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Abstract

This paper deals with the second-order linear differential equationx′′+a(t)x′+b(t)x= 0,
wherea and b are periodic coefficients. The main purpose is to present new criteria
which guarantee that all nontrivial solutions are nonoscillatory and that those are oscilla-
tory. Our nonoscillation theorem and oscillation theorem are proved by using the Riccati
technique. In our theorem, the composite function of an indefinite integral ofb and a suit-
able multiple-valued continuously differentiable function are focused, and the composite
function of them plays an important role. The results obtained here include a result by
Kwong and Wong (2003) and a result by Sugie and Matsumura (2008). An application to
a equation of Whittaker–Hill type is given to show the usefulness of our results. Finally,
simulations are also attached to illustrate that our oscillation criterion is sharp.
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1. Introduction

We consider the second-order linear differential equation

x′′+a(t)x′+b(t)x= 0, (1.1)

wherea, b: [0,∞)→ R are continuous and periodic functions with periodT > 0. Equa-
tion (1.1) has obviously the trivial solutionx ≡ 0. Since all other solutions also exist in
the future, they are divided into two groups as follows. A nontrivial solutionx of (1.1) is
said to beoscillatoryif it has an infinite number of zeros on the interval[0,∞). Otherwise,
the nontrivial solution is said to benonoscillatory. In other words, ifx is a nonoscillatory
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solution of (1.1), then there exists at∗≥ 0 such thatx(t) > 0 for t ≥ t∗ or x(t) < 0 for
t ≥ t∗.

We can consider equation (1.1) to be a motion equation having a very simple form.
For this reason, equation (1.1) has been widely studied as models which appear not only
in pure mathematics but also in various fields. We can easily find the literatures related to
oscillation theory for equation (1.1) and more generalized equations including (1.1) (refer
to [1, 2, 3, 6, 7, 18, 22, 24, 27, 28, 30, 31, 32, 33, 34]).

In the special case whena is equal to zero identically, equation (1.1) becomes the
differential equation

x′′+b(t)x= 0 (1.2)

which is famous in astrophysics. This equation was proposed by George William Hill to
analyze the orbit of the moon originally (see [9]). Equation (1.2) is called Hill’s equation
named after him.

Let p be any continuous and periodic function with periodT > 0. By taking into
account the definite integral ofp from 0 to T, we can define the following family of
functions. The periodic functionp is said to be periodic ofmean value zeroif p is not
identically zero and ∫ T

0
p(t)dt = 0.

Let us denote byF[MVZ ] the family of functions which are periodic of mean value zero.
About other applications of Hill’s equation, refer to [19, 20]. We can find various results
about the oscillation problem of (1.2) in many literatures (for example, see [3, 15, 16, 17,
27]).

It is well known that ifb belongs toF[MVZ ], then all nontrivial solutions of (1.2) are
oscillatory (for the proof, see [3, p. 25]). For example, ifb(t) = sint (or b(t) = cost),
then all nontrivial solutions of (1.2) are oscillatory. However, even ifa andb belong to
F[MVZ ], all solutions of (1.1) are not always oscillatory. By focusing on this fact, Kwong
and Wong [15] have studied oscillation and nonoscillation of equation (1.1). LetB be an
indefinite integral ofb. Then, their nonoscillation criterion [15, Theorem 1] can be stated
as follows.

Theorem A. Suppose that b belongs toF[MVZ ]. If

(B(t)−a(t))B(t)≤ 0 for 0≤ t ≤ T,

then all nontrivial solutions of(1.1)are nonoscillatory.

Remark 1.1. It is clear that the difference of two indefinite integrals ofb is constant.
The periodic coefficientb belongs toF[MVZ ] if and only if all indefinite integrals ofb are
periodic. The condition thatb belongs toF[MVZ ] is used only to show thatB is a periodic
function with periodT. Hence, we can rewritten the statement of Theorem A as “IfB is
periodic and

(B(t)−a(t))B(t)≤ 0 for 0≤ t ≤ T,

then all nontrivial solutions of (1.1) are nonoscillatory.”
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A typical example that can be applied to Theorem A is

x′′+(sint)x′+(cost)x= 0. (1.3)

Sinceb(t) = cost in equation (1.3), we can chooseB(t) = sint. Hence, we have

(B(t)−a(t))B(t) = (sint −sint)sint = 0 for 0≤ t ≤ 2π.

