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Abstract This study considers the quasilinear elliptic equation with a damping term,

div(D(u)∇u)+
k(|x|)
|x| x · (D(u)∇u)+ω2(|u|p−2u+ |u|q−2u

)
= 0,

wherex is an N-dimensional vector in
{
x ∈ RN : |x| ≥ α} for someα > 0 andN ∈ N \ {1};

D(u) = |∇u|p−2+ |∇u|q−2 with 1 < q ≤ p; k is a nonnegative and locally integrable function
on [α,∞); andω is a positive constant. A necessary and sufficient condition is given for all
radially symmetric solutions to converge to zero as|x| → ∞. Our necessary and sufficient
condition is expressed by an improper integral related to the damping coefficientk. The case
thatk is a power function is explained in detail.
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1 Introduction

In recent years, quasilinear equations of the (p,q)-Laplacian type have attracted special
attention not only because of their mathematical interest to researchers but also because
they have rich applications to various sciences. Physical applications have been reported in
many studies, for example, see [2, 3, 8, 10, 11, 19, 22] and the references therein. The (p,q)-
Laplacian type equations are initially derived from the study of stationary solutions of the
reaction-diffusion equation

ut = div(D(u)∇u)+c(u).
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Here,D(u) means|∇u|p−2+ |∇u|q−2 with 1< q≤ p. The diffusion term div(D(u)∇u) is usu-
ally called the (p,q)-Laplacianwhenp, q. The second termc(u) is the reaction term. The
mathematical interest in quasilinear equations with the (p,q)-Laplacian seems to be primar-
ily concentrated on the existence and multiplicity of positive solutions on a bounded domain
Ω of RN, the existence and nonexistence of nontrivial solutions onRN, and the nonlinear
eigenvalue problem (refer to [4, 7, 8, 10, 11, 15–17, 22, 24, 25]). In this study, we would like
to examine the structure of a (p,q)-Laplacian-type quasilinear equation from a different an-
gle.

The stationary solutionu of the above-mentioned reaction-diffusion equation satisfies

div(D(u)∇u)+c(u) = 0.

To relate the reaction term to the diffusion term, we chooseω2(ϕp(u)+ϕq(u)
)

asc(u), where
ω is a positive constant and

ϕr (u) =

 |u|
r−2u if u, 0,

0 if u= 0,

with r = p or r = q. It is well known that diffusion causes energy dissipation. Energy loss
might occur due to factors other than diffusion in real world applications. In this study,
considering another factor that leads to energy loss, we add a damping term and consider
the quasilinear elliptic equation

div(D(u)∇u)+
k(|x|)
|x| x · (D(u)∇u)+ω2(ϕp(u)+ϕq(u)

)
= 0. (1.1)

Here,x is anN-dimensional vector in an exterior domainGα
def
=

{
x ∈ RN : |x| ≥ α} for some

α > 0; N is an integer that is larger than 1;k is a nonnegative and locally integrable function
on [α,∞); andω is a positive constant. Letβ≥α. By asolutionof (1.1) we mean a functionu:
Gβ→ R that is continuously differentiable together with|∇u|q−2∇u and satisfies Eq. (1.1) on
Gβ. Our attention will be focused on the global convergence of radially symmetric solutions
of (1.1); that is, those solutions that depend only on|x|.

In Eq. (1.1), both the diffusion term and the damping term play a role in energy dissi-
pation. For this reason, many researchers might think that all radially symmetric solutions
always converge to zero. However, if the damping term is too strong, those solutions do
not decay to zero, and the so-called overdamping phenomenon occurs. The phenomenon of
overdamping is that a solution converging to a non-zero value exists. Then, we must con-
sider the limit of the damping term where the overdamping phenomenon does not occur.
The following theorem answers this question.

Theorem 1.1 Suppose that there exists anε0 > 0 and aδ0 > 0 such that|k(t)−k(s)| < ε0 for
all t ≥ α and s≥ α with |t− s| < δ0. Then, all radially symmetric solutions u of(1.1)satisfy
the property that u(x) and |∇u(x)| tend to zero as|x| → ∞ if and only if condition∫ ∞

α
φ−1


∫ t
α
eK(s)ds

eK(t)

dt=∞, (1.2)

whereφ−1 is the inverse function ofϕp+ϕq and K(t) =
∫ t

α

(
k(s)+

N−1
s

)
ds.
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To describe our second theorem, we introduce the following family of functions. A
functionh: [α,∞)→ [0,∞) is said to belong toF[IP] if

∞∑
n=1

∫ σn

τn

h(t)dt=∞

for every pair of sequences{τn} and{σn} satisfyingτn < σn < τn+1,

liminf
n→∞

(σn−τn) > 0.

The concept of integral positivity [IP] was introduced by Matrosov [18]. As typical exam-
ples, we can cite any function with a positive lower bound, and any nonnegative periodic
function such as sin2 t.

Theorem 1.2 Suppose that k belongs toF[IP] . Then, all radially symmetric solutions u of
(1.1)satisfy the property that u(x) and |∇u(x)| tend to zero as|x| →∞ if and only if condition
(1.2)holds.

Remark1.1 When there is no dampimg term, namely,k(t) = 0 for t ≥ α, the growth con-
dition (1.2) is satisfied (for details, see Section 5). Hence, from Theorem 1.1 and 1.2, all
radially symmetric solutions of (1.1) converge to zero. This means that the overdamping
phenomenon does not occur without the damping factor (which is consistent with common
knowledge).

Remark1.2 The assumption thatk is nonnegative is not essential in Theorems 1.1 and 1.2.
The valuek(t)+ (N−1/t) only has to be nonnegative fort ≥ α. Hence, Theorems 1.1 and
1.2 can be applied even if equation (1.1) has negative damping. To be precise, we need to
add the assumption that the functionk+ (N−1/t) belongs toF[WIP] in Theorem 1.1 (for the
definition ofF[WIP] , see Section 2). We need to further change the assumption thatk belongs
toF[IP] to the assumption thatk+ (N−1/t) belongs toF[IP] in Theorem 1.2.

2 Quasilinear ordinary differential equations

Consider the quasilinear equation with damped term,(
φ(ξ′)

)′
+h(t)φ(ξ′)+ω2φ(ξ) = 0, (2.1)

where′ = d/dt, h is a nonnegative and integrable function on [α,∞), andω is a positive
constant. Here,φ is a continuous and strictly increasing function onR satisfyingηφ(η) > 0
if η , 0, andφ(η) tends to±∞ asη→ ±∞. Hence,φ(0) = 0, and the inverse functionφ−1

exists onR. The origin (ξ,ξ′) = (0,0) is clearly the only equilibrium of (2.1).
Let χ(t) = (ξ(t), ξ′(t)) andχ0 ∈ R2, and let∥ · ∥ be any suitable norm. We denote the

solution of (2.1) through (t0,χ0) by χ(t; t0,χ0). The equilibrium is said to bestableif, for
anyε > 0 and anyt0 ≥ α, there exists aδ(ε, t0) > 0 such that∥χ0∥ < δ implies∥χ(t; t0,χ0)∥ < ε
for all t ≥ t0. The equilibrium is said to beattractiveif, for any t0 ≥ α, there exists aδ0(t0)> 0
such that∥χ0∥ < δ0 implies∥χ(t; t0,χ0)∥→ 0 ast→∞. The equilibrium is said to beglobally
attractiveif, for any t0 ≥ α and anyχ0 ∈R2, there is aT(t0,χ0,η) > 0 such that∥χ(t; t0,χ0)∥ <
η for all t ≥ t0+T. The equilibrium isasymptotically stableif it is stable and attractive. The
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equilibrium isglobally asymptotically stableif it is stable and globally attractive. Refer to
the books [1, 5, 6, 9, 12, 13, 20, 21, 26] as to these definitions.

