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Abstract

The purpose of this paper is to provide an oscillation theorem that can be applied to half-linear differential
equations with time-varying coefficients. A parametric curve by the coefficients is focused in order to obtain
our theorem. This parametric curve is a generalization of the curve given by the characteristic equation of
the second-order linear differential equation with constant coefficients. The obtained theorem is proved by
transforming the half-linear differential equation to a standard polar coordinates system and using phase
plane analysis carefully.
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1. Introduction

This paper is concerned with an oscillation theorem for the second-order nonlinear differential equation
with a damping term,

(qsp(x’))’ +a(t) Pp(X) + b(t) @p(X) = O, (1)

wherea andb are locally integrable functions df), o) and @, is a real-valued function defined by

|2P2z if z+0,
Dp(2) = ]
0 if z=0.

with a real numbep > 1. Equation (1) has the trivial solutidix, x) = (0,0). Whenp = 2, equation (1)
becomes the linear homogeneous differential equation with variable coefficients,

X’ +alt)x +b(t)x = 0. (2

It is well-known that all solutions of (1) are unique for given initial conditions and continuable in the future
as well as those of (2) are (see, for example, [2, 5]). In addition to this property, many commonalities are
seen in the asymptotic behavior of solutions of (1) and (2), such as oscillation and stability. For example,
seell,3,7,8,10, 13, 14, 15, 16, 19, 20, 21]. Equation (1) is one of half-linear differential equations. About
half-linear differential equations, refer to the monograph [4] and the references therein.

Since all solutions of (1) are continuable in the future, they can be classified into two groups as follows:
a nontrivial solutionx of (1) is said to beoscillatoryif there exists a sequenét} tending toco such that
X(tn) = 0; otherwise, it is said to bronoscillatory

Letu = a(t) andv = b(t). Then, the poinfa(t), b(t)) is considered to move in th@, v)-plane. Let us
call that trajectory garametric curve We divide the first quadrant of tHe, v)-plane into two regions by
the curvev = (u/p)®:

Ri={(uVv):u>0 and 0<v < (u/p)°

R, = {(u,v):u>0 and v > (u/p)°}.
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Using phase plane analysis for a system equivalent to the half-linear differential equation (1), the present
author [18] gave two oscillation theorems and one nonoscillation theorem which can be determined by the
position of the parametric curve drawn by a given pair of coefficiaraisdb.

Theorem A. LetS be a boundedclosed and convex set Ry. If
(a(t),b(t)) € S for all sufficiently larget,

then all nontrivial solutions of1) are nonoscillatory

Theorem B. LetS be a bounded and closed setRn If
(a(t),b(t)) € S for all sufficiently larget,

then all nontrivial solutions of1) are oscillatory

Theorem C. LetS be a bounded set in the closuRe of R,. If ais periodic and non-constayand
(a(t),b(t)) € S for all sufficiently larget,

then all nontrivial solutions of1) are oscillatory

Theorems A, B and C are quite different from conventional oscillation theorems and non-oscillation
theorems. It is easy to draw a parametric curve by a simple numerical simulation. The advantage of these
theorems is to be able to judge whether all nontrivial solutions of (1) oscillate or not by only drawing
one figure of the parametric curve. However, Theorems A, B and C cannot be applied the case that the
parametric curve does not stay in the first quadrant or it crosses thewarig/ p)°. The following result
overcomes this weakness.

Theorem 1. Suppose that the coefficiemts bounded from abovéf

00 _@p} .
[ fo-[20)jr=-

then all nontrivial solutions of1) are oscillatory

Theorem 1 is new even in the special case that2. If the parametric curve remains in a bounded and
closed se€ c Ry, then there exists @ > 0 such that

b(t) - (&;)')p >u for t>0.

Hence, condition (3) inevitably holds. This means that Theorem 1 improves Theorem B.