In fact, equation (1.3) has a nonoscillatory solutionx(t) = exp(cost). Kwong and Wong
[15, Theorem 2] also presented a criterion for all solutions of (1.1) to be oscillatory. Their
result was extended by Sugie and Matsumura [26, Theorem 3.1] as follows.

Theorem B. Suppose that a and B belong toF[MVZ ]. If∫ T

0

{
(B(t)−a(t))B(t)exp

∫ t

0
(a(s)−2B(s))ds

}
dt > 0,

then all nontrivial solutions of(1.1)are oscillatory.

Remark 1.2. If B belongs toF[MVZ ], thenb also belongs toF[MVZ ]. Hence, it is in-
evitably assumed thatb belongs toF[MVZ ] in Theorem B.

It is known that all nontrivial solutions of

x′′+(cost)x′+(sint)x= 0

are oscillatory (for example, see [31, pp. 255–256] and [34, p. 427]). This fact can also
be verified by using Theorem B. To apply Theorem A or Theorem B to equation (1.1), the
periodic coefficientb needs to belong toF[MVZ ]. For example, we consider the damped
linear equation

x′′+(sint)x′+(ε +cost)x= 0, (1.4)

whereε is a real number. Comparing equation (1.4) with equation (1.1), we see that
a(t) = sint andb(t) = ε +cost. Hence, there exists no indefinite integral ofb belonging
to F[MVZ ] if ε ̸= 0, and therefore, we cannot apply Theorems A and B to equation (1.4).

Then, what is the condition that guarantees that all nontrivial solutions of (1.1) with
a periodic coefficientb which does not belong toF[MVZ ] oscillate or not? In this paper,
we deal with this problem. For this purpose, we focus on the composite function of an
indefinite integralB and a continuously differentiable functionF defined on the range
of B. Let f be a derivative function ofF . Our results are as follows.

Theorem 1.1. If the composite function F(B) is periodic and(
F(B(t))−a(t)

)
F(B(t))+

(
1− f (B(t))

)
b(t)≤ 0 (1.5)

holds for0≤ t ≤ T, then all nontrivial solutions of(1.1)are nonoscillatory.
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Theorem 1.2. Suppose that a and F(B) belong toF[MVZ ]. Let

E(t) = exp
∫ t

0

(
a(s)−2F(B(s))

)
ds.

If ∫ T

0

{(
F(B(t))−a(t)

)
F(B(t))+

(
1− f (B(t))

)
b(t)

}
E(t)dt > 0, (1.6)

then all nontrivial solutions of(1.1)are oscillatory.

Remark 1.3. In Theorems 1.1 and 1.2, the functionF is permitted to be multiple-valued.
However, the composite functionF(B) should be a continuous and single-valued function
even ifF is a multiple-valued function. WhenF is a multiple-valued function, its deriva-
tive function f is also multiple-valued. In this case, a combination of suitable branches of
f has only to satisfy inequality (1.6) (see the concrete example given in Section 3 on how
to decide suitable branches).

Remark 1.4. Let u = B(t). SinceB andF in Theorems 1.1 and 1.2 are differentiable
functions, their composite functionF(B) is also differentiable, and its derivative with
respect tot is(

F(B(t))
)′
=

du
dt

d
du

F(u)
∣∣∣
u=B(t)

= b(t) f (u)
∣∣∣
u=B(t)

= f (B(t))b(t).

In the equality above,F and f mean a suitable branch whenF is a multiple-valued func-
tion.

Remark 1.5. In Theorem 1.2, the periodic coefficienta and the composite functionF(B)
belong toF[MVZ ]. Hence, the functionE is a periodic function with periodT.