The purpose of this section is to present criteria for judging whether the equilibrium of
(2.1) is globally asymptotically stable. To accomplish this, we set the following conditions
on the nonlinear functionφ:

there exists a positive functionf such thatφ−1(−ab) ≥ − f (a)φ−1(b) or

φ−1(ab) ≤ f (a)φ−1(b) for all a> 0 andb> 0;
(2.2)

there exists a positive functiong such thatφ−1(−ab) ≤ −g(a)φ−1(b) and

φ−1(ab) ≥ g(a)φ−1(b) for all a> 0 andb> 0
(2.3)

In the next section, we will give examples in which conditions (2.2) and (2.3) are satisfied.
The following result gives a necessary condition for the global asymptotic stability of

the equilibrium of (2.1).

Theorem 2.1 Let condition(2.2)hold. If the equilibrium of(2.1) is globally asymptotically
stable, then ∫ ∞

α
φ−1


∫ t
α
eH(s)ds

eH(t)

dt=∞, (2.4)

where H(t) =
∫ t

α
h(s)ds.

To show a sufficient condition that guarantees the equilibrium of (2.1) is globally asymp-
totically stable, we define another family of functions in addition toF[IP] . A function h :
[α,∞)→ [0,∞) is said to belong toF[WIP] if

∞∑
n=1

∫ σn

τn

h(t)dt=∞

for every pair of sequences{τn} and{σn} satisfyingτn < σn < τn+1,

liminf
n→∞

(σn−τn) > 0 and limsup
n→∞

(τn+1−σn) <∞.

The concept of the weak integral positivity [WIP] was first published in Hatvani [14]. This
concept is much broader than that of integral positivity. Ifh decreases to zero monotonically,
then it does not belong toF[IP] . However, there is a possibility thath belongs toF[WIP] even
if liminf t→∞h(t) = 0. For example, the functions 1/t and sin2t/t belong toF[WIP] (for the
proof, see [23, Proposition 2.1]).

Using the concept of the weak integral positivity [WIP], we can state the following
result.

Theorem 2.2 Let condition(2.3)hold. Suppose that there exist anε0 > 0 and aδ0 > 0 such
that |h(t)−h(s)| < ε0 for all t ≥ α and s≥ α with |t− s| < δ0 and suppose that h belongs to
F[WIP] . If condition(2.4) is satisfied, then the equilibrium of(2.1) is globally asymptotically
stable.

If h is uniformly continuous on [α,∞), then the first assumption ofh in Theorem 2.2 is
inevitably satisfied. Even ifh belongs toF[WIP] , Theorem 2.2 does not hold without the first
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assumption ofh. However, the first assumption ofh becomes unnecessary ifh belongs to
F[IP] .

Theorem 2.3 Let condition(2.3)hold. Suppose that h belongs toF[IP] . If condition(2.4) is
satisfied, then the equilibrium of(2.1) is globally asymptotically stable.

To prove Theorems 2.1–2.3, we use phase plane analysis. Letx= v andy = φ(v′)/ω be
new variables. Then, we can transform Eq. (2.1) into the planar equivalent system

x′ = φ−1(ωy),

y′ = −ωφ(x)−h(t)y.
(2.5)

System (2.5) has the zero solution (x, y) ≡ (0,0), which corresponds to the equilibrium of
(2.1).

Proof of Theorem2.1 We show that there exists a solution of (2.5) that does not approach
the origin provided that condition (2.4) is satisfied.

By way of contradiction, we suppose that the equilibrium of (2.1) is globally asymptot-
ically stable and ∫ ∞

α
φ−1


∫ t
α
eH(s)ds

eH(t)

dt<∞.

Because of (2.2), we need to consider two cases: (i)φ−1(−ab) ≥ − f (a)φ−1(b) for all a > 0
andb > 0, and (ii)φ−1(ab) ≤ f (a)φ−1(b) for all a > 0 andb > 0. We will mention only the
former case, because the latter case is proved in the same way.

We can choose aT ≥ α so large that∫ ∞

T
φ−1


∫ t
α
eH(s)ds

eH(t)

dt<
1

2 f (ω2φ(1))
. (2.6)

Consider the solution ( ˜x, ỹ) of (2.5) passing through (1,0) att = T. Since

x̃′(T) = φ−1(ωỹ(T)) = 0 and ỹ′(T) = −ωφ(x̃(T))−h(t)ỹ(T) = −ωφ(1)< 0,

the solution curve of ( ˜x, ỹ) enters the fourth quadrant

Q4
def
=

{
(x, y) : x> 0 and y < 0

}
in a right-hand neighborhood oft = T. Considering the vector field inQ4, we see that the
solution curve does not directly move to the first quadrant

Q1
def
= {(x, y) : x> 0 andy > 0}

from Q4 ast increases. We also see that 0≤ x̃(t) < 1 as long as the solution curve is inQ4.
Suppose that the solution curve of ( ˜x, ỹ) crosses the straight linex = 1/2 in Q4. Then,

we can find aT∗ > T such that ˜x(T∗) = 1/2 andx̃(t) > 1/2 for T ≤ t < T∗. Since

ỹ′(t)+h(t)ỹ(t) = −ωφ(x̃(t)) ≥ −ωφ(1)

for T ≤ t < T∗, it follows that(
eH(t)ỹ(t)

)′ ≥ −ωφ(1)eH(t) for T ≤ t < T∗.
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We integrate both sides of this inequality fromT to t < T∗ to obtain

eH(t)ỹ(t) ≥ eH(T)ỹ(T)−ωφ(1)
∫ t

T
eH(s)ds= −ωφ(1)

∫ t

T
eH(s)ds.

Hence, by (2.5), we have

x̃′(t) = φ−1(ωỹ(t)) ≥ φ−1

−ω2φ(1)

∫ t
T

eH(s)ds

eH(t)


≥ − f (ω2φ(1))φ−1


∫ t
T

eH(s)ds

eH(t)


for T ≤ t < T∗. From this estimation and (2.6), we see that

x̃(T∗) ≥ x̃(T)− f (ω2φ(1))
∫ T∗

T
φ−1


∫ t
T

eH(s)ds

eH(t)

dt

≥ 1− f (ω2φ(1))
∫ ∞

T
φ−1


∫ t
α

eH(s)ds

eH(t)

dt>
1
2
.

This contradicts the assumption that ˜x(T∗) = 1/2. Hence, the solution curve does not inter-
sect the straight linex= 1/2.