2. Proof of the main theorem

Lety = @p(x’) as a new variable. Then we can rewrite equation (1) as the planar system

X/ = QDD* (y)’

4
Y = —a()y - b)), )

wherep* is the number satisfying

E + i* =1

p P
Since(p — 1)(p* — 1) = 1, the numberp* is also greater thah. Let (¢,7) be a vector inR? andty be a
nonnegative number. Because of the uniqueness of solutions to the initial conditions, we can find only one
solutionx of (1) satisfying tha{x(to), X' (to)) = (£, ). Let(x,y) be the solution of (4) corresponding to the
solutionx of (1). Then the initial condition of the solutiofx, y) is that(X(to), y(to)) = (&, @p(n)) € R2.
The projection of the solutio(x, y) of (4) onto the phase plarig? becomes a curve starting at the point
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(&, @p(m)). We call this curve aolution curve We may consider that the poii(t), y(t)) moves on the
solution curve asincreases.
Using generalized polar coordinates by

x=rcosfd and y= dy(rsing),
wheref # nr/2 (n € N), we can transform system (4) into

, _ . sinfcosé

r'=r b-1 [p 1-a(t)tand
]

_ﬂ[ _1+ﬂ+ﬂ‘
p-1 tang |tang|P

This change of variables is often called the generalRdder transformation(see, for example, [2, 4, 6,
9]). By the Piifer transformation, a pair of the functionsand @ satisfying thatr(to) cosé(ts) = ¢ and
r(to) siné(tp) = n becomes a solution of (5) except for the tilnghen the solution curve corresponding to
the solution(x, y) of (4) crosses the-axis or they-axis. If the solution curve does not cross thaxis and
they-axis, the pair of the functionsandéd satisfies system (5) on the interygj, ).

Suppose that the solution curve crosses the negatwvas. Then there exists@a> ty such thatx(r) <
0 = y(7). In other words, the poir(ix(t), y(t)) is on the negative-axis att = 7. Let us consider about how
the point(x(t), y(t)) moves after that. Judging from the vector field of (4), there are three possibilities. Since
X (1) = @p(y(r)) = 0, the point(x(t), y(t)) moves up or down vertically (parallel to tlyeaxis), or it stays
in the same place on the negatix@xis. Note that ib(t) > O for t > O, then the poin{x(t), y(t)) does not
move down vertically. From the vector field of (4), we also see that the coeffigibas to be zero on the
time interval when the poir(x(t), y(t)) stays on the negativeaxis. Of course, the solution curve does not
necessarily cross the negatixaxis at the time when the coefficidnts zero.

b(t)
| tan 6|P-2 ]
(5)

/

Proof of Theorem 1. We proceed by contradiction. Suppose that there exists a nonoscillatory sadofion
(1). Then we can find & > 0 such thatx(t) > 0 or x(t) < O fort > T. We consider only the latter, because
the former is carried out in the same way. lydie the functions offiT, co) satisfyingy(t) = @p(X'(t)) for

> T. Recall that the pair of the functionsandy is the solution of (4) starting frorit. Consider the
solution curve corresponding to the solutipqy) of (4). Since the solution curve is the locus of the point
(x(1), y(t)), the point(x(T), y(T)) is on the solution curve. From the above assumption of the solutibn
turns out that the solution curve ultimately remains in the left half-plane. We divide the discussion into two
cases: (i) the solution curve crosses the negatiagis and (ii) it does not cross the negatkraxis.

Case (i): Note that the intersection between the solution curve and the negaiigis not necessarily
only one. The solution curve can even intersect the negatasas infinitely many times. Lanbe the num-
ber of the intersections. Then € N U {c0}. For convenience, we write the 48t2,...,mjor{1,2,3,...}
asS. Let x, be thex-coordinate of ther-th intersection withn € S. The point(x(t), y(t)) either leaves
instantaneously from the intersectif, 0), or it stays for a while at the intersectigr,, 0). We can find
two sequencefiy} and{s,} with T < t, < s, < ty;1 (n € S) satisfying

=X, Iif te/[ty, s =0 if te[ty,s)
X(t) and y(t)
# X, Otherwise #+ 0 otherwise
Here, we regarth,.; asco. We divide the se$ into two subsets as follows.
Si={nheS:th<sy) and S, ={neS:t,=5s).