2. Proof of Theorems 1.1 and 1.2

The Riccati inequality corresponding to equation (1.1) is

r ′ ≥ r2−a(t)r +b(t). (2.1)

The following relation between equation (1.1) and inequality (2.1) is known well (for
example, refer to the book [7, pp. 362–363]).

Lemma 2.1. All nontrivial solutions of(1.1)are nonoscillatory if and only if there exist
a t0 ≥ 0 and a continuously differentiable function r: [t0,∞) → R satisfying inequality
(2.1).
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Using Lemma 2.1, we can easily prove Theorem 1.1. For the convenience of the
reader, we give the proof briefly.

Proof of Theorem 1.1. By assumption, the coefficientsa andb, the composite function
F(B) and its derivativef (B)b are periodic functions with periodT. Since the derivative
of F(B) is f (B)b, it follows from (1.5) that(

F(B(t))
)′ ≥ F2(B(t))−a(t)F(B(t))+b(t)

holds fort ≥ 0. This means thatF(B) satisfies the Riccati inequality (2.1) fort ≥ t0 = 0.
Hence, by Lemma 2.1, all nontrivial solutions of (1.1) are nonoscillatory. 2

Define

r(t) = exp

(∫ t

0
a(s)ds

)
for t ≥ 0.

Then we can rewrite equation (1.1) as the Sturm–Liouville differential equation

(r(t)x′)′+c(t)x= 0, (2.2)

wherec(t) = b(t)r(t) for t ≥ 0. The following lemma is the so-called Leighton–Wintner
oscillation criterion (for the proof, see [27, pp. 70–71, Theorem 2.24]).

Lemma 2.2. All nontrivial solutions of(2.2)are oscillatory if

lim
t→∞

∫ t 1
r(s)

ds= lim
t→∞

∫ t
c(s)ds= ∞.

Needless to say, all nontrivial solutions of (2.2) are oscillatory if and only if those of
(1.1) are oscillatory. We prove Theorem 1.2 by means of Lemmas 2.1 and 2.2.

Proof of Theorem 1.2. The proof is by contradiction. Suppose that equation (1.1) has
a nonoscillatory solutionx. Then we may assume without loss of generality that there
exists at0 ≥ 0 such thatx(t)> 0 for t ≥ t0. Let

r(t) =−x′(t)
x(t)

for t ≥ t0.

Then, the functionr is continuously differentiable fort ≥ t0 and

r ′(t) =

(
x′(t)
x(t)

)2

− x′′(t)
x(t)

= r2(t)−a(t)r(t)+b(t).

Let R(t) = r(t)−F(B(t)) for t ≥ t0. Then we have

R′(t) = r2(t)−a(t)r(t)+b(t)− f (B(t))b(t)

=
(
R(t)+F(B(t))

)2− (R(t)+F(B(t)))a(t)+b(t)− f (B(t))b(t)

= R2(t)−
(
a(t)−2F(B(t))

)
R(t)

+
{(

F(B(t))−a(t)
)
F(B(t))+

(
1− f (B(t))

)
b(t)

}
.
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SinceR is a continuously differentiable function on[t0,∞), we can regard the functionR
as a solution of the Riccati-type equation

r ′ = r2−
(
a(t)−2F(B(t))

)
r +

{(
F(B(t))−a(t)

)
F(B(t))+

(
1− f (B(t))

)
b(t)

}
.

The second-order linear differential equation corresponding to the above equation is

y′′+
(
a(t)−2F(B(t))

)
y′+

{(
F(B(t))−a(t)

)
F(B(t))+

(
1− f (B(t))

)
b(t)

}
y= 0. (2.3)

Hence, Lemma 2.1 leads to the conclusion that all nontrivial solutions of (2.3) are non-
oscillatory.

