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Abstract

In this paper, we consider a three-species system which consist of phytoplankton, zoo-
plankton and fish. It is well known that zooplankton are harvested by other creatures be-
sides fish, and it has been reported that zooplankton can absorb energy from other micro-
organisms besides phytoplankton in recent decades. For this reason, we add the parts of
extra energy source and harvesting effect in the model. Taking account of seasonal varia-
tion which can bring affects to many aspects of plankton population, we assume that some
factors about the phytoplankton and the zooplankton are time-dependent. In particular,
since the environment does not change regularly, we does not require these time-varied
factors are periodic, which is quite different with most ecological models. The purpose of
this paper is to present sufficient conditions which guarantee that the equilibrium of this
three-species system is globally asymptotically stable. Moreover, we will show that the
equilibrium is equiasymptotically stable under relatively weaker conditions.
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1. Introduction

The dynamic analysis of population growth through mathematical modeling is one of
the main topics of mathematical biology, and it contributes greatly to the understanding
of the world of biology. Since the 1990s, research on phytoplankton and zooplankton has
attracted the interest of many researchers (e.g., see [2, 9, 10, 14, 16, 20]).

Phytoplankton, usually called primary producers, are autotrophic prokaryotic or eu-
karyotic algae that are primarily found in surface waters where there is sufficient light to
support photosynthesis. The decrease of phytoplankton is mainly caused by zooplankton
predation. In other words, phytoplankton and zooplankton form a grazing food chain.
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Zooplankton include small protozoans and metazoans that mainly food on phytoplank-
ton. Some of the eggs and freshly hatched larvae of larger nektonic organisms such as
fish, crustaceans, and annelids, are also thought to be in the same position as zooplank-
ton for a few days before they can swim against the water current. Zooplankton ingest
nutritions also from bacterial plankton and other microorganisms in addition to predation
of phytoplankton. Zooplankton and those microorganisms form a microbial food chain
(refer to [1, 12]). Zooplankton store a large amount of organic material as the primary
consumers, and by being eaten by higher nutritional values such as fish, bivalves, and
jellyfish, zooplankton carry energy to them. Some kind of zooplankton are harvested
by humans, such as neomysis awatschensis, krill and whitebait (