Therefore, we can conclude that the solution curve of ( ˜x, ỹ) stays in the region{
(x, y) : 1/2< x≤ 1 and y ≤ 0

}
for t ≥ T. In other words, the solution ( ˜x, ỹ) of (2.5) does not approach the origin. Hence, the
equilibrium of (2.1) is not globally asymptotically stable. This is a contradiction. Thus, the
proof of Theorem 2.1 is complete. ⊓⊔

It is convenient to introduce some notation to prove Theorem 2.2. We denote functions
Φ andΨ by

Φ(x) =
∫ x

0
ωφ(ξ)dξ and Ψ (y) =

∫ y

0
φ−1(ωη)dη,

respectively. Sinceφ is strictly increasing andηφ(η) > 0 if η , 0, we see thatΦ(0)= 0;Φ(x)
is increasing forx≥ 0 and decreasing forx≤ 0, andΦ(x) diverges to∞ asx→±∞. Let

Φ̃(x) =Φ(x)sgnx.

Then,Φ̃ is an increasing function onR, andΦ̃(x) tends to±∞ asx→±∞. Hence, the inverse
functionΦ̃−1 exists onR. The functionΨ has the same property. Let

Ψ̃ (y) = Ψ (y)sgny.

Then,Ψ̃ also has an inverse functioñΨ−1 that is defined onR. Moreover, we define

∆(y) = yφ−1(ωy).

From the property ofφ−1, it follows that∆(0)= 0;∆(y) is increasing fory≥ 0 and decreasing
for y ≤ 0.
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To prove Theorems 2.2 and 2.3, we need to show two facts: (i) stability of the equi-
librium of (2.1), and (ii) global attractivity. It is relatively easy to prove fact (i). However,
detailed mathematical analysis and considerable patience are necessary to demonstrate fact
(ii). For this reason, we first show that the equilibrium of (2.1) is stable.

Let (x, y) be any solution of (2.5) with the initial timet0 ≥ α and define

v(t) =Φ(x(t))+Ψ (y(t)). (2.7)

Then, we obtain

v′(t) = ωφ(x(t))x′(t)+φ−1(ωy(t))y′(t)

= ωφ(x(t))φ−1(ωy(t))+φ−1(ωy(t))
(− ωφ(x(t))−h(t)y

)
= −h(t)y(t)φ−1(ωy(t)) = −h(t)∆(y(t))

for t ≥ t0. Sinceh(t) ≥ 0 for t ≥ 0, we see that

v(t) ≤ v(t0) for t ≥ t0.

Hence, we obtain the following result.

Proposition 2.4 The equilibrium of(2.1) is stable.

We are now ready to prove Theorems 2.2 and 2.3.

Proof of Theorem2.2 By virtue of Proposition 2.4, we only have to show that the equilib-
rium of (2.1) is globally attractive. As shown already,

v′(t) = −h(t)∆(y(t)) ≤ 0

for t ≥ t0; namely,v is a decreasing function on [t0,∞). It also follows from (2.7) thatv(t) ≥ 0
for t ≥ t0. Hence, the functionv has a limiting valuev∗ ≥ 0. If v∗ = 0, the solution (x, y) of
(2.5) clearly tends to the origin ast→∞. This is our desired conclusion. To complete the
proof, we will show thatv∗ is not positive.

By way of contradiction, we suppose thatv∗ is positive. Then, we can find aT1 ≥ t0
satisfying

0< v∗ ≤ v(t) ≤ 2v∗ for t ≥ T1. (2.8)

We advance the argument by dividing it into two steps. In the first step, we consider the
asymptotic behavior of the second componenty of the solution and show thaty approaches
zero. Hence, by (2.7), we conclude that limt→∞ x(t)= Φ̃−1(v∗)> 0 or limt→∞ x(t)= Φ̃−1(−v∗).
In the second step, we show that the solution curve of (x, y) does not approache the points(
Φ̃−1(v∗),0

)
and

(
Φ̃−1(−v∗),0). This is a contradiction.

Step (1): If liminft→∞ |y(t)| > 0, then we can choose aλ > 0 and aT2 ≥ T1 such that
|y(t)| > λ for t ≥ T2. LetΓ =min{∆(λ),∆(−λ)}. Then, we have

v′(t) = −h(t)∆(y(t)) ≤ −Γh(t)

for t ≥ T2. Integrating this inequality fromT2 to t, we obtain

v(t)− v(T2) =
∫ t

T2

v′(s)ds≤ −Γ
∫ t

T2

h(s)ds.
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Sinceh belongs toF[WIP] , we see that

lim
t→∞
Γ

∫ t

T2

h(s)ds=∞.

On the other hand, from (2.8), we get

v(t)− v(T2) ≥ v∗ −2v∗ = −v∗

for t ≥ T2. This is a contradiction. Thus, we conclude that liminft→∞ |y(t)| = 0.
Suppose that limsupt→∞ |y(t)| > 0, and let

µ = limsup
t→∞

|y(t)|.

Then, we can choose anε so small that

0< ε <min

µ2 , Ψ̃−1(v∗)
2
, − Ψ̃

−1(−v∗)
2

 (2.9)

and
4ε
δ0
+2(1+2ε0)ε < ωmin

{
φ
(
Φ̃−1(M)

)
, −φ

(
Φ̃−1(−M)

)}
, (2.10)

whereM =M(ε)= v∗−max
{
Ψ (2ε), Ψ (−2ε)

}
. In fact, the left-hand side of (2.10) approaches

0 asε→ 0. On the other hand, sinceM(ε) tends tov∗ asε→ 0, the right-hand side of (2.10)
approachesωmin

{
φ
(
Φ̃−1(v∗)

)
, −φ

(
Φ̃−1(−v∗)

)}
. Note thatM(ε) is positive for anyε > 0 that

satisfies (2.9).
It follows from (2.9) that

liminf
t→∞

|y(t)| = 0< 2ε < µ = limsup
t→∞

|y(t)|.

Since the inferior limit of|y(t)| is zero, we can find at∗ > T1 so that|y(t∗)| < ε. Moreover,
since the superior limit of|y(t)| is larger than 2ε, we can choose numberss1, τ1, andσ1 such
thats1 = inf

{
t > t∗ : |y(t)| > 2ε

}
, τ1 = sup

{
t < s1 : |y(t)| < ε}, andσ1 = inf

{
t > s1 : |y(t)| < ε}. It

is easy to verify that|y(s1)| = 2ε, |y(τ1)| = |y(σ1)| = ε, and|y(t)| ≥ ε for τ1 < t < σ1. Usingσ1

instead oft∗, we defineτ2 andσ2 similarly toτ1 andσ1, and so on. Then, we obtain numbers
sn, τn, andσn with n∈N such thatsn = inf

{
t > σn−1 : |y(t)| > 2ε

}
, τn = sup

{
t < sn : |y(t)| < ε},

andσn = inf
{
t > sn : |y(t)|< ε}. It is clear thatT1 < τn < sn <σn < τn+1 andτn→∞ asn→∞.

