0

]
,
[
K2/ε0L(2−ε0)/ε0

]}
∈ N.

Suppose that there exists an N0 ∈ N with N0 ≥ N∗ such that

tN0+M < tN0−1 + T.

Then, since H is an increasing function on [0,∞) and H(tn) = n for all n ∈ N, we
see that

N0 +M = H(tN0+M ) ≤ H(tN0−1 + T )

= H(tN0−1) +

∫ tN0−1+T

tN0−1

h(s)ds

= N0 − 1 +

∫ tN0−1+T

tN0−1

h(s)ds.

Since {tn} is an increasing sequence, we see that tN0−1 ≥ tN∗−1 ≥ m. Using (8)
with τ = tN0−1 and t = T , we obtain∫ tN0−1+T

tN0−1

h(s)ds < KT 2−ε0.

Hence, we have

M < KT 2−ε0 − 1.

This contradicts (9). We therefore conclude that

(10) tN+M ≥ tN−1 + T for any N ≥ N∗.

We can rewrite (8) as

(11)

∫ t

τ

h(s)ds < K(t− τ )2−ε0 for t ≥ τ + T.

Using (10) and (11), we get∫ tN+M

tN−1

h(s)ds < K(tN+M − tN−1)
2−ε0 for any N ≥ N∗.
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Hence, we have

M + 1

(tN+M − tN−1)2−ε0
=

H(tN+M )−H(tN−1)

(tN+M − tN−1)2−ε0

=
1

(tN+M − tN−1)2−ε0

∫ tN+M

tN−1

h(s)ds < K;

that is,

(12) (tN+M − tN−1)
2−ε0 >

M + 1

K
for any N ≥ N∗.

By means of the Cauchy-Bunyakovski-Schwarz inequality, we have(
M+N∑
i=N

Δti

)2

≤
M+N∑
i=N

12
M+N∑
i=N

(Δti)
2 = (M + 1)

M+N∑
i=N

(Δti)
2

for any N ≥ N∗. Hence, it follows from (12) that n ≥ N implies that

n+N∑
i=N

(Δti)
2 ≥

M+N∑
i=N

(Δti)
2 ≥ 1

M + 1

(
M+N∑
i=N

Δti

)2

=
1

M + 1

((
tN+M − tN−1

)2−ε0
)2/(2−ε0)

>
1

M + 1

(
M + 1

K

)2/(2−ε0)

=
(M + 1)ε0/(2−ε0)

K2/(2−ε0)

for any N ≥ N∗. From (9) it turns out that

M > K2/ε0L(2−ε0)/ε0 − 1.

Hence, we obtain
n+N∑
i=N

(Δti)
2 > L,

which is our desired estimate. This completes the proof. �

Proof of Theorem 2. Note that condition (8) holds as in the proof of Theorem 1.
For any L > 0, let

(13) M(L) = max
{
1, [T ],

[
(KL)1/ε0

]}
∈ N.

From (6), we can find an N∗∈ N so that an > 0 for n ≥ N∗. Hence, we have

(M + 1)2 =

(
M+N∑
i=N

1

)2

=

(
M+N∑
i=N

√
ai

1√
ai

)2

for any N ≥ N∗. Using the Cauchy-Bunyakovski-Schwarz inequality, we obtain(
M+N∑
i=N

√
ai

1√
ai

)2

≤
M+N∑
i=N

ai

M+N∑
i=N

1

ai
for any N ≥ N∗.

Let

N∗= max
{
m+ 1, N∗

}
.
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From (13) it turns out that M > T − 1. It is obvious that N − 1 ≥ N∗− 1 ≥ m for
N ≥ N∗. Hence, we can use inequality (8) with t = M + 1 > T and τ = N − 1 for
any N ≥ N∗ and get

M+N∑
i=N

ai =

∫ M+N

N−1

h(s)ds < K(M + 1)2−ε0

for N ≥ N∗. We therefore conclude that

M+N∑
i=N

1

ai
>

1

K
(M + 1)ε0 for any N ≥ N∗.

Using (13) again, we obtain

n+N∑
i=N

1∫ i

i−1
h(s)ds

≥
M+N∑
i=N

1

ai
>

1

K
(M + 1)ε0 > L

for any n ≥ M and N ≥ N∗, namely, condition (HU). �

By using the same method of Sugie and Onitsuka [30, Theorem 3.1], we can
prove the following result (we omit the proof).

Lemma 4. Suppose that there exists a function k : [0,∞) → [0,∞) and a T > 0
such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ h(t) ≤ k(t) for t ≥ T,

1

k
is a bounded function on [T,∞), and(
1

k

)′
is a function on [T,∞) that is bounded from above.

If

there exists an m ≥ 0 such that lim
t→∞

∫ t+σ

σ

1

k(s)
ds = ∞

uniformly with respect to σ ≥ m.

then condition (SU) holds .

Remark 3. As can be seen from the condition (13), the damping coefficient h need
not even be differentiable.