We can transform equation (2.3) into the differential equation of Sturm–Liouville type,(
E(t)y′

)′
+
{(

F(B(t))−a(t)
)
F(B(t))+

(
1− f (B(t))

)
b(t)

}
E(t)y= 0. (2.4)

From the assumption that botha andF(B) belong toF[MVZ ], it follows thatE is a periodic
function with periodT. Hence, we can find anm> 0 such that 0< E(t) ≤ m for t ≥ 0.
We therefore conclude that

lim
t→∞

∫ t

0

1
E(s)

ds≥ lim
t→∞

∫ t

0

1
m

ds= ∞. (2.5)

For convenience, let us denote byG(t) the coefficient{(F(B(t))−a(t))F(B(t))+ (1−
f (B(t)))b(t)}E(t) and let

ρ =
∫ T

0
G(t)dt > 0.

SinceG is a periodic function with periodT, there exists aC≥ ρ such that∫ t

0
|G(s)|ds≤C for 0≤ t ≤ T. (2.6)

For an arbitraryt ≥ 0, there is ann∈ N such thatnT ≤ t < (n+1)T. Hence, by (2.6) we
have ∫ t

0
G(s)ds=

∫ T

0
G(s)ds+

∫ 2T

T
G(s)ds+ · · ·+

∫ nT

(n−1)T
G(s)ds+

∫ t

nT
G(s)ds

≥ nρ −
∫ t

nT
|G(s)|ds= nρ −

∫ t−nT

0
|G(s)|ds≥ nρ −C.

Since the integern tends to infinity ast → ∞, we obtain

lim
t→∞

∫ t

0
G(s)ds≥ lim

n→∞
nρ −C= ∞. (2.7)

From the estimations (2.5) and (2.7) it turns out that all conditions of Lemma 2.2 are
satisfied. Hence, all nontrivial solutions of (2.4) are oscillatory. Since equation (2.3) is
equivalent to equation (2.4), all nontrivial solutions of (2.3) are also oscillatory.

The conclusion of the second paragraph contradicts that of the first paragraph. Thus,
the proof is complete. 2
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3. Application to the Whittaker–Hill equation

Whittaker–Hill equation has the form

d2y
ds2 +

(
λ +4mqcos(2s)+2q2cos(4s)

)
y= 0,

whereλ andq are real numbers andm is a natural number (for example, see [19, pp. 106–
107]). It has been reported that this equation has a deep relationship with various equa-
tions such as Mathieu’s equation, Ince’s equation and the confluent hypergeometric dif-
ferential equation. For this reason, it has been extensively studied in various research
fields. For example, see [4, 5, 8, 10, 12, 13, 14, 21, 25, 29]) and the references therein.
Whittaker–Hill equation appears in various fields of natural science and engineering. For
example, we can cite a theory of internal rotation in the hydrogen peroxide molecule (see
[11, 23]).

Let
t = 2s and x(t) = y(s)e−q(1−cost).

Then, by a straightforward calculation, Whittaker–Hill equation is transformed into

x′′+2q(sint)x′+

(
λ
4
+

q2

2
+q(1+m)cost

)
x= 0. (3.1)

From this transformation, we see that all nontrivial solutions of Whittaker–Hill equation
are oscillatory if and only if those of (3.1) are oscillatory.

Consider the special case thatm= 1 andq= 1/2. Then, by lettingε = λ/4+1/8, this
special case becomes the damped linear equation (1.4). As mentioned in Section 1, all
nontrivial solutions of (1.4) are nonoscillatory whenε = 0. Those are also nonoscillatory
whenε < 0. In fact, by multiplying both sides by exp(1−cost), equation (1.4) is rewritten
as the differential equation of Sturm–Liouville type,(

e1−costx′
)′
+e1−cost(ε +cost)x= 0. (3.2)

Hence, the classical Sturm comparison theorem is valid (for example, see [27, pp. 1–2]
about Sturm’s comparison theorem).

Then, how about the case whenε > 0? The classical Leighton–Wintner oscillation
criterion, namely, Lemma 2.2 gives a partial answer. Comparing (3.2) with (2.2), we see
that

r(t) = e1−cost and c(t) = e1−cost(ε +cost).

Since 1≤ r(t)≤ e2 for t ≥ 0, it follows that

lim
t→∞

∫ t 1
r(s)

ds= ∞.