The three sequences{sn}, {τn}, and{σn} satisfy|y(sn)| = 2ε, |y(τn)| = |y(σn)| = ε, and

|y(t)| ≥ ε for τn < t < σn, (2.11)

|y(t)| ≤ 2ε for σn < t < τn+1, (2.12)

ε < |y(t)| < 2ε for τn < t < sn. (2.13)

From (2.8), we see thatΦ(x(t)) ≤ v(t) ≤ 2v∗ for t ≥ T1. Hence, we have

Φ̃−1(−2v∗) ≤ x(t) ≤ Φ̃−1(2v∗) for t ≥ T1,

and therefore,
|φ(x(t))| ≤max

{
φ
(
Φ̃−1(2v∗)

)
, −φ

(
Φ̃−1(−2v∗)

)}
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for t ≥ T1. For simplicity, letL =max
{
φ
(
Φ̃−1(2v∗)

)
, −φ

(
Φ̃−1(−2v∗)

)}
> 0. Using (2.5) and

(2.13), we can estimate that

3ε2 = y2(sn)−y2(τn) = 2
∫ sn

τn

y(t)y′(t)dt

= −2ω
∫ sn

τn

φ(x(t))y(t)dt−2
∫ sn

τn

h(t)y2(t)dt

≤ 2ω
∫ sn

τn

|φ(x(t))||y(t)|dt≤ 4εω
∫ sn

τn

|φ(x(t))|dt

≤ 4Lεω(sn−τn).

Thus, we can estimate that

sn−τn ≥
3ε

4Lω
def
= m> 0

for eachn∈N. It is clear that the positive numberm is independent ofn∈N. Since [τn, sn] ⊊
[τn,σn], we conclude that liminfn→∞(σn−τn) ≥m> 0.

Define
S =

{
n ∈ N : h(σn) ≥ 1+ε0

}
,

and let cardS denote the number of elements of the setS. We show that cardS is finite. By
way of contradiction, we suppose that cardS is infinite. From (2.11), we see that

∆(y(t)) ≥min
{
∆(ε), ∆(−ε)} def

= ρ

for τn ≤ t ≤ σn. As shown above,τn+m≤ σn for eachn ∈ N. Hence,

∆(y(t)) ≥ ρ for σn−m≤ t ≤ σn. (2.14)

From the assumption ofh(t), it follows that

|h(t)−h(σn)| < ε0 for σn−δ0 < t < σn+δ0.

Hence,n ∈ S implies that

1+ε0−h(t) ≤ h(σn)−h(t) ≤ |h(t)−h(σn)| < ε0

for σn−δ0 < t < σn+δ0; namely,

h(t) > 1 for σn−δ0 < t < σn+δ0. (2.15)

Let 2d =min{δ0,m}. Then, by (2.14) and (2.15), we have∫ σn

σn−d
h(t)∆(y(t))dt> ℓρ if n ∈ S.

Using this inequality, we get

v∗ − v(t0) ≤ v(t)− v(t0) =
∫ t

t0

v′(s)ds= −
∫ t

t0

h(s)y2(s)ds

≤ −
∑
n∈S

∫ σn

σn−d
h(t)∆(y(t))dt= −dρcardS = −∞,

which is a contradiction.
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Since cardS is finite, we can find anN ∈ N such that

h(σn) < 1+ε0 for n≥ N. (2.16)

We next show thatτn+1−σn ≤ δ0 for n≥ N. Suppose there exists ann0 ≥ N such that

σn0 +δ0 < τn0+1. (2.17)

From (2.7), (2.8), and (2.12), we obtain

Φ(x(t)) = v(t)−Ψ (y(t)) ≥ M > 0

for σn0 ≤ t ≤ τn0+1. Hence, it is necessary to address two cases: (a)x(t) ≥ Φ̃−1(M) > 0 for
σn0 ≤ t ≤ τn0+1, and (b)x(t) ≤ Φ̃−1(−M) < 0 forσn0 ≤ t ≤ τn0+1. Note that

h(t) < ε0+h(σn0) < 1+2ε0 for σn0 ≤ t ≤ σn0 +δ0

because of (2.14) and (2.16). In the former case, using (2.5), (2.10), (2.12), and (2.17), we
get

y′(t) = −ωφ(x(t))−h(t)y(t) ≤ −ωφ
(
Φ̃−1(M)

)
+h(t)|y(t)|

< −4ε
δ0
−2(1+2ε0)ε+2(1+2ε0)ε = −4ε

δ0

for σn0 ≤ t ≤ σn0 +δ0. In the latter case, we get

y′(t) = −ωφ(x(t))−h(t)y(t) ≥ −ωφ
(
Φ̃−1(−M)

)
−h(t)|y(t)|

>
4ε
δ0
+2(1+2ε0)ε−2(1+2ε0)ε =

4ε
δ0

for σn0 ≤ t ≤ σn0 +δ0. Thus, in either case, we have

|y′(t)| > 4ε
δ0

for σn0 ≤ t ≤ σn0 +δ0.

Integrating this inequality fromσn0 toσn0 +δ0, we obtain

|y(σn0 +δ0)|+ |y(σn0)| ≥
∣∣∣∣∣∣∣
∫ σn0+δ0

σn0

y′(t)dt

∣∣∣∣∣∣∣ =
∫ σn0+δ0

σn0

|y′(t)|dt> 4ε.

However, it follows from (2.12) and (2.17) that

|y(σn0 +δ0)|+ |y(σn0)| ≤ 4ε.

This is a contradiction. We therefore conclude that limsupn→∞(τn+1−σn) ≤ δ0 <∞.
Recall thatτn < σn < τn+1 and liminfn→∞(σn− τn) ≥m> 0. Sinceh belongs toF[WIP] ,

we see that
∞∑

n=1

∫ σn

τn

h(t)dt=∞. (2.18)

On the other hand, it follows from (2.11) that∫ ∞

t0

v′(t)dt= −
∫ ∞

t0

h(t)∆(y(t))dt≤ −ρ
∞∑

n=1

∫ σn

τn

h(t)dt.
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Since ∫ ∞

t0

v′(t)dt= lim
t→∞
v(t)− v(t0) = v∗ − v(t0) < 0,

we obtain
∞∑

n=1

∫ σn

τn

h(t)dt≤ v(t0)− v∗
ρ

<∞.

This contradicts (2.18). Thus, we conclude that limsupt→∞ |y(t)| = µ = 0. The proof of
Step (1) is now complete.

Step (2): From the conclusion of Step (1), it follows that limt→∞ x(t) = Φ̃−1(v∗) > 0 or
limt→∞ x(t) = Φ̃−1(−v∗) < 0. Considering the vector field of (2.5), we see that the solution
(x, y) must approach the point

(
Φ̃−1(v∗),0

)
or the point

(
Φ̃−1(−v∗),0

)
by ultimately passing

through the region {
(x, y) : x> Φ̃−1(v∗) and y < 0

}
or the region {

(x, y) : x< Φ̃−1(−v∗) and y > 0
}
.