Proof of Theorem 3. In order to prove Theorem 3, it suffices, in view of Lemma 4,
to show that

(14)
there exists an m ≥ 0 such that lim

t→∞

∫ t+σ

σ

1

h(s)
ds = ∞

uniformly with respect to σ ≥ m.

From (7), we can find a c > 0 and T ∗> 0 such that

1

h(t)
≤ c for t ≥ T ∗.
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Hence, we see that h(t) ≥ 1/c > 0 for all t ≥ T ∗. Let i∗= [T ∗] + 2 ∈ N. Then, by
the Cauchy-Bunyakovski-Schwarz inequality, we obtain

1 =

(∫ i

i−1

ds

)2

=

(∫ i

i−1

√
h(s)

1√
h(s)

ds

)2

≤ ai

∫ i

i−1

1

h(s)
ds,

where {ai} is the sequence given in Theorem 2. Hence, we have∫ i

i−1

1

h(s)
ds ≥ 1

ai
for all i ≥ i∗.

Let N∗∗ = max
{
N∗, i∗

}
. Then, from condition (HU) it turns out that

(15)

for any L > 0 there exists an M(L) ∈ N such that N ≥ N∗∗ implies that∫ M+N

N−1

1

h(s)
ds =

M+N∑
i=N

∫ i

i−1

1

h(s)
ds ≥

M+N∑
i=N

1

ai
> L.

Let m = N∗∗− 1. Then, for any σ ≥ m, there exists an N ∈ N so that

N − 2 < σ ≤ N − 1.

It is clear that N ≥ N∗∗. Let T (L) = M(L) + 2. Then, using (15), we get∫ t+σ

σ

1

h(s)
ds ≥

∫ T+N−2

N−1

1

h(s)
ds =

∫ M+N

N−1

1

h(s)
ds > L

for t ≥ T . Hence, condition (14) is satisfied. �

4. Discussion

As shown in Figure 2, condition (AU) is the most concise condition which guar-
antees that the equilibrium of (1) is uniformly asymptotically stable. By contrast,
the condition that is harder to check is condition (SU), which includes other con-
ditions. In particular, it is difficult to judge whether the divergence of the double
integral in condition (SU) is uniform with respect to σ even if it diverges to ∞. We
give a simple example to show this situation.

Example 1. Consider equation (1) with

h(t) =

⎧⎨
⎩

1 + n if n− 1/n ≤ t ≤ n,

1 if n < t < n+ 1− 1/(n+ 1)

for each n ∈ N. Then the equilibrium is uniformly asymptotically stable.

It is clear that condition (2) is satisfied with h = 1. Hence, condition (3) is also
satisfied. We can easily calculate the integral H as follows:

s = H(t) =

⎧⎨
⎩

(1 + n) t− n(n− 1) if n− 1/n ≤ t ≤ n,

t+ n if n < t < n+ 1− 1/(n+ 1)

for each n ∈ N (see Figure 3). Hence, H is a strictly increasing function on [0,∞)
and limt→∞ H(t) = ∞. Since

for any τ ≥ 0 and any t ≥ 0, there exists an n ∈ N and an m ∈ N

such that n− 1 ≤ τ < n and m− 1 ≤ t < m,
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Figure 3. The graphs of the functions h and H

we see that ∫ t+τ

τ

h(s)ds = H(t+ τ )−H(τ ) < H(m+ n)−H(n− 1)

= 2(m+ n)− 2(n− 1) = 2(m+ 1) < 2(t+ 2).

Let ε0 = 1 and m = 0. Then, we see that τ ≥ m implies that

1

t2−ε0

∫ t+τ

τ

h(s)ds <
2(t+ 2)

t
≤ 3 for t ≥ 4.

This means that condition (AU) holds. Hence, from the diagram for [UAS] shown
in Figure 2, we see that the equilibrum is uniformly asymptotically stable.

Because condition (AU) is satisfied, conditions (DU), (HU) and (SU) are also
satisfied as can be seen from the diagram for [UAS]. In this example, we can directly
verify that conditions (DU) and (HU) hold. However, it would be difficult to show
that condition (SU) is satisfied.

Since H is a strictly increasing function diverging to ∞, the function H−1 is the
inverse function of H. We can obtain the inverse function H−1 by a straightforward
calculation as follows:

t = H−1(s) =

⎧⎪⎨
⎪⎩

s+ n(n− 1)

1 + n
if 2n− 1− 1/n ≤ s ≤ 2n,

s− n if 2n < s < 2n+ 1− 1/(n+ 1)

for each n ∈ N (see Figure 4). Hence, we see that

H−1(2n) =
2n+ n(n− 1)

1 + n
= n;(16)

H−1(2n− 1) =
2n− 1 + n(n− 1)

1 + n
= n− 1

1 + n
.

For any N ∈ N and n ∈ N, let

P =

[
N + 3

2

]
∈ N and p =

[n
2

]
− 1.
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Figure 4. The graph of the inverse function H−1 of H

Then it follows that 2P − 3 ≤ N < 2P − 1 and 2(p+ P )− 1 ≤ n+N . Hence, we
have

n+N∑
i=N

(
H−1(i)−H−1(i− 1)

)2
>

2(p+P )−1∑
i=2P−1

(
H−1(i)−H−1(i− 1)

)2

=

p+P∑
j=P

(
H−1(2j − 1)−H−1(2j − 2)

)2
.

