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Abstract This study considers the quasilinear elliptic equation with a damping term,

div(D(u)Vu) + % x- (D(U)VU) + w?(JuP2u+|ul%2u) = 0,
wherex is an N-dimensional vector ifx € RN : |x| > ) for somea > 0 andN e N\ {1};
D(u) = |[VulP? +|Vu|®2 with 1 < g < p; k is a nonnegative and locally integrable function
on [a,); andw is a positive constant. A necessary anflisient condition is given for all
radially symmetric solutions to converge to zeropds— co. Our necessary and Sicient
condition is expressed by an improper integral related to the dampiffigodeetk. The case
thatk is a power function is explained in detail.
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1 Introduction

In recent years, quasilinear equations of tipeg]-Laplacian type have attracted special
attention not only because of their mathematical interest to researchers but also because
they have rich applications to various sciences. Physical applications have been reported in
many studies, for example, see [2, 3, 8,10, 11, 19, 22] and the references thereip.gjhe (
Laplacian type equations are initially derived from the study of stationary solutions of the
reaction-dffusion equation

u; = div(D(u)Vu) + c(u).
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Here,D(u) meangVu|P~2 + [Vu|%2 with 1 < q < p. The difusion term divD(u)Vu) is usu-
ally called the f,g)-Laplacianwhenp # g. The second terro(u) is the reaction term. The
mathematical interest in quasilinear equations with fhg)tLaplacian seems to be primar-
ily concentrated on the existence and multiplicity of positive solutions on a bounded domain
Q of RN, the existence and nonexistence of nontrivial solution&Bnand the nonlinear
eigenvalue problem (refer to [4,7, 8,10, 11,15-17, 22, 24, 25]). In this study, we would like
to examine the structure of @,()-Laplacian-type quasilinear equation from &elient an-
gle.

The stationary solution of the above-mentioned reactionfidision equation satisfies

div(D(u)Vu) + c(u) = 0.

To relate the reaction term to thefdision term, we choo&ez(qbp(u) +¢q(u)) asc(u), where
w Is a positive constant and
u"=2u if uz0,
¢r(u) =

0 ifu=0,

with r = p orr = g. It is well known that dffusion causes energy dissipation. Energy loss
might occur due to factors other thanffdsion in real world applications. In this study,
considering another factor that leads to energy loss, we add a damping term and consider
the quasilinear elliptic equation

k(IxI)

div(D(u)Vu) + ™ X- (D(u)Vu) + w2(¢p(u) +¢g(u)) =0. (1.2)

Here,x is anN-dimensional vector in an exterior domdagy, def {x e RN: x| > o} for some
a > 0; N is an integer that is larger than.is a nonnegative and locally integrable function
on [a, »); andw is a positive constant. L@t> . By asolutionof (1.1) we mean a functiom:
G — R that is continuously dierentiable together withyu|%-2Vu and satisfies Eq. (1.1) on
Gg. Our attention will be focused on the global convergence of radially symmetric solutions
of (1.1); that is, those solutions that depend only>$n

In Eq. (1.1), both the diiusion term and the damping term play a role in energy dissi-
pation. For this reason, many researchers might think that all radially symmetric solutions
always converge to zero. However, if the damping term is too strong, those solutions do
not decay to zero, and the so-called overdamping phenomenon occurs. The phenomenon of
overdamping is that a solution converging to a non-zero value exists. Then, we must con-
sider the limit of the damping term where the overdamping phenomenon does not occur.
The following theorem answers this question.

Theorem 1.1 Suppose that there exists ag> 0 and adg > 0 such thatk(t) — k(s)| < & for

allt > @ and s> a with [t — § < §g. Then all radially symmetric solutions u ofl.1) satisfy
the property that (x) and [Vu(x)| tend to zero a$| — o if and only if condition

oo teK(9)g
(S S

t —
whereyp ™1 is the inverse function af, + ¢4 and K(t) = (k(s) +2 s l)ds
a



Title Suppressed Due to Excessive Length 3

To describe our second theorem, we introduce the following family of functions. A
functionh: [, c0) — [0, 0) is said to belong tgpy if

e8] on
> hdt=co
n=1v7n

for every pair of sequencés,} and{o} satisfyingry < on < Ty,
Iinm inf(on—1n) > 0.

The concept of integral positivity [IP] was introduced by Matrosov [18]. As typical exam-
ples, we can cite any function with a positive lower bound, and any nonnegative periodic
function such as sftt.

Theorem 1.2 Suppose that k belongs fgr;. Then all radially symmetric solutions u of
(1.1)satisfy the property that() and|Vu(x)| tend to zero ag| — o if and only if condition
(1.2) holds

Remarkl.1 When there is no dampimg term, namddy) = O for t > «, the growth con-
dition (1.2) is satisfied (for details, see Section 5). Hence, from Theorem 1.1 and 1.2, all
radially symmetric solutions of (1.1) converge to zero. This means that the overdamping
phenomenon does not occur without the damping factor (which is consistent with common
knowledge).

Remarkl.2 The assumption thatis nonnegative is not essential in Theorems 1.1 and 1.2.
The valuek(t) + (N — 1/t) only has to be nonnegative foe «. Hence, Theorems 1.1 and

1.2 can be applied even if equation (1.1) has negative damping. To be precise, we need to
add the assumption that the functiom (N — 1/t) belongs taF|wip; in Theorem 1.1 (for the
definition of Fjwipy, See Section 2). We need to further change the assumpticklieiings

to #ip) to the assumption thét+ (N — 1/t) belongs tofpp; in Theorem 1.2.