Hence, we can find aT3 ≥ t0 such that

x(t) > Φ̃−1(v∗) and y(t) < 0 for t ≥ T3 (2.19)

or
x(t) < Φ̃−1(−v∗) and y(t) > 0 for t ≥ T3. (2.20)

We consider only the former case, because the latter case is proved in the same way by using
(2.20) instead of (2.19). By (2.5) and (2.19), we have

y′(t)+h(t)y(t) = −ωφ(x(t)) < −ωφ
(
Φ̃−1(v∗)

)
for t ≥ T3. Multiplying both sides of this inequality byeH(t) and integrating fromT3 to t, we
obtain

y(t) < y(t)−e(H(T3)−H(t))y(T3) < −ωφ
(
Φ̃−1(v∗)

) ∫ t
T3

eH(s)ds

eH(t)

for t ≥ T3. Sinceh(t) ≥ 0 for t ≥ α, it is clear that∫ ∞

α
eH(t)dt=∞.

Hence, we can choose aT4 ≥ T3 such that∫ t

T3

eH(s)ds>
1
2

∫ t

α
eH(s)ds for t ≥ T4.

Using this inequality, we can estimate that

y(t) < − ω
2
φ
(
Φ̃−1(v∗)

) ∫ t
α
eH(s)ds

eH(t)
for t ≥ T4.

From this estimation and condition (2.3), we see that

x′(t) = φ−1(ωy(t)) < φ−1

− ω2

2
φ
(
Φ̃−1(v∗)

) ∫ t
α
eH(s)ds

eH(t)


≤ −g

(
ω2

2
φ
(
Φ̃−1(v∗)

))
φ−1


∫ t
α
eH(s)ds

eH(t)


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for t ≥ T4. We therefore conclude that

Φ̃−1(v∗) < x(t) < −g
(
ω2

2
φ
(
Φ̃−1(v∗)

))∫ t

T4

φ−1


∫ t
α
eH(s)ds

eH(t)

dt+ x(T4)

= −g
(
ω2

2
φ
(
Φ̃−1(v∗)

))∫ t

α
φ−1


∫ t
α
eH(s)ds

eH(t)

dt

+ g

(
ω2

2
φ
(
Φ̃−1(v∗)

))∫ T4

α
φ−1


∫ t
α
eH(s)ds

eH(t)

dt+ x(T4).

This contradicts condition (2.4). The proof of Step (2) is now complete.
Theorem 2.2 is thus proved. ⊓⊔

Proof of Theorem2.3 Let (x, y) be any solution of (2.5) with the initial timet0 ≥ α, and letv
be the function defined by (2.7). Since the damping coefficienth is nonnegative, the function
v has a limiting valuev∗ ≥ 0. Recall that we showed thatv∗ = 0 using two steps in the proof
of Theorem 2.2. Theorem 2.3 can be proved in the same manner as Theorem 2.2.

Recall thatF[IP] ⊊F[WIP] . In the first step, we can conclude that liminft→∞ |y(t)| by using
h ∈ F[IP] instead ofh ∈ F[WIP] . Suppose thatµ = limsupt→∞ |y(t)| > 0. Then, as in the proof
of Theorem 2.2, we can define three sequences{sn}, {τn}, and{σn} that satisfy|y(sn)| = 2ε,
|y(τn)| = |y(σn)| = ε and inequalities (2.11)–(2.13), whereε is a small number satisfying
(2.9) and (2.10). We can also show that liminfn→∞(σn− τn) ≥m for some positive number
m. Hence, from the assumption thath belongs toF[IP] , we obtain the estimation (2.18).
However, from (2.11) we have

−∞ < v∗ − v(t0) =
∫ ∞

t0

v′(t)dt= −
∫ ∞

t0

h(t)∆(y(t))dt≤ −ρ
∞∑

n=1

∫ σn

τn

h(t)dt,

whereρ =min
{
∆(ε), ∆(−ε)}. This contradicts (2.18). Hence, we conclude thatµ = 0.

The proof of second step is the same as that of Theorem 2.2. ⊓⊔

The following results are direct conclusions of Theorems 2.1–2.3.

Theorem 2.5 Let conditions(2.2) and (2.3) hold. Suppose that there exists anε0 > 0 and
a δ0 > 0 such that|h(t)−h(s)| < ε0 for all t ≥ α and s≥ α with |t− s| < δ0 and suppose that
h belongs toF[WIP] . Then, the equilibrium of(2.1) is globally asymptotically stable if and
only if condition(2.4)holds.

Theorem 2.6 Let conditions(2.2)and(2.3)hold. Suppose that h belongs toF[IP] . Then, the
equilibrium of (2.1) is globally asymptotically stable if and only if condition(2.4)holds.

3 Functions which satisfy conditions(2.2)and (2.3)

Eq. (2.1) expressed using the nonlinear functionφ satisfies (2.2) and/or (2.3). Of course,
whenφ is linear, that is,z= φ(w) = w for w ∈ R, the inverse functionφ−1 satisfiesw =
φ−1(z) = z. Therefore, conditions (2.2) and (2.3) are satisfied withf = φ−1 andg = φ−1,
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respectively. For this reason, Eq. (2.1) is a natural generalization of the damped linear oscil-
lator

x′′ +h(t)x′ +ω2x= 0.

In this sense, we may call Eq. (2.1) thedamped quasilinear oscillator.
We give several examples of functions that satisfy conditions (2.2) and (2.3) in this

section. First, we define

z= ϕp(w) =

 |w|
p−2w if w , 0,

0 if w = 0,

with w ∈ R andp> 1. Then,ϕp is a continuous and strictly increasing function onR satisfy-
ing wϕp(w) > 0 if w , 0 andφ(w) tends to±∞ asw→±∞. Let

1
p
+

1
p∗
= 1.

Then,p∗ is also greater than 1. Since (p−1)(p∗ −1)= 1, we see that

w = ϕp∗ (z) =

 |z|
p−2z if z, 0,

0 if z= 0,

with z∈ R; namely,ϕp∗ is the inverse function ofϕp. It is clear thatϕp∗ (ab) = ϕp∗ (a)ϕp∗ (b)
andϕp∗ (−ab) = −ϕp∗ (a)ϕp∗ (b) for all a> 0 andb> 0. Hence, whenφ(w) = ϕp(w) for w ∈ R,
conditions (2.2) and (2.3) are satisfied withf = φ−1 = ϕp∗ andg = φ−1 = ϕp∗ .

Let φ = ϕp+ϕq with 1< q≤ p. If 0 ≤ w < 1, thenϕq(w) ≥ ϕp(w) ≥ 0. Hence, we have

2ϕp(w) ≤ φ(w) ≤ 2ϕq(w)

and
ϕq(w) ≤ φ(w)

for 0≤ w < 1. From these inequalities, it follows that

ϕq∗
( z
2

)
≤ φ−1(z) ≤ ϕp∗

( z
2

)
(3.1)

and
φ−1(z) ≤ ϕq∗ (z) (3.2)

for 0 ≤ z≤ φ(1) = ϕp(1)+ϕq(1) = 2. On the other hand, ifw ≥ 1, then 1≤ ϕq(w) ≤ ϕp(w).
Hence, we have

2ϕq(w) ≤ φ(w) ≤ 2ϕp(w)

and
ϕp(w) ≤ φ(w)

for w ≥ 1. From these inequalities, it follows that

ϕp∗
( z
2

)
≤ φ−1(z) ≤ ϕq∗

( z
2

)
(3.3)

and
φ−1(z) ≤ ϕp∗ (z) (3.4)
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for z≥ 2. Let us divide the regionR=
{
(a,b) : a> 0 andb> 0

}
into four parts:

R1 =
{
(a,b) : ab≥ 2 and b≥ 2

}
;

R2 =
{
(a,b) : ab≥ 2 and 0< b< 2

}
;

R3 =
{
(a,b) : ab< 2 and 0< b< 2

}
;

R4 =
{
(a,b) : ab< 2 and b≥ 2

}
.