Numerical computation shows that

21.6237<
∫ 2π

0
e1−costdt < 21.6238 and−9.65263<

∫ 2π

0
e1−cost cost dt <−9.65262.
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Hence, we have ∫ 2π

0
c(t)dt =

∫ 2π

0
e1−cost(ε +cost)dt

= ε
∫ 2π

0
e1−costdt+

∫ 2π

0
e1−cost cost dt

< 21.6238ε −9.65262

and ∫ 2π

0
c(t)dt > 21.6237ε −9.65263.

Form these estimations it turns out that

lim
t→∞

∫ t
c(s)ds< ∞ if 0 < ε ≤ 0.4463887

and

lim
t→∞

∫ t
c(s)ds= ∞ if ε ≥ 0.4463912.

We therefore conclude that ifε ≥ 0.4463912, then all nontrivial solutions of (1.4) are
oscillatory. However, since the Leighton–Wintner oscillation criterion is not satisfied if
0< ε ≤ 0.4463887, we cannot judge that all nontrivial solutions of (1.4) are oscillatory.

Then, how about the case whenε is a sufficiently small positive value? Theorem 1.2
answers this question as follows.

Theorem 3.1. All nontrivial solutions of(1.4)are oscillatory whenε > 0.

Proof. By Sturm’s comparison theorem, we only need to prove the case whenε is small
sufficiently. Note thata(t) = sint andb(t) = ε +cost. It is clear thata belongs toF[MVZ ].
We choose the functionε t +sint as an indefinite integralB of b. Define

u= H(v) = v+ ε sin−1v

for v∈ [−1,1], where sin−1v means the set of numbersξ satisfyingv= sinξ . Then,H is
a multi-valued function (see Figure 1). Note that

H(sint) = sint + ε t = B(t) for t ≥ 0.

Of course,H has no inverse function. However, each branch ofH has an inverse function
because it is strictly increasing on[−1,1]. There are an infinite number of branches ofH.
Define a sequence{In} of intervals by

In =

[
−1+

(
2n− 1

2

)
επ, 1+

(
2n+

1
2

)
επ

]
def
= [αn,βn]

for eachn ∈ Z. Note that the intersection ofIn and In+1 exists for eachn ∈ Z. Let
Fn : In → [−1,1] be the inverse function of a branch ofH, and letF be a combination of
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Figure 1: The graph of the multi-valued functionH whenε = 0.25

all Fn (n∈ Z). In other words, each functionFn is a branch ofF which is a multi-valued
function (see Figure 2). We see thatF is a continuously differentiable function onR.
Since

F(B(t)) = F(sint + ε t) = sint for t ≥ 0,

F(B) belongs toF[MVZ ].
For eachn∈ Z, the branchFn is a single-valued function onIn. The principal branch

of F is the single-valued functionF0. The branchFn is differentiable on the open interval
(αn,βn) for eachn ∈ Z. It is clear that 2nεπ ∈ In, Fn(2nεπ) = 0, Fn(αn) = −1 and
Fn(βn) = 1. When the branchFn moves 2επ parallel to the right, it coincides with the
next branchFn+1, namely,

Fn+1(u) = Fn(u−2επ) for u∈ In. (3.3)

The branchFn is an odd function aroundu= 2nεπ. Hence, we have

Fn(u) =−Fn(4nεπ −u) for u∈ In. (3.4)

Sinceε is small enough, it follows that

−1+

(
2n+

3
2

)
επ < (2n+1)επ < 1+

(
2n+

1
2

)
επ.