2 Quasilinear ordinary differential equations

Consider the quasilinear equation with damped term,

(¢(€)) +h()p(&) + (&) = 0, 2.1

where’ = d/dt, h is a nonnegative and integrable function andcp), andw is a positive
constant. Herep is a continuous and strictly increasing function®isatisfyingne(n) > 0
if 7 # 0, andy() tends totco asn — +oo. Hencep(0) = 0, and the inverse functiop™
exists onR. The origin €,¢’) = (0,0) is clearly the only equilibrium of (2.1).

Let x(t) = (£(t),£’(t)) and xo € R?, and let| - || be any suitable norm. We denote the
solution of (2.1) throughtg, vo) by x(t;to,x0). The equilibrium is said to bstableif, for
anye > 0 and anytp > a, there exists &(e, to) > 0 such thatlyol| < § implies||y(t; to, xo)ll < &
for all t > to. The equilibrium is said to battractiveif, for any ty > «, there exists dg(tp) > 0
such thaf|yoll < 6o implies||x(t; to, x0)l| — 0 ast — 0. The equilibrium is said to bglobally
attractiveif, for any to > & and anyyo € R?, there is a (to, xo,7) > 0 such thally(t; to, xo)ll <
nforallt>to+ T. The equilibrium isasymptotically stabld it is stable and attractive. The
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equilibrium isglobally asymptotically stabld it is stable and globally attractive. Refer to
the books [1,5,6,9,12, 13, 20, 21, 26] as to these definitions.

The purpose of this section is to present criteria for judging whether the equilibrium of
(2.1) is globally asymptotically stable. To accomplish this, we set the following conditions
on the nonlinear functiop:

there exists a positive functiohsuch thats~(-ab) > — f(a) ¢ *(b) or

1 1 _ (2.2)
¢ ~(ab) < f(a)¢ " (b) for alla> 0 andb > 0;

there exists a positive functiansuch thaty1(-ab) < — g(a) ¢ ~*(b) and
¢ Y(ab) > g(a) ¢ *(b) for alla> 0 andb> 0

In the next section, we will give examples in which conditions (2.2) and (2.3) are satisfied.
The following result gives a necessary condition for the global asymptotic stability of
the equilibrium of (2.1).

2.3)

Theorem 2.1 Let condition(2.2) hold. If the equilibrium of(2.1)is globally asymptotically
stable then .
o [ eds
f (p_l[aeH—(t)]dt: oo, (24)

where Ht) = fth(s)ds

To show a sfiicient condition that guarantees the equilibrium of (2.1) is globally asymp-
totically stable, we define another family of functions in additiorFjg). A function h:
[@,0) — [0, 0) is said to belong twpy if

(e

3 " hitdt = co

n=1v7n
for every pair of sequencés,} and{o} satisfyingry < on < Ty,

Iirr1ninf (on—1n)>0 and limsufrpi1—op) < .
— 00 n—oo
The concept of the weak integral positivity [WIP] was first published in Hatvani [14]. This
concept is much broader than that of integral positivith diecreases to zero monotonically,
then it does not belong t6yp). However, there is a possibility thhtbelongs taFwip even
if liminf . h(t) = 0. For example, the functiong'tland sirft/t belong toFwiry (for the
proof, see [23, Proposition 2.1]).

Using the concept of the weak integral positivity [WIP], we can state the following
result.

Theorem 2.2 Let condition(2.3) hold. Suppose that there exist an> 0 and adp > 0 such
that |h(t) — h(s)| < &o for all t > @ and s> a with |t — § < g and suppose that h belongs to
Fwir)- If condition(2.4)is satisfiedthen the equilibrium of2.1)is globally asymptotically
stable

If his uniformly continuous ond, «), then the first assumption bfin Theorem 2.2 is
inevitably satisfied. Even ii belongs tofwip;, Theorem 2.2 does not hold without the first
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assumption oh. However, the first assumption bfbecomes unnecessaryhfbelongs to
Fuey-

Theorem 2.3 Let condition(2.3) hold. Suppose that h belongs ;. If condition(2.4)is
satisfied then the equilibrium 0{2.1)is globally asymptotically stable

To prove Theorems 2.1-2.3, we use phase plane analysig.4etandy = ¢(v")/w be
new variables. Then, we can transform Eq. (2.1) into the planar equivalent system

X = ¢ Hwy),
Y =—we(X)-h(t)y.

System (2.5) has the zero solution ) = (0,0), which corresponds to the equilibrium of
(2.1).

(2.5)

Proof of Theoren2.1 We show that there exists a solution of (2.5) that does not approach
the origin provided that condition (2.4) is satisfied.
By way of contradiction, we suppose that the equilibrium of (2.1) is globally asymptot-

ically stable and
o teH()g
L[ [e"ds
f(; ) [—eH(t) ]dt< 0,

Because of (2.2), we need to consider two cases {ij—ab) > —f(a)¢~1(b) for all a> 0
andb > 0, and (i) ¢~ 1(ab) < f(a)¢~1(b) for all a> 0 andb > 0. We will mention only the
former case, because the latter case is proved in the same way.