If (a,b) ∈ R1, then by (3.3) and (3.4), we have

φ−1(ab) ≤ ϕp∗ (ab) = ϕp∗ (2a)ϕp∗

(
b
2

)
≤ ϕp∗ (2a)φ−1(b),

φ−1(ab) ≥ ϕp∗

(
ab
2

)
= ϕp∗

(a
2

)
ϕp∗ (b) ≥ ϕp∗

(a
2

)
φ−1(b).

If (a,b) ∈ R2, then by (3.1) and (3.3), we have

φ−1(ab) ≤ ϕq∗

(
ab
2

)
= ϕq∗ (a)ϕq∗

(
b
2

)
≤ ϕq∗ (a)φ−1(b),

φ−1(ab) ≥ ϕp∗

(
ab
2

)
= ϕp∗ (a)ϕp∗

(
b
2

)
≥ ϕp∗ (a)φ−1(b).

If (a,b) ∈ R3, then by (3.1) and (3.2), we have

φ−1(ab) ≤ ϕq∗ (ab) = ϕq∗ (2a)ϕq∗

(
b
2

)
≤ ϕq∗ (2a)φ−1(b),

φ−1(ab) ≥ ϕq∗

(
ab
2

)
= ϕq∗

(a
2

)
ϕq∗ (b) ≥ ϕq∗

(a
2

)
φ−1(b).

If (a,b) ∈ R4, then by (3.1) and (3.3), we have

φ−1(ab) ≤ ϕp∗

(
ab
2

)
= ϕp∗ (a)ϕp∗

(
b
2

)
≤ ϕp∗ (a)φ−1(b),

φ−1(ab) ≥ ϕq∗

(
ab
2

)
= ϕq∗ (a)ϕq∗

(
b
2

)
≥ ϕq∗ (a)φ−1(b).

Note thatϕp∗

(a
2

)
≤ ϕp∗ (a) ≤ ϕp∗ (2a) andϕq∗

(a
2

)
≤ ϕq∗ (a) ≤ ϕq∗ (2a) for all a> 0 andb> 0.

We therefore conclude that

φ−1(ab) ≤ f (a)φ−1(b),

φ−1(ab) ≥ g(a)φ−1(b)

for all a> 0 andb> 0, where

f (a) =max
{
ϕp∗ (2a), ϕq∗ (2a)

}
=

 ϕq∗ (2a) if 0 ≤ a< 1/2,

ϕp∗ (2a) if a≥ 1/2,
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g(a) =min
{
ϕp∗

(a
2

)
, ϕq∗

(a
2

)}

=


ϕq∗

(a
2

)
if 0 ≤ a< 2,

ϕp∗

(a
2

)
if a≥ 2.

Sinceϕp+ϕq is an odd function, we see that

φ−1(ab) ≥ − f (a)φ−1(b),

φ−1(ab) ≤ −g(a)φ−1(b)

for all a> 0 andb> 0, wheref andg are the functions given above. Thus, conditions (2.2)
and (2.3) are satisfied.

Let us present a different type of function satisfying conditions (2.2) and (2.3). Define

z= φ(w) =

 ew −1 if w ≥ 0,

1−e−w if w < 0.

Then,φ is a continuous and strictly increasing function onR satisfyingwφ(w) > 0 if w , 0
andφ(w) tends to±∞ asw→±∞. The inverse function ofφ is

w = φ−1(z) =

 ln(1+z) if z≥ 0,

− ln(1−z) if z< 0.

Fora> 0 andb> 0, let

G(a,b)
def
=
φ−1(ab)

φ−1(b)
=

ln(1+ab)
ln(1+b)

.

Then, using l’Ĥopital’s rule, we obtain

lim
b→0
G(a,b) = lim

b→0

a(1+b)
1+ab

= a

and

lim
b→∞
G(a,b) = lim

b→∞

a/b+a
1/b+a

= 1.

We have
∂

∂b
G(a,b) =

a(1+b) ln(1+b)− (1+ab) ln(1+ab)

(1+ab)(1+b)(ln(1+b))2
.

LetK(a,b) = a(1+b) ln(1+b)− (1+ab) ln(1+ab), and leta∗ be any fixed positive number.
Then,K(a∗,0)= 0, and

d
db
K(a∗,b) = a∗ ln

1+b
1+a∗b

.

Sinceb > 0, the functionK is strictly decreasing with respect tob if a∗ > 1 and strictly
increasing with respect tob if 0 < a∗< 1. Hence, we have

K(a∗,b) < 0 if a∗> 1,

K(a∗,b) = 0 if a∗= 1,

K(a∗,b) > 0 if 0 < a∗< 1.
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This means thatG(1,b) = 1 for all b > 0; G(a,b) is strictly decreasing with respect tob in
the region

{
(a,b) : a> 1 andb> 0

}
, andG(a,b) is strictly increasing with respect tob in the

region
{
(a,b) : 0< a< 1 andb> 0

}
. Hence, we see that

min{1, a} ≤ G(a,b) =
φ−1(ab)

φ−1(b)
≤max{1, a}

for all a> 0 andb> 0. Sinceφ is an odd function, we see that

−min{1, a} ≥ φ
−1(−ab)

φ−1(b)
= − φ

−1(ab)

φ−1(b)
≥ −max{1, a}

for all a > 0 andb > 0. We therefore conclude that conditions (2.2) and (2.3) are satisfied
with f andg satisfying

f (a) =max{1, a} and g(a) =min{1, a}.

4 Proof of Theorems 1.1 and 1.2

Let u(x) be any radially symmetric solution of (1.1), and letξ(t) be the function defined by

ξ(t) = u(x) andt = |x| ≥ α. Then, we have∇u(x) =
ξ′(t)

t
x, and therefore,

∆ru(x) =
N∑

i=1

∂

∂xi

(
|∇u(x)|r−2 ∂u

∂xi

)
=

(
|ξ′(t)|r−2ξ′(t)

)′
+

N−1
t
|ξ′(t)|r−2ξ′(t)

and

x · |∇u(x)|r−2∇u(x) =
N∑

i=1

xi |∇u(x)|r−2 ∂u
∂xi

= t |ξ′(t)|r−2ξ′(t).

Hence, the functionξ(t) is a solution of the second-order differential equation(
ϕp(ξ′)+ϕq(ξ′)

)′
+

(
k(t)+

N−1
t

) (
ϕp(ξ′)+ϕq(ξ′)

)
+ω2

(
ϕp(ξ)+ϕq(ξ)

)
= 0, (4.1)

whereϕp andϕq are functions given in Section 3. Sinceϕp+ ϕq satisfies conditions (2.2)
and (2.3) as shown in Section 3, we may regard Eq. (4.1) as a special case of (2.1) withh
satisfyingh(t) = k(t)+ (N−1)/t. If the equilibrium of (4.1) is globally asymptotically stable,
then (ξ(t), ξ′(t)) tends to the origin ast→∞.