As mentioned in the paragraph just before entering the proof €ifS;, thenb(t) = 0 for t € [t,, s]. If
n e Sy, then the value al(t,) is not necessarily zero. Its value may be positive or negative.
Letr andé be the functions ofiT, o) satisfying

X(t) =r(t)coso(t) and y(t) = Dp(r(t) siné(t)).
Sincex(t) < Ofort > T, we may assume that

}n <6(t) < § for t>T. (6)
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Note thatd(t) = = for t € [ty, $,]. The pair of the functions and@ is a solution of (5) as long as¢? [t,, S.].
Hence, from the second equation of (5) it follows that

sin?o(t) a(t) b(t)
o0 =-—771 tan o) |tane(t)|p]
__ s, a0 ( lagt)] )"_ ( o)l )" b(t) ] @)
- op-1 tan6(t) |\ pltano(t)l plitano(t)l)  [tanea(t)|P
fort ¢ [t,, sa]. Defineh(x) = (x|/p)P + x+ p— 1for x € R. Since
d Dp(X)
h(x) = +1 and h(-p)=0

dx
we see thal(x) > 0 for x € R. We therefore conclude that
sin?6(t) { (|a(t)|) }
M) - ——m———
R CER =0 G
fort ¢ [tn, So]. This inequality can be rewritten as

pr-1

%cbp(tan o(t)) < —b(t) + (@)p

Using the inequality above, we can estimate that
Dp(tan O(t)) — Pp(tand(T)) = Pp(tané(ty)) — Pp(tané(T)) + Pp(tané(tz)) — Pp(tano(s1))
+ Dp(tan6(t3)) — Dp(tan8(sy)) + - - - + Pp(tan6(t)) — Dp(tano(sn))

o5 -2
[ (2

for t € (s, thy1). Taking into account that € S; impliesb(t) = O for t € [t,, $,], we obtain

oo~ (B9 e [*ooo- ('a(t)')}d”Zf:l{b(‘)‘(@)p}dt
[l (2}e-5 Cfo- (32
(2o 5 o2
o ()5, Cfo- (2}

€Sy i

2 [ oo (5 o

ieS, i

fT {b(t) (|a(t)|) }dt Zl fs v 1{b(t) (|a(t)|)}
+fm{b(t)—(@) }‘“‘gfn {(@) }dt
£y f {b(t) ('a(t)l) }dt

€Sy

f:{b(t) (|a(t)|)}dt+|2;‘ S‘ 1{b(t) (la(t)|)}



Hence, by condition (3), we have

o2 - (2 - (22}

From this and (8) it turns out that
tand(t) » —o ast — oo;

that is,6(t) \, 7/2 ast — oo, and thereforesin?(t) — 1 ast — oo. Sincea is bounded from above, we
can find ar; > T satisfying

sin?o(t) h( a(t)

1
— for t> 1.
p—1 tane(t))>2 ortzmn

Using (7) again, we get

L SINO(t) a(t) la®)l \°. b
0= h(tane(t)) - ( p|tan9(t)|) * |tane(t)|p]
1 sin?o(t) la(t)|\P
=727 (p- Diana@p [b(t)_(T)] ®)

fort > r;. From (3) it follows that there existsm@a > 71 such that

f{b(s) ('afos)') }ds >0 for t>1s. (10)
Letrs3 = 15 + 27 and

sina(t)
vy= min

Tlgtlg‘rg m
Then, by (9) and (10), we have

0(r3) — O(11) < — %(Ts —-T1) - va: {b(t) (la(t)l) }

This contradicts (6). Thus, the proof of case (i) is complete.
Case (ii): As in the proof of case (i), we consider the pair of the functiceasdd. Since the solution
curve does not cross the negatiaxis, the pair is a solution of (5) dfT, o), and therefore,
sin?o(t)

h( a(t) )_( jat) )p+ b(t) }
p-1 tano(t) pltan 4(t)| [tano(t)|P

fort > T. Hence, using the same way as in the case (ii), we can obtain

g(t) = -

Dp(tanb(t)) — Pp(tand(T)) = —f{b(s) (|a(ps)l) }ds for t>T.