We can choose & > « so large that

o fteH(s)ds 1
1| Ja
fT“’ ( 50 | 2Dy 20

Consider the solutiorx(y) of (2.5) passing through (@) att = T. Since

(M =¢ wi(T) =0 and 4 (T)=-we(XT))-h®j(T) = -we(1) <0,
the solution curve ofx,7) enters the fourth quadrant
Q4 d:ef{(x,y): x>0 andy <0}

in a right-hand neighborhood of= T. Considering the vector field i@,, we see that the
solution curve does not directly move to the first quadrant

Q1 def {(X,y): x> 0 andy > 0}

from Q4 ast increases. We also see that &(t) < 1 as long as the solution curve is@j.
Suppose that the solution curve of ) crosses the straight lire= 1/2 in Q4. Then,
we can find a* > T such thaix(T*) = 1/2 andX{t) > 1/2 for T <t < T* Since

7' (1) +h()7(t) = — we(X(1)) = — we(1)
for T <t < T it follows that

E€OFt)) > —we1)e?® for T<t<T"
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We integrate both sides of this inequality frfmo t < T* to obtain

t t
eM"051) > e"Mj(T) _w¢(1)f HOs= _w‘p(l)f HOgs
T T
Hence, by (2.5), we have

eH9ds
K () = ¢ Hwij(t) > ¢ " [— wzw(l)fTeT)

L H(9
e"'¥ds
> - f(w2¢(l))¢_l[%]

for T <t < T* From this estimation and (2.6), we see that

frteH(s)ds]

-
K(T) 2 X(T) - f(ue(a) | ¢_1{w !

oo teHg
> L&) 1

This contradicts the assumption thdT ™) = 1/2. Hence, the solution curve does not inter-
sect the straight line=1/2.
Therefore, we can conclude that the solution curvexgf)(Stays in the region

{(xy):1/2<x<1 andy < 0}

fort>T. In other words, the solutior() of (2.5) does not approach the origin. Hence, the
equilibrium of (2.1) is not globally asymptotically stable. This is a contradiction. Thus, the
proof of Theorem 2.1 is complete. O

It is convenient to introduce some notation to prove Theorem 2.2. We denote functions
@ and¥ by

B(x) = fo wpe)de and P(y) = fo o wn)dn,

respectively. Since is strictly increasing angy() > 0 if n # 0, we see tha®(0) = 0; &(X)
is increasing fox > 0 and decreasing for< 0, and®(x) diverges too asx — +oo. Let

D(X) = D(X) sgnx.

Then,® is an increasing function dh, and®(x) tends tarco asx — +co. Hence, the inverse
function @~ exists oriR. The function? has the same property. Let

P(y) = P(y)sgny.
Then,l?f also has an inverse functidgf ! that is defined ofR. Moreover, we define
A(y) = yo H(wy).

From the property ap~1, it follows that4(0) = 0; 4(y) is increasing foy > 0 and decreasing
fory <0.
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To prove Theorems 2.2 and 2.3, we need to show two facts: (i) stability of the equi-
librium of (2.1), and (ii) global attractivity. It is relatively easy to prove fact (i). However,
detailed mathematical analysis and considerable patience are necessary to demonstrate fact
(ii). For this reason, we first show that the equilibrium of (2.1) is stable.

Let (x,y) be any solution of (2.5) with the initial tim > a and define

o(t) = P(x(1)) + ¥(y (1) 2.7

Then, we obtain
v (1) = we(X®)X (1) + ¢~ wy(®)y' (1)
= we(X()¢ ™ (wy(t) + ¢~ (wy(®)( - we(x(®) - h(t)y)
= —h{y()e " (wy(t) = ~hB (1))
for t > to. Sinceh(t) > 0 fort > 0, we see that
o(t) <u(tp) for t>to.

Hence, we obtain the following result.
Proposition 2.4 The equilibrium of(2.1)is stable
We are now ready to prove Theorems 2.2 and 2.3.

Proof of Theoren2.2 By virtue of Proposition 2.4, we only have to show that the equilib-
rium of (2.1) is globally attractive. As shown already,

v'(t) = -h()4(y(1)) <0

fort > tg; namelyp is a decreasing function otp[ o). It also follows from (2.7) thai(t) > 0
for t > to. Hence, the functiom has a limiting value* > 0. If v* = 0, the solution X,y) of
(2.5) clearly tends to the origin ds— co. This is our desired conclusion. To complete the
proof, we will show thav* is not positive.
By way of contradiction, we suppose thétis positive. Then, we can find & > tg
satisfying
O<v" <o(t) <" for t>Ty. (2.8)

We advance the argument by dividing it into two steps. In the first step, we consider the
asymptotic behavior of the second compongof the solution and show thgtapproaches
zero. Hence, by (2.7), we conclude thatdim x(t) = @ 1(v*) > 0 or lime_,e X(t) = &~ 1(-v*).
In the second step, we show that the solution curvexgf) (does not approache the points
(& 1(v*),0) and(®~1(-v*),0). This is a contradiction.

Step (1): If liminf— |y(t)| > O, then we can choose> 0 and aT, > T; such that
ly(t)| > A fort > To. LetI" = min{4(1),4(-1)}. Then, we have

v’ (t) = —h()4(y(1)) < - I'h(t)

for t > To. Integrating this inequality frori, to t, we obtain

t t
o(t) — o(T2) = fT ¥(9ds<-I | h(gds
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Sinceh belongs taF|wip;, We see that

t
lim Ff h(s)ds= .
t—ooo T
On the other hand, from (2.8), we get
o) —v(T2) 2 v" — 20" = ="

fort > T,. This is a contradiction. Thus, we conclude that limingf |y(t)| = O.
Suppose that limsyp,, ly(t)| > 0, and let

p= |irtnSU|O|y(t)I.

Then, we can choose arso small that

O<e< min{/—;, 11”712(0*), - ng_v*)} (2.9)
and
:—j +2(1+ 280)e < w Minfo(P71M)), (27 (-M))}, (2.10)

whereM = M(g) =v* — max{ ¥(2¢), ‘P(—Zs)}. In fact, the left-hand side of (2.10) approaches
0 ase — 0. On the other hand, sindé(¢) tends ta* ase — 0O, the right-hand side of (2.10)
approaches min{g(@~1(v*)), —(®1(~v"))}. Note thatM(e) is positive for any > 0 that
satisfies (2.9).