Sinceh(t) = k(t)+ (N−1)/t, condition (1.2) coincides with condition (2.4). If there exist
anε0 > 0 and aδ0 > 0 such that|k(t)−k(s)| < ε0 for all t ≥ α ands≥ α with |t− s| < δ0, then

|h(t)−h(s)| ≤ |k(t)−k(s)|+
∣∣∣∣∣N−1

t
− N−1

s

∣∣∣∣∣
< ε0+

N−1

α2
δ0

for t ≥ α ands≥ α with |t− s| < δ0. Becauseh(t) is larger than (N−1)/t for t ≥ α, it naturally
belongs toF[WIP] . Hence, all conditions of Theorems 2.1 and 2.2 are satisfied, and thus,
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we see that the equilibrium of (4.1) is globally asymptotically stable if and only if condition
(1.2) holds. We therefore conclude that condition (1.2) is a necessary and sufficient condition
for u(x) and|∇u(x)| to tend to zero as|x| → ∞. Theorem 1.1 is thus proved.

If k belongs toF[IP] , the functionh also belongs toF[IP] . Hence, Theorem 1.2 can be
deduced from Theorems 2.1 and 2.3. ⊓⊔

5 Power dissipation

To show the usefulness of Theorems 1.1 and 1.2, we consider the first-order linear differen-
tial equation

x′ = 1−
(
k(t)+

N−1
t

)
x, (5.1)

wherek is a power functiontℓ with ℓ ∈ R. Then, it is obvious that

z(t) =

∫ t
α
eK(s)ds

eK(t)

is the particular solution of (5.1) satisfying the initial conditionz(α) = 0. For this reason, we
first examine the asymptotic behaviour of the particular solution. Let

h(t) = k(t)+
N−1

t
for t ≥ α.

The particular solution has a close relationship with the curve defined by 1/h(t) for t ≥ α. If
this curve and the trajectory of the particular solution have a point of intersection, then the
trajectory moves horizontally at this point.

We classify our argument into two cases: (i)ℓ ≤ 0, and (ii)ℓ > 0.
Case (i)ℓ ≤ 0: The functionh satisfies

lim
t→∞

1
h(t)
=

∞ if ℓ < 0,

1 if ℓ = 0,

where 1/h(t) is identically equal to 1 whenℓ = 0 andN = 1. Since(
1

h(t)

)′
= − ℓ t

ℓ−1− (N−1)/t2

(tℓ + (N−1)/t)2
,

we see that it is zero fort > α if ℓ = 0 andN = 1; otherwise, it is positive fort > α. Hence,
there are three subcases. The curve defined by 1/h(t) is strictly increasing and tends to∞ as
t→∞ if ℓ < 0; it is strictly increasing and approaches 1 ast→∞ if ℓ = 0 andN > 1; and it
is a horizontal line whose value is 1 ifℓ = 0 andN = 1.

Case (ii)ℓ > 0: The functionh satisfies

lim
t→∞

1
h(t)
= 0.

We divide this case into two subcases:N > 1 andN = 1. If N > 1, then there exists at∗ ≥ α
such that (

1
h(t)

)′> 0 for α < t < t∗,

< 0 for t > t∗,
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which means that, ift∗ = α, then (1/h(t))′ < 0 for t > α. If N = 1, then (1/h(t))′ < 0 for t > α.
Hence, the curve defined by 1/h(t) is strictly decreasing for all sufficiently larget, and it
tends to 0 ast→∞. The inflection point of this curve is at most one. The slope of this curve
is zero at such an inflection point.

Example5.1 Consider Eq. (1.1) withk(t) = tℓ. If ℓ ≤ 0, then all radially symmetric solutions
u satisfy the property thatu(x) and|∇u(x)| tend to zero as|x| → ∞.

Proof Since the power dissipationk is strictly decreasing or is equal to 1, we see that

|k(t)−k(s)| ≤ k(t)+k(s) ≤ 2k(α)

for all t ≥ α ands≥ α. Hence, the assumption of Theorem 1.1 is satisfied in anyε0 > 2k(α)
andδ0 > 0. We check that condition (1.2) is also satisfied.

Let us compare the position of the curve defined by 1/h(t) and that of the trajectory of
the particular solutionzof (5.1) satisfying the initial condition thatz(α) = 0. Since

1
h(α)

=
1

αℓ + (N−1)/α
> 0,

the trajectory is located below the curve in a neighborhood of the point (α,0). To be precise,
there exists aβ > α such that

z(t) <
1

h(t)
for α ≤ t ≤ β.

From (5.1), we see thatz′(t) > 0 for α ≤ t ≤ β. This means that the trajectory rises in the
neighborhood of the point (α,0).

Suppose that the trajectory crosses the curve. Then, we can find aγ > β such thatz(γ) =
1/h(γ),

z(t) <
1

h(t)
for α ≤ t < γ

and

z(t) >
1

h(t)
for t > γ. (5.2)

Sincez(γ) = 1/h(γ), it follows thatz′(γ) = 0. Hence, the slope of the trajectory is zero on the
curve. On the other hand, the slope of the curve is nonnegative in case (i) above. Thus, the
trajectory cannot pass through the curve. This contradicts (5.2).

We therefore conclude that

z(t) ≤ 1
h(t)

for t ≥ α;

that is, the trajectory does not drop. Hence,z(t) ≥ z(β) > 0 for t ≥ β. Sinceφ−1 is a strictly
increasing function, we obtain∫ ∞

α
φ−1


∫ t
α
eK(s)ds

eK(t)

dt≥
∫ β

α
φ−1(z(t))dt+

∫ ∞

β
φ−1(z(β))dt=∞,

and therefore, condition (1.2) is satisfied.
Thus, we can apply Theorem 1.1 to this example. ⊓⊔
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Example5.2 Consider Eq. (1.1) withk(t) = tℓ. If 0 < ℓ ≤ q−1, then all radially symmetric
solutionsu satisfy the property thatu(x) and|∇u(x)| tend to zero as|x| → ∞.

To prove Example 5.2, we need the following lemma and a technique in Zheng and
Sugie [27].

Lemma 5.1 Let ζ(t) be a nonnegatve continuous function on[α,∞). If there exist numbers
κ > 0 andθ > 0 such that

θ = lim
t→∞

tκζ(t). (5.3)

Then,

(a) if κ ≤ 1, then
∫ ∞

α
ζ(t)dt=∞;

(b) if κ > 1, then
∫ ∞

α
ζ(t)dt<∞.

Proof of Example5.2 As in the proof of Example 5.1, we compare the position of the curve
defined by 1/h(t) and that of the trajectory of the particular solutionzof (5.1) satisfying the
initial condition thatz(α) = 0. The trajectory is located below the curve in a neighborhood
of the point (α,0). The trajectory continues to rise as long as it is located below the curve.
As shown above, in case (ii), the curve is strictly decreasing for all sufficiently larget, and
it tends to zero ast→∞. Hence, the trajectory has to cross the curve. Let (γ,1/h(γ)) be the
intersecting point of the trajectory and the curve. Then,z(t) > 1/h(t) for t in a right-hand side
neighborhood ofγ.