This means that(2n+1)επ ∈ In∩ In+1. Hence, by (3.3) and (3.4) we obtain

Fn+1
(
(2n+1)επ

)
= Fn

(
(2n+1)επ −2επ

)
= Fn

(
4nεπ − (2n+1)επ

)
=−Fn

(
(2n+1)επ

)
(3.5)
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Figure 2: The graph of the multi-valued functionF whenε = 0.25

for eachn∈ Z.
SinceFn is a single-valued and differentiable function on the open interval(αn,βn)

for eachn∈ Z, we can define the derivative ofFn. We have

fn(u) =
d
du

Fn(u) =
1

d
dvH(v)

∣∣∣∣
v=Fn(u)

=

√
1−F2

n (u)√
1−F2

n (u)+ ε
< 1 (3.6)

for αn < u< βn. In fact, since the branch of sin−1v corresponding toFn is an increasing
function on[−1,1] and

−1+

(
2n− 1

2

)
επ = αn < u= H(v) = v+ ε sin−1v< βn = 1+

(
2n+

1
2

)
επ,

we see that(2n−1/2)π < sin−1v< (2n+1/2)π. Let w= sin−1v. Then it follows that
cosw> 0 and

dv
dw

= cosw=
√

1−sin2w=
√

1−v2.

Hence, we obtain
d
dv

H(v) = 1+
ε√

1−v2
for −1< v< 1.

Taking into account that(2n+1)επ ∈ In∩ In+1 for eachn ∈ Z and using the equalities
(3.5) and (3.6), we see that

fn
(
(2n+1)επ

)
=

√
1−F2

n ((2n+1)επ)√
1−F2

n ((2n+1)επ)+ ε

=

√
1−F2

n+1((2n+1)επ)√
1−F2

n+1((2n+1)επ)+ ε
= fn+1

(
(2n+1)επ

)
. (3.7)
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Now, consider the functionB. Since−1+εt ≤ B(t) = sint+εt ≤ 1+εt for t ≥ 0, the
graph ofB rises while oscillating up and down. The curveu= B(t) crosses the horizontal
line u= επ at three points within the range where 0≤ t ≤ 2π (see Figure 3). One of the
intersection points is(t,u) = (π,επ). Let (t1,επ) and(t2,επ) be the other intersection
points. From the form of this curve, we see that 0< t1 < π/2, 3π/2< t2 < 2π.

PSfrag repla
ements

−

t

u

t1
π

2
t2

1 +
1

2
επ

3π

2

−1 +
3

2
επ

επ

1 +
5

2
επ

5π

2
2ππ

−

π

2

−1 −
1

2
επ

1

1

Figure 3: The graph of the functionB whenε = 0.1

Sincea(t) = F0(B(t)) = F1(B(t)) = sint, it follows that∫ 2π

0

{(
F(B(t))−a(t)

)
F(B(t))+

(
1− f (B(t))

)
b(t)

}
E(t)dt

=
∫ 2π

0

(
1− f (B(t))

)
b(t)E(t)dt.

Recall thatf is a multiple-valued function. We can estimate that

α0 =−1− 1
2

επ < 0≤ B(t)≤ επ < 1+
1
2

επ = β0 for 0≤ t ≤ t1,

α1 =−1+
3
2

επ < επ < B(t)< 1+
5
2

επ = β1 for t1 < t < π,

α0 =−1− 1
2

επ <−1< B(t)≤ επ < 1+
1
2

επ = β0 for π ≤ t ≤ t2,

and

α1 =−1+
3
2

επ < επ < B(t)≤ 2επ < 1+
5
2

επ = β1 for t2 < t ≤ 2π.

Hence, we may choose the multiple-valued functionf as follows:

f (B(t)) =

 f0(B(t)) if 0 ≤ t ≤ t1 or π ≤ t ≤ t2,

f1(B(t)) if t1 < t < π or t2 < t ≤ 2π.
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SinceB(t) = επ at t = t1, t = π andt = t2, it follows from (3.7) that

f0(B(t1)) = f0(επ) = f1(επ) = f1(B(t1)),

f0(B(π)) = f0(επ) = f1(επ) = f1(B(π)),
and

f0(B(t2)) = f0(επ) = f1(επ) = f1(B(t2)).