It follows from (2.9) that

Ii{ninf ly(t)] = 0 < 2 < u = limsuply(t)|.
— t—oo

Since the inferior limit ofly(t)| is zero, we can find & > T1 so that|y(t.)| < . Moreover,
since the superior limit diy(t)| is larger than &, we can choose numbesg 71, ando1 such
thats; = inf{t > t.: |y(t)] > 2¢}, 71 = sudt < s1.: |y(t)| < &}, andoy = inf{t > s1: [y(t)| < &}. It

is easy to verify thaly(s1)| = 2¢, ly(t1)| = ly(o-1)| = &, and|y(t)] = & for r1 <t < 01. Usingo
instead ot., we definer, ando similarly tor; ando1, and so on. Then, we obtain numbers
Sh, Tn, @ando, with n e N such thats, = inf{t > o_1: [y(t)] > 2}, 7n = SUdt < s [y(t)] < €},
andop, = inf{t > s;: ly(t)| < &}. Itis clear thail < T < Sy < o < Tp41 @nd7y — co @SN — oo,
The three sequencés}, {rn}, and{o} satisfyly(s))| = 2¢, ly(tn)| = ly(on)| = &, and

ly®)| =& for th<t<om, (2.11)
ly®)| <2e for op<t<tni, (2.12)
e<lyt) <2 for Th<t< s, (2.13)

From (2.8), we see thad(x(t)) < v(t) < 2v* for t > T1. Hence, we have
DL (—2") < x(t) < DL(2v*) for t> Ty,

and therefore, _ _
(V) < max{p(PH20")), - (P (-20")))
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for t > T1. For simplicity, letL = max{<p(5*1(2v*)), —<p(5*1(—2u*))} > 0. Using (2.5) and
(2.13), we can estimate that

2 20 2o [
362 = y2(83) — () = 2 f YOy (@)t

Tn

Sh Sh
-2 f (x(O)y(t)dt—2 f h(t)2(t)dt

Sh Sn
<20 f (@) (DIdt < 4w f o (x(t))ldt
<4Lew(sh—1n)-

Thus, we can estimate that

Sh—Th > 3¢ dLefm>0
—h > — =
4lLw

for eachne N. It is clear that the positive numbaris independent afie N. Since f, sn] €
[tn, o], we conclude that limird_,c(on— ) = m> 0.
Define
S={neN:h(oyn) = 1+e&g},

and let carcs denote the number of elements of the Se¥We show that car8 is finite. By
way of contradiction, we suppose that c& infinite. From (2.11), we see that

A(y(®) = min{4(e), A(- )} € p
for 7p <t < on. As shown abover, + m< o, for eachn e N. Hence,
Ay)=p for op—m<t<on. (2.14)
From the assumption ¢Kt), it follows that
Ih(t) —h(on)l <&o  for on—8o <t <on+do.
Hencen e S implies that
1+e&0—h(t) < h(om) —h(t) < |h(t) — h(o)l < €0
for oy — 6o < t < on + 60; Namely,
h(t)>1 for on—d6p <t<op+do. (2.15)

Let 2d = min{6p,m}. Then, by (2.14) and (2.15), we have

" hOAM)dts ¢ if nes.

on—d

Using this inequality, we get
t t
v* —u(to) < u(t) —o(to) = f v'(s)ds= —f h(s)y(s)ds
to to
<=3 [ ha®)dt=-dpcards = —co,

nes Yon-d

which is a contradiction.
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Since card is finite, we can find afN € N such that
h(on) <1+& for n>N. (2.16)
We next show that,.1 — o < o for n> N. Suppose there exists ap> N such that
Ong + 00 < Trp+1.- (2.17)
From (2.7), (2.8), and (2.12), we obtain
D(X()) = v(t) - ¥(y(1)) = M >0

for op, <t < Tng+1. Hence, it is necessary to address two casex((ak & 1(M) > 0 for
Oy < U< Tnge1, and (B)X(t) < @~1(—=M) < 0 for o, < t < 7p+1. Note that

h(t) <eo+h(on,) <1+2g9 for opn, <t <omy+do

because of (2.14) and (2.16). In the former case, using (2.5), (2.10), (2.12), and (2.17), we
get

¥ (1) = — we(X(®) ~ Ny (t) < - wp(B1(M)) + hOly )

4e 4g
<—— —2(1+2e0)e+2(1+ 2g0)e = ——
00 60
for o, <t < oy + 0. IN the latter case, we get

Y (1) = —we(X(1) — h(t)y(t) = - we(DH(=M)) - hb)ly()

4e 4e
> — +2(1+2e0)e—2(1+ 2e0)e = —
) 00
for oy <t <oy +380. Thus, in either case, we have
4
' @O > 5_8 for o, <t < oy + 0.
0

Integrating this inequality froram,, to on, + 5o, We obtain

o'n0+60 n0+50
f y'(Hdt| = jv ly’ ()|t > 4e.
ong o

o
However, it follows from (2.12) and (2.17) that

|U(U'n0 + 60)' + |y(0-no)| =

ly(ong + 60)1 + Iy (oo )| < 4e.

This is a contradiction. We therefore conclude that limsp(tn+1 — o) < 6o < co.
Recall thatrp < oy < Ty and liminfy_.(o'n — 7n) = m> 0. Sinceh belongs taF|wipy,

we see that .
Z f h(t)dt = oo. (2.18)
n=1v™n

On the other hand, it follows from (2.11) that

fto v (t)dt = — fto h(t)A(y(t))ons—an‘i h(t)dt.

= Tn



Title Suppressed Due to Excessive Length 11

Since .
f o' (t)dt = tIim o(t) —v(to) = v* —o(to) < O,
to —00
we obtain

> hdts o) =v"
=1 P

This contradicts (2.18). Thus, we conclude that limsypy(t)l = 4 = 0. The proof of
Step (1) is now complete.