The trajectory does not intersect the curve again afterwards. In fact, the slope of the
trajectory is zero on the curve, and the slope of the curve is negative. Hence, we conclude
that

z(t) ≥ 1
h(t)

for t ≥ γ. (5.4)

This means that the trajectory is ultimately located above the curve. From (5.1) and (5.4), we
see thatz′(t) ≤ 0 for t ≥ γ. Since 1/h(t) tends to zero ast→∞, the trajectory also ultimately
tends to zero. If the trajectory does not tend to zero, then we findδ > 0 such thatz(t) > δ
for t ≥ γ. Sincez′(t) ≤ 0 for t ≥ γ, the slope of the trajectory ultimately approaches zero.
However, we have

z(t)− 1
h(t)
>
δ

2

for all sufficiently larget. Hence, we obtain

z′(t) = 1−h(t)z(t) < − δ
2

h(t) = − δ
2

(
tℓ +

N−1
t

)
,

which tends to−∞ ast→∞. This is a contradiction. Thus, we conclude thatz(t) is decreas-
ing and tends to zero ast→∞.

As proved in Section 3, the estimation (3.1) holds. Hence, there exists aT > γ such that

φ−1(z(t)) ≥ ϕq∗ (z(t)/2) for t ≥ T.
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Using this inequality, we get∫ ∞

α
φ−1


∫ t
α
eK(s)ds

eK(t)

dt=
∫ T

α
φ−1(z(t))dt+

∫ ∞

T
φ−1(z(t))dt

≥
∫ T

α
φ−1(z(t))dt+

1
ϕq∗ (2)

∫ ∞

T
ϕq∗ (z(t))dt

=

∫ T

α
φ−1(z(t))dt− 1

ϕq∗ (2)

∫ T

α
ϕq∗ (z(t))dt

+
1
ϕq∗ (2)

∫ ∞

α
ϕq∗ (z(t))dt.

Hence, if the integral fromα to∞ of ϕq∗ (z(t)) diverges to∞, then condition (1.2) is satisfied.
Since

K(t) =
∫ t

α

(
sℓ +

N−1
s

)
ds

=
1
ℓ+1

(
tℓ+1−αℓ+1

)
+ (N−1) log

t
α
,

it follows that
eK(t) = c tN−1etℓ+1/(ℓ+1),

wherec= 1
/(
αN−1eα

ℓ+1/(ℓ+1)
)
. Let κ = ℓ (q∗ −1) andζ(t) = ϕq∗ (z(t)). Then, we have

tκ =
(
tℓ
)q∗−1

= ϕq∗
(
tℓ
)

and

ζ(t) = ϕq∗

 tℓ
∫ t
α

sN−1e
1
ℓ+1 sℓ+1

ds

tN−1e
1
ℓ+1 tℓ+1

 .
Using l’Hôpital’s rule twice, we obtain

lim
t→∞

tκζ(t) = lim
t→∞
ϕq∗

 tℓ
∫ t
α

sN−1e
1
ℓ+1 sℓ+1

ds

tN−1e
1
ℓ+1 tℓ+1

 = ϕq∗

 lim
t→∞

tℓ−(N−1)
∫ t
α

sN−1e
1
ℓ+1 sℓ+1

ds

e
1
ℓ+1 tℓ+1


= ϕq∗

 lim
t→∞

(ℓ− (N−1))tℓ−N
∫ t
α

sN−1e
1
ℓ+1 sℓ+1

ds+ tℓ e
1
ℓ+1 tℓ+1

tℓ e
1
ℓ+1 tℓ+1


= ϕq∗

 lim
t→∞

(ℓ− (N−1))
∫ t
α

sN−1e
1
ℓ+1 sℓ+1

ds

tNe
1
ℓ+1 tℓ+1

+1


= ϕq∗

 lim
t→∞

(ℓ− (N−1))tN−1e
1
ℓ+1 tℓ+1

N tN−1e
1
ℓ+1 tℓ+1

+ tℓ+Ne
1
ℓ+1 tℓ+1

+1


= ϕq∗

(
lim
t→∞
ℓ− (N−1)

N+ tℓ+1
+1

)
= ϕq∗ (1)= 1.

Hence, condition (5.3) is satisfied withκ = ℓ(q∗ −1) andθ = 1. Since (q−1)(q∗ −1)= 1, we
see thatκ ≤ 1 if and only ifℓ ≤ q−1. Therefore, by virtue of Lemma 5.1 (a), we can conclude
that ∫ ∞

α
ϕq∗ (z(t))dt=

∫ ∞

α
ζ(t)dt=∞
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if ℓ ≤ q−1.
It is clear thatk belongs toF[IP] in case (ii) above. Thus, we can apply Theorem 1.2 to

this example. ⊓⊔

Example5.3 Consider Eq. (1.1) withk(t) = tℓ. If all radially symmetric solutionsu satisfy
the property thatu(x) and|∇u(x)| tend to zero as|x| → ∞, thenℓ ≤ p−1.

Proof We prove that ifℓ > p−1, then condition (1.2) does not hold. Using the same method
as in the proof of Example 5.2, we can conclude that

z(t) =

∫ t
α
eK(s)ds

eK(t)

is decreasing and tends to zero ast→∞. From the estimation (3.1), we see that there exists
aT > 0 such that

φ−1(z(t)) ≤ ϕp∗ (z(t)/2) for t ≥ T.

Using this inequality, we get

∫ ∞

α
φ−1


∫ t
α
eK(s)ds

eK(t)

dt=
∫ T

α
φ−1(z(t))dt+

∫ ∞

T
φ−1(z(t))dt

≤
∫ T

α
φ−1(z(t))dt+

1
ϕp∗ (2)

∫ ∞

T
ϕp∗ (z(t))dt

=

∫ T

α
φ−1(z(t))dt− 1

ϕp∗ (2)

∫ T

α
ϕp∗ (z(t))dt

+
1

ϕp∗ (2)

∫ ∞

α
ϕp∗ (z(t))dt.

Hence, if the integral fromα to∞ of ϕp∗ (z(t)) converges, then condition (1.2) is not satisfied.
Let κ = ℓ(p∗ −1) andζ(t) = ϕp∗ (z(t)). Then, as in the proof of Example 5.2, we obtain

lim
t→∞

tκζ(t) = ϕp∗ (1)= 1.

Hence, condition (5.3) is satisfied withκ = ℓ(p∗−1) andθ = 1. Since (p−1)(p∗−1)= 1, we
see thatκ > 1 if and only ifℓ > p−1. Therefore, by virtue of Lemma 5.1 (b), we can conclude
that ∫ ∞

α
ϕp∗ (z(t))dt=

∫ ∞

α
ζ(t)dt<∞

if ℓ > p−1.
Becausek belongs toF[IP] in case (ii) above, we can apply Theorem 1.2 to this example.

⊓⊔
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