It turns out from (16) that

p+P∑
j=P

(
H−1(2j − 1)−H−1(2j − 2)

)2
=

p+P∑
j=P

(
j − 1

1 + j
− (j − 1)

)2

=

p+P∑
j=P

(
j

1 + j

)2

≥
p+P∑
j=P

1

4
=

1

4
(p+ 1)

=
1

4

[n
2

]
>

n− 2

8
.

We therefore conclude that for any L > 0, there exists an M(L) = 8L+2 such that
n ≥ M implies that

n+N∑
i=N

(
H−1(i)−H−1(i− 1)

)2
>

n− 2

8
>

M − 2

8
= L;

that is, condition (DU) is satisfied with N∗ = 1.
Recall that

an =

∫ n

n−1

h(s)ds.

In this example, it is clear that an = 2 for all n ∈ N. Hence, we obtain

n+N∑
i=N

1∫ i

i−1
h(s)ds

=
n+ 1

2
.

This means that condition (HU) is satisfied with N∗ = 1. Note that the damping
coefficient h is piecewise continuous but not continuous. Since the differentiability of
h is necessary to apply Theorem 3, we cannot show that the equilibrium is uniformly
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asymptotically stable in Example 1 only by satisfying the condition (HU). Hence,
there is room for improvement in the assumption of Theorem 3.

Appendix

We can improve the diagram for [AS] given in Section 1 as follows (compare with
Figure 1):

(3)
↓

(A) =⇒ (H)

(3) −→ ⇓ ⇓ ←− (3) ⇐= (2)

(D)⇐⇒(S)⇐⇒ [AS]
↑ ↑

lim
t→∞

H(t) = ∞ ⇐= (3)

Figure 5. The marks “−→”, “=⇒”, “⇐⇒” and [AS] mean “ad-
dition to”, “implies”, “if and only if” and the asymptotic stability
of (1), respectively.

Because of limitations of space, we prove only the following relationship here.

Proposition 5. Suppose that condition (3) holds . Then condition (A) implies
condition (H).

To prove Proposition 5, we need the following lemma, which is obtained by using
an idea of Artstein and Infante [1].

Lemma 6. Let {an} be a sequence. If

there exist a K > 0 and an m ∈ N such that

an > 0 for n ≥ m and
�∑

i=m

ai ≤ K�2 for � ≥ m,

then ∞∑
i=m

1

ai
= ∞.

Proof. For any fixed integer n ≥ m, let bj = a2n+j > 0 with j = m, . . . , 2n. Then,
by assumption, we have

2n∑
j=m

bj =

2n∑
j=m

a2n+j =

2n+1∑
i=2n+m

ai <

2n+m−1∑
i=m

ai +

2n+1∑
i=2n+m

ai =

2n+1∑
i=m

ai ≤ 22(n+1)K.

Hence, it follows from the Cauchy-Bunyakovski-Schwarz inequality that

(2n −m+ 1)2 =

⎛
⎝ 2n∑

j=m

√
bj

1√
bj

⎞
⎠
2

≤
2n∑

j=m

bj

2n∑
j=m

1

bj
< 22(n+1)K

2n∑
j=m

1

bj
.

Thus, we obtain
2n∑

j=m

1

bj
>

(2n −m+ 1)2

22(n+1)K
.
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We therefore conclude that

∞∑
i=m

1

aj
>

2m−1∑
k=0

1

am+k
+

∞∑
n=m

⎛
⎝ 2n∑

j=m

1

a2n+j

⎞
⎠ >

∞∑
n=m

⎛
⎝ 2n∑

j=m

1

bj

⎞
⎠

>
∞∑

n=m

(2n −m+ 1)2

22(n+1)K
=

1

K

∞∑
n=m

(
1− (m− 2)/2n

2

)2

.

Since
1− (m− 1)/2n

2
↗ 1

2
as n → ∞, we see that

∞∑
i=m

1

ai
= ∞.

This completes the proof. �

We are ready to prove Proposition 5.

Proof of Proposition 5. From condition (A) it follows that

(17) there exists a K > 0 and a T1 > 0 such that

∫ t

0

h(s)ds < Kt2 for t ≥ T1.

Since h satisfies condition (3), we see that

(18) there exists a ν > 0 and a T2 > 0 such that

∫ t+1

t

h(s)ds ≥ ν for t ≥ T2.

Let m be an integer satisfying m ≥ max{T1, T2}. Define

an =

∫ n

n−1

h(s)ds.

Then, from (17) and (18), it turns out that an ≥ ν > 0 for n ≥ m and

�∑
i=m

ai =

∫ �

m−1

h(s)ds ≤
∫ �

0

h(s)ds < K�2

for � ≥ m. Hence, by Lemma 6, condition (H) holds. The proof is complete. �
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