Step (2): From the conclusion of Step (1), it follows thatlim x(t) = @~1(v*) > 0 or
im0 X(t) = @~1(=0v*) < 0. Considering the vector field of (2.5), we see that the solution
(x.y) must approach the poifio=1(v*),0) or the point(#~*(-v"),0) by ultimately passing
through the region
{(X,y): x> & v*) and y < O}

{(X,y): x< & Y-v*) andy > 0}.
Hence, we can find &3 > tg such that

x(t)> @ 1(*) and yt)<0 fort>Ts (2.19)

or the region

or
X(t) < d(-v*) and y(t)>0 fort>Ts. (2.20)

We consider only the former case, because the latter case is proved in the same way by using
(2.20) instead of (2.19). By (2.5) and (2.19), we have

Y ® +h(®y(t) = —we(X(V) < —we(d7(0"))

for t > T3. Multiplying both sides of this inequality bg™® and integrating fronTs to't, we

obtain .
(H(T3)-H(t) o1 fTSeH(S)dS
—_ 3)~ — — )=
y(t) <y(t)—e y(Ta) < —wp(870") =5
fort > Ts. Sinceh(t) > 0 fort > «, it is clear that
f el0dt = co.
Hence, we can choose€Tla > T3 such that
t 1 t
f eOds> = f e"®ds for t> Ty
T3 2 @
Using this inequality, we can estimate that
teH(9 g
w =17 * Le S
_I/(t)<—§(p(@ (U ))W for t > Ta.

From this estimation and condition (2.3), we see that

2 ‘eH9ds
X (1) = o Hwy(t)) < 90_1(— wj‘/’(‘p_l(”*)) L PTG ]

t
2 eH(S)dS
< ‘g(a; ‘0((15_1(0*))) ‘/’_l[fa Ty ]
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fort > T4. We therefore conclude that

_ 2 t teH( g
D) < x(t) < —g(%g@(@_l(v*))) fT go‘l{f“;—(t)s]dn X(T4)

2 t taH(9)g
:_g(%¢(¢-1(v*)))fa¢_1(fa‘;(t) SJdt

2 T, teH9gs
+ g(%(p(@_l(v*))) f tp‘l[f”eH—(t)]dH X(T4).

(o2

This contradicts condition (2.4). The proof of Step (2) is now complete.
Theorem 2.2 is thus proved. |

Proof of Theoren2.3 Let (x,y) be any solution of (2.5) with the initial timig > «, and let
be the function defined by (2.7). Since the dampindglodenth is nonnegative, the function
v has a limiting value* > 0. Recall that we showed thait= 0 using two steps in the proof
of Theorem 2.2. Theorem 2.3 can be proved in the same manner as Theorem 2.2.
Recall thatFp) € Frwir;. In the first step, we can conclude that limin, [y(t)| by using
h € Fp) instead oth € Fpwipy. Suppose that = limsup_,, [y(t)| > 0. Then, as in the proof
of Theorem 2.2, we can define three sequefisgs{rn}, and{o} that satisfyly(s)| = 2,
ly(mn)] = ly(on)| = € and inequalities (2.11)—(2.13), wheteis a small number satisfying
(2.9) and (2.10). We can also show that limyinf, (o — ) = m for some positive number
m. Hence, from the assumption thiatbelongs tof7p;, we obtain the estimation (2.18).
However, from (2.11) we have

Coo < 0" —u(tg) = ft Doy’(t)dt: - ft mh(t)A(y(t))dts Py Unh(t)dt,
0 0 n=1vY™n

wherep = min{4(g), 4(-¢)}. This contradicts (2.18). Hence, we conclude hat0.
The proof of second step is the same as that of Theorem 2.2. O

The following results are direct conclusions of Theorems 2.1-2.3.

Theorem 2.5 Let conditiong(2.2) and (2.3) hold. Suppose that there exists ap> 0 and
a 6o > 0 such thath(t) — h(s)| < &g for all t > @ and s> @ with |t — § < 69 and suppose that
h belongs tofwiry. Then, the equilibrium of2.1) is globally asymptotically stable if and
only if condition(2.4) holds

Theorem 2.6 Let conditiong2.2)and(2.3) hold. Suppose that h belongsfge;. Then, the
equilibrium of (2.1) is globally asymptotically stable if and only if conditi¢2.4) holds

3 Functions which satisfy conditions(2.2) and (2.3)
Eq. (2.1) expressed using the nonlinear functogatisfies (2.2) andr (2.3). Of course,

when ¢ is linear, that is,z = p(w) = w for w € R, the inverse functiony~! satisfiesw =
¢ 1(2) = z Therefore, conditions (2.2) and (2.3) are satisfied With ¢~ andg = ¢ 1,



Title Suppressed Due to Excessive Length 13

respectively. For this reason, Eq. (2.1) is a natural generalization of the damped linear oscil-
lator

X" +h(t)X +w?x=0.
In this sense, we may call Eq. (2.1) thamped quasilinear oscillator

We give several examples of functions that satisfy conditions (2.2) and (2.3) in this
section. First, we define

lwP~2w if w#0,
z=¢p(w) = ]
0 if w=0,
withw e R andp > 1. Then, is a continuous and strictly increasing function®satisfy-
ing wep(w) > 0 if w # 0 andp(w) tends totco asw — +oo. Let
1 1
— 4 — =
p P
Then,p* is also greater than 1. Sincp£ 1)(p* — 1) = 1, we see that