By using this and (3), we can choosea< T such that

, 1 sin26(t)
“0 <=5~ - Dimnor

()—('ag)') ] for t> 7.

The rest of the proof is the same as that of case (i). Thus, all nontrivial solutions of (1) are oscillaiory.

3. Example and simulation
Consider the nonlinear differential equation

((x’)3)' +(c+reost)(xX)®+ (d+rsint)x® = 0. (11)

Note thatp = 4, a(t) = ¢+ rcost andb(t) = d + rsint for t > 0 in equation (11). It is clear that the
parametric curve drawn by the coefficieatandb is a circle with radiug whose center ifc, d). Since

ait)<c+r for t>0,
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the coefficientris bounded from above. We obtain

_@p_ int— = a_go L (e 2,34
b(t) ( o ) =d+rsint 28(c+rcost) =d 555 |C +3cr +gr

: 1 2 2 1 2 3 1 4
+rsint— 2—56(cr (4cz+3r )cost+r (3c2+ 52| cos2t + crlcos3t + 5" cos4t|.

Hence, condition (3) holds provided that

256
Example 1. Letp =4, c = 2,d = 6 andr = 7. Then all nontrivial solutions of (11) are oscillatory.

d> L (c4 +3cr? + gr“). (12)

Itis clear that the numbers= 4, c = 2, d = 6 andr = 7 satisfy the inequality (12).

Y
v 1.0r

0.8

0.6 |

-5

Figure 1: The parametric curve drawn by a paia) = Figure 2: The solution curve of (4) with=4,c=2,d = 6,
2+ 7cost andb(t) = 6+ 7sint r =7, a(t) = 2+ 7cost andb(t) = 6 + 7sint satisfying the

initial condition (x(0), y(0)) = (0, 1)

xT
1.0¢
0.5¢F
TN
) 10 15 20 25

—0.5¢
—1.0¢
—1.5¢

Figure 3: The solution of (11) witlp = 4,c = 2, d = 6 and
r = 7 satisfying the initial conditior§x(0), x’'(0)) = (0, 1)

4. Final comment
As a classical oscillation theorem for the equation
y’+ct)y=0, (13)

wherec is a continuous function, the following Leighten Wintner criterion is very well-known (see, for
example, [12, 17]).
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Theorem D. All nontrivial solutions of(13) are oscillatory if

jomc(t)dt = co.

In the case thad is continuously differentiable of, «), equation (1) can be transformed into equation
(13), where

c(t) = b(t) — %az(t) - %a’(t).

Hence, it turns out that all nontrivial solutions of (2) are oscillatory if

o0 1 1, ~
fo {b(t) - 21az(t) - 5a (t)} dt = . (14)

If ais bounded, then condition (14) coincides with condition (3) wphea 2. This means that Theorem 1
is a partial generalization of the well-known result above.

Let p be any continuous and periodic function with peribd> 0. A periodic functionp is said to be
periodic with mean value zefb p is not identically zero and

.
f p(t) dt = O.
0

Recently, D8Iy et al. [3] gave the following oscillation theorem for equation (1).

Theorem E. Suppose thaa andb are periodic with mean value zero aftlis an indefinite integral ob
such that®,. (B) is also periodic with mean value zerd

.
fo {(p- Doy (B(Y) - a(t)|BE() dt > O,

where .
) = o0 [ (a9 - poy(9) s,
then all nontrivial solutions of1) are oscillatory

Theorem E is a generalization to equation (1) of oscillation theorems for equation (2) by Kwong and
Wong [11] and Sugie and Matsumura [20]. However, the coefficiamisdb have to be at least periodic
with mean value zero. Hence, Theorem E cannot be applied to Example 1 ba@adizare periodic but
not periodic with mean value zero. On the other hand, Theorem 1 can be applied evemaritkrare not
periodic.
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