This means thatf (B(t) is continuous for 0≤ t ≤ 2π. Hence, we are allowed to calculate
as follows:∫ 2π

0

(
1− f (B(t))

)
b(t)E(t)dt

=
∫ t1

0

(
1− f0(B(t))

)
b(t)E(t)dt+

∫ π

t1
E(t)

(
1− f1(B(t))

)
b(t)E(t)dt

+
∫ t2

π

(
1− f0(B(t))

)
b(t)E(t)dt+

∫ 2π

t2
E(t)

(
1− f1(B(t))

)
b(t)E(t)dt.

From (3.6) it turns out that

f0(B(t)) =

√
1−F2

0 (B(t))√
1−F2

0 (B(t))+ ε
=

√
1−sin2 t√

1−sin2 t + ε
=

|cost|
|cost|+ ε

for 0≤ t ≤ t1 or π ≤ t ≤ t2. Similarly,

f1(B(t)) =
|cost|

|cost|+ ε
for t1 < t < π or t2 < t ≤ 2π.

Sinceb(t) = ε +cost and

E(t) = exp
∫ t

0

(
a(s)−2F(B(s))

)
ds= exp

∫ t

0
(sins−2sins)ds= ecost−1

for t ≥ 0, we obtain∫ 2π

0

(
1− f (B(t))

)
b(t)E(t)dt = ε

∫ 2π

0
ecost−1 ε +cost

ε + |cost|
dt.

We divide the interval[0,2π] into two groups. Let

I+ =
{

t ∈ [0,2π] : cost > 0
}

and I− =
{

t ∈ [0,2π] : cost ≤ 0
}
.

Then we have

ε
∫ 2π

0
ecost−1 ε +cost

ε + |cost|
dt > ε

∫
I+

ecost−1dt− ε
∫

I−
ecost−1dt.

12



Sinceecost−1 > 1/e for t ∈ I+ andecost−1 ≤ 1/e for t ∈ I−, we see that

ε
∫

I+
ecost−1dt− ε

∫
I−

ecost−1dt > ε
∫

I+

(
ecost−1− 1

e

)
dt+ ε

∫
I+

1
e

dt− ε
∫

I−

1
e

dt

> ε
∫

I+

(
ecost−1− 1

e

)
dt > 0.

We therefore conclude that∫ 2π

0

{(
F(B(t))−a(t)

)
F(B(t))+

(
1− f (B(t))

)
b(t)

}
E(t)dt > 0.

Thus, by Theorem 1.2, all nontrivial solutions of (1.4) are oscillatory even whenε is
a sufficiently small positive value. The proof is now complete. 2

The lower bound that all nontrivial solutions are oscillatory is often called theoscilla-
tion constant. Theorem 3.1 indicates that the oscillation constant for equation (1.4) is zero
by combining with Sturm’s comparison theorem and the fact that all nontrivial solutions
of (1.3) are nonoscillatory.

4. Simulation

To verify Theorem 3.1, we give an example in the section. Let us consider the case
thatε = 0.0003, namely, the equation

x′′+(sint)x′+(0.0003+cost)x= 0, (4.1)

Equation (4.1) is equivalent to the system

x′ = y,

y′ =−(sint)y− (0.0003+cost)x.
(4.2)

In Figure 4, we draw a positive orbit of (4.2) starting at the point(0,1). The initial
time is 0 and the finish time is 500. The positive orbit first runs around in the right half-
plane, and then it moves into the left half-plane. The same movement repeats infinitely.
As a result, the positive orbit looks like a bivalve shell. Since the positive orbit goes al-
ternately in the right half-plane and the left half-plane, we see that the solution of (4.1)
corresponding to this positive orbit is oscillatory. Indeed, the solutionx(t) of (4.1) sat-
isfying the initial condition that(x(0),x′(0)) = (0,1) repeats finely up and down, and it
changes the sign infinitely while shaking greatly (see Figure 5).

Since equation (4.1) is linear, all nontrivial solutions are oscillatory. This matches
the statement of Theorem 3.1 correctly. Whenε is made smaller, the size of this bivalve
increases and the amplitude of the solution curve of (4.1) also increases.
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Figure 4: A positive orbit of (4.2) whenε = 0.0003
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