1

|2P2z if z#0,

wsz’p*(z):{ ]
0 if z=0,

with ze R; namely,¢- is the inverse function afy. It is clear thatpp-(ab) = ¢p-(a)¢dp- (b)

andgp-(—ab) = - ¢p-(a)¢p () for all a> 0 andb > 0. Hence, whe(w) = ¢p(w) for w e R,

conditions (2.2) and (2.3) are satisfied with= ¢! = ¢ andg = ¢~ = ¢p-.
Leto=¢p+gqwith1l<g<p. If0 <w < 1, thengq(w) > ¢p(w) > 0. Hence, we have

2¢p(w) < p(w) < 2¢q(w)
and
Pq(w) < o(w)
for 0 < w < 1. From these inequalities, it follows that
b0(3) <™ @ <0p(3) (3.1)
and
¢ @ < ¢ (2 (3.2)

for 0 <2< ¢(1) = ¢p(1) + (1) = 2. On the other hand, ib > 1, then 1< ¢q(w) < dp(w).
Hence, we have

2¢q(w) < p(w) < 2¢p(w)
and
Pp(w) < o(w)
for w > 1. From these inequalities, it follows that

or(5) <7D <00 (5) (3.3)

and
¢ @ <op(d (3.4)
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for z> 2. Let us divide the regioR = {(a,b): a> 0 andb > 0} into four parts:

Ry ={(ab):ab>2 andb > 2};

Ry ={(a,b):ab>2 and O<b<2};
={(ab):ab<2 and O<b<2);
={(ab):ab<2 andb>2}.

If (a,b) € Ry, then by (3.3) and (3.4), we have

o1(ab) < oy (aD) = b (28) By (b) < o (23) ¢ (D).

o@D = gy ( ) o (3) 80 0 = 0 (5 ) 200
If (a,b) € Ry, then by (3.1) and (3.3), we have

-1(ab)<¢q( ) - (a)¢q( )<¢q (@ 0,

o l(ab) > ¢y ( ) o (@) by ( ) > by (B¢ (D).
If (a,b) € Rs, then by (3.1) and (3.2), we have

o~L(ab) < dq-(ab) = dq- (2)dq: (b) < b (28)07'(0)

¢ e > 0| T ) = b ()0 O 0 (560
If (a,b) € Ry, then by (3.1) and (3.3), we have

¢ Hab) < dp ( ) ¢p () pp ( )< dp -(a) (D),

o e o0 (G| =0 @oa 5 > 00 (@710

Note thatgp - (E) < ¢p(@) < ¢p-(2a) andeg: ( )< ¢q:(8) < ¢pg-(2a) for all a> 0 andb > 0.
We therefore conclude that

¢H(ab) < f@ ¢ (b),

¢~H(@b) = g(@) ¢ (b)
for alla> 0 andb > 0, where

f(a) = max{gp: (28), ¢o (22)}
¢ (20) if 0<a<1/2,
) { ¢p(28) if ax1/2,
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s=rinfn (3 (3]

¢q*(g) if 0<a<2

a
() ifax2
ow(3) if az
Sincegp + ¢q is an odd function, we see that

¢H(ab) =~ f(@)¢ *(b),

¢ (ab) < —g(a)¢ " (b)

for all a> 0 andb > 0, wheref andg are the functions given above. Thus, conditions (2.2)
and (2.3) are satisfied.
Let us present a fferent type of function satisfying conditions (2.2) and (2.3). Define

-1 ifw>0,
z=g(w) = _
1-e? if w<O.

Then, g is a continuous and strictly increasing function®msatisfyingwe(w) > 0 if w # 0
andp(w) tends totoco asw — +oo. The inverse function ap is

L Inl+z if z=0,
w=¢ (9= _
-In(1-2 if z<O.
Fora> 0 andb> 0, let
def " X(@b) _ In(1+ab)
" e li(b)  In(l+b)’
Then, using I'Hbpital’s rule, we obtain

G(ab)

. o al+b)

ime@b == =
and a/b+a

. . +

m o) = Jm 72 =t
We have

ﬁg(a b) = a(1+b)In(1+b) - (1+ab)In(1+ab)

b (1+ab)(1+b)(In(1+b))?

Let K(a,b) = a(1+b)In(1+b) - (1+ab)In(1+ab), and leta* be any fixed positive number.
Then, K (a*,0) =0, and

1+b
l+ab’
Sinceb > 0, the function’ is strictly decreasing with respect boif a* > 1 and strictly
increasing with respect toif 0 < a* < 1. Hence, we have

d * *
%(K(a,b)_a In

K(a,b)<0 if a*>1,
K(a',b)=0 if a'=1,

K@,bh)>0 if0<a'<1
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This means thag(1,b) = 1 for all b > 0; G(a,b) is strictly decreasing with respect koin
the region{(a,b): a> 1 andb > 0}, andG(a,b) is strictly increasing with respect toin the
region{(a,b): 0 < a < 1 andb> 0}. Hence, we see that

¢~'(ab)
¢ H(b)

for all a> 0 andb > 0. Sincey is an odd function, we see that

~17 -1
—min{l,a) > 2 (1 ab) __¢ l(ab) > - max1, a)
¢~(b) ¢~(b)
for all a> 0 andb > 0. We therefore conclude that conditions (2.2) and (2.3) are satisfied
with f andg satisfying

min{1, a} < G(a,b) =

<maxl, a}

f(@=maxl,a} and g¢g(a)=min{1, a}.

4 Proof of Theorems 1.1 and 1.2

Let u(x) be any radially symmetric solution of (1.1), and §t) be the function defined by

&(t) = u(x) andt = |x| > . Then, we hav&u(x) = f/t(t)x, and therefore,
N o au
Aru(x) = ; v ('Vu(x)|r_26_>q)
= (O 0) + e O 0
and N N
X [VUG)I 2V u(x) = Zl i~

=g (O % ).

Hence, the functiog(t) is a solution of the second-ordeffidirential equation

(89&) + 0&)) + (k(t) . NT‘l)(%@') +00(E)) + P (0p() + 06©) =0, (4.1)

where¢, andg¢q are functions given in Section 3. Singg + ¢q satisfies conditions (2.2)
and (2.3) as shown in Section 3, we may regard Eq. (4.1) as a special case of (24) with
satisfyingh(t) = k(t) + (N — 1)/t. If the equilibrium of (4.1) is globally asymptotically stable,
then g(t),£(t)) tends to the origin as— .
Sinceh(t) = k(t) + (N—1)/t, condition (1.2) coincides with condition (2.4). If there exist
anep > 0 and a5 > 0 such thatk(t) — k(s)| < &o for all t > @ ands > a with |t — g < &g, then
N-1 N-1

Ih(t) — ()| < [k(®) ~ k(3| + 'T L.

N-1
<80+—260
04

fort> a ands> a with |t— 9§ < §g. Becausé(t) is larger thanl — 1)/t for t > «, it naturally
belongs toFwip). Hence, all conditions of Theorems 2.1 and 2.2 are satisfied, and thus,
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we see that the equilibrium of (4.1) is globally asymptotically stable if and only if condition
(1.2) holds. We therefore conclude that condition (1.2) is a necessary ficibsti condition
for u(x) and|Vu(x)| to tend to zero ai| — oo. Theorem 1.1 is thus proved.

If k belongs toFp;, the functionh also belongs top;. Hence, Theorem 1.2 can be
deduced from Theorems 2.1 and 2.3. O

5 Power dissipation

To show the usefulness of Theorems 1.1 and 1.2, we consider the first-order lifieandi
tial equation

N-1
x’:l—(k(t)+ . )x, (5.1)
wherek is a power functiort’ with £ € R. Then, it is obvious that

['eds
Z(t) = W

is the particular solution of (5.1) satisfying the initial conditiz{ir) = 0. For this reason, we
first examine the asymptotic behaviour of the particular solution. Let

h(t) = k(t) + NT_l for t> a.

The particular solution has a close relationship with the curve definedHgs) for t > a. If
this curve and the trajectory of the particular solution have a point of intersection, then the
trajectory moves horizontally at this point.

We classify our argument into two cases:A& 0, and (ii)¢ > O.

Case (i)t < 0: The functionh satisfies

1 o if £<0,
lim — =
tmoh®) |1 ez,

where Yh(t) is identically equal to 1 whefi= 0 andN = 1. Since

( 1 ) £t — (N - 1)/t

h®) @+ (N-)2

we see that it is zero fdr> « if £ = 0 andN = 1; otherwise, it is positive for > a. Hence,
there are three subcases. The curve defined bff)lis strictly increasing and tends ¢o as
t — oo if £ <0; itis strictly increasing and approaches I as « if £=0 andN > 1; and it
is a horizontal line whose value is 14 0 andN = 1.
Case (ii)¢ > 0: The functiorh satisfies
1
tll—>ngo h(t) ~ 0.

We divide this case into two subcasébs> 1 andN = 1. If N > 1, then there existstd > o

such that
( 1)/ >0 fora<t<th,
h(t) <0 fort>t*,
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which means that, if = , then (¥h(t))’ <0 fort> a. If N=1, then (¥h(t))’ <0 fort> a.
Hence, the curve defined byH(t) is strictly decreasing for all sficiently larget, and it
tends to 0 as— oo. The inflection point of this curve is at most one. The slope of this curve
is zero at such an inflection point.

Example5.1 Consider Eq. (1.1) witk(t) = t’. If £ < 0, then all radially symmetric solutions
u satisfy the property that(x) and|Vu(x)| tend to zero ag| — co.

Proof Since the power dissipatidais strictly decreasing or is equal to 1, we see that
Ik(t) — k(9)| < k(t) + k(s) < 2k(a)

for allt > @ ands > @. Hence, the assumption of Theorem 1.1 is satisfied insany2k(a)
anddsp > 0. We check that condition (1.2) is also satisfied.

Let us compare the position of the curve defined pig(t) and that of the trajectory of
the particular solutiorz of (5.1) satisfying the initial condition thafa) = 0. Since

BN
h(@) af+(N-1)/a

>

the trajectory is located below the curve in a neighborhood of the paifi).(To be precise,
there exists g > a such that

2(t) < for e <t<p.

1
h(t)
From (5.1), we see that(t) > 0 for @ < t < 8. This means that the trajectory rises in the
neighborhood of the point{0).
Suppose that the trajectory crosses the curve. Then, we canyingsasuch that(y) =
1/h(y),
Z(t) < 1 fora<t<
hpy T
and 1
— f . 2
Z(t)>h(t) ort>vy (5.2)
Sincez(y) = 1/h(y), it follows thatZ (y) = 0. Hence, the slope of the trajectory is zero on the
curve. On the other hand, the slope of the curve is nonnegative in case (i) above. Thus, the
trajectory cannot pass through the curve. This contradicts (5.2).
We therefore conclude that
Z(t) < 1 for t>a;
= h() =®
that is, the trajectory does not drop. Henzg) > z(8) > 0 for t > 8. Sinceg™ is a strictly
increasing function, we obtain

o0 teK(9)g o0
L¢1(L;—®S)dtzﬁﬁ¢l(z(t))dt+fﬂ o~ H(Z(p)) dt = oo,

and therefore, condition (1.2) is satisfied.
Thus, we can apply Theorem 1.1 to this example. m|
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Example5.2 Consider Eq. (1.1) witk(t) = t’. If 0 < £ < q—1, then all radially symmetric
solutionsu satisfy the property that(x) and|Vu(x)| tend to zero af| — oo.

To prove Example 5.2, we need the following lemma and a technique in Zheng and
Sugie [27].

Lemma 5.1 Let/(t) be a nonnegatve continuous function[enco). If there exist numbers
k> 0andé > 0such that

6= tlLrgo t“z(b). (5.3)
Then

(@) if k<1, thenf Z(t)dt = oo;

(b) if x> 1, then f Z(dt < co.

Proof of Examplé.2 As in the proof of Example 5.1, we compare the position of the curve
defined by 1h(t) and that of the trajectory of the particular solutioof (5.1) satisfying the
initial condition thatz(a) = 0. The trajectory is located below the curve in a neighborhood
of the point ¢,0). The trajectory continues to rise as long as it is located below the curve.
As shown above, in case (ii), the curve is strictly decreasing for ilkcgently larget, and

it tends to zero as— oo. Hence, the trajectory has to cross the curve. §gt/h(y)) be the
intersecting point of the trajectory and the curve. Tt#é) > 1/h(t) for t in a right-hand side
neighborhood of.

The trajectory does not intersect the curve again afterwards. In fact, the slope of the
trajectory is zero on the curve, and the slope of the curve is negative. Hence, we conclude
that

1

z(t) > @ for t>vy. (5.4)
This means that the trajectory is ultimately located above the curve. From (5.1) and (5.4), we
see that? (t) < 0 fort > y. Since Yh(t) tends to zero as— oo, the trajectory also ultimately
tends to zero. If the trajectory does not tend to zero, then wesfin® such thatz(t) > 6
for t > y. SinceZ(t) < 0 for t > v, the slope of the trajectory ultimately approaches zero.
However, we have

1 4

Z(t)—@>§

for all suficiently larget. Hence, we obtain

g 0 N-1

which tends te- 0 ast — . This is a contradiction. Thus, we conclude ti#} is decreas-
ing and tends to zero &s- co.
As proved in Section 3, the estimation (3.1) holds. Hence, there existsjasuch that

o Hz(t) = ¢ (2(1)/2) for t>T.
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Using this inequality, we get

[ msa_l(f‘;(;i—((:ds]dt: [ [Ceawma
. [ T(p_l(Z(t))dHKl(z) [Coatana
_ f Tgp‘l(z(t))dt—Wl(z) f g )t
*Wlw [ oatare

Hence, if the integral fromy to co of ¢¢: (Z(t)) diverges too, then condition (1.2) is satisfied.

Since
<= [[¢+M2)os

R AR t
—m(t - )+(N—1)|Og;,

it follows that
KO _ CtN—let“l/(Hl)’

wherec = 1/(aN‘1e"€+1/(‘+1)). Letx = £(q" — 1) andZ(t) = ¢q- ((t)). Then, we have

= ()7 = g (1)

and

1
tN-1g71t™

t SNl—s“
4(t>=¢q[ o3 rer ]

Using I'Hopital’s rule twice, we obtain

tf N-ler1sds tf‘(N‘l)ft N-lem18 ™ ds
lim t2(t) = Jim g | — = | lim o

{+1 1 e+1
tN-1g7rt™* it en1t”

(- (N- D)t [f N-Temrs” ds+tfefht“1]

= ¢Q* II—)oo t{ er 1t[+l
i (- (N-1))['sV-leri¥""ds "
—¢q t—00 tNe[+ltf+1
+1
_ o] im (- (N-1)tN-Lemt
T N tN-lgmat™? 4 te+Nezt*

= g (nmf (N-1) 1)=¢q*(1)=1.

t—oo N+ tf +1

Hence, condition (5.3) is satisfied with= £(g* — 1) andd = 1. Since —1)(g* - 1) =1, we
see thak <1 if and only if¢ < g— 1. Therefore, by virtue of Lemma 5.1 (a), we can conclude

that N N
f dq- (1)) dt = f Z(t)dt = oo
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if {<q-1.
It is clear thatk belongs tofyp; in case (i) above. Thus, we can apply Theorem 1.2 to
this example. O

Example5.3 Consider Eq. (1.1) witk(t) = t’. If all radially symmetric solutionsi satisfy
the property thati(x) and|Vu(x)| tend to zero aj| — o, thenf < p—1.

Proof We prove that i > p— 1, then condition (1.2) does not hold. Using the same method
as in the proof of Example 5.2, we can conclude that

fteK(S)ds

Z(t) = TG
is decreasing and tends to zerd as co. From the estimation (3.1), we see that there exists
aT > 0 such that
¢ Hz) < ¢ (21)/2) for t=>T.

Using this inequality, we get

=~ teK(S)ds T 00
[ so-l[ffﬂw]dw [ et [ o

a

T 1 00
1 "
s[ o () dt+ —¢p*(2)fT ¢p-(Z(1)) dt

a

B T i ~ 1 T )

- [ Hand- = [ oo
1 00

+—¢p*(2)f“ ¢p(Z(1)) dt.

Hence, if the integral from to co of ¢ ((t)) converges, then condition (1.2) is not satisfied.
Letk = ¢(p* — 1) andZ(t) = ¢p-(Z(t)). Then, as in the proof of Example 5.2, we obtain

Jim £2() = 6pe (1) = 1.

Hence, condition (5.3) is satisfied with= ¢(p*— 1) andd = 1. Since p—1)(p*—1) =1, we
see thak > 1 if and only if¢ > p—1. Therefore, by virtue of Lemma 5.1 (b), we can conclude

that
[Coptma= [ ait<es
if £>p-1.
Becausé belongs toFy; in case (ii) above, we can apply Theorem 1.2 to this example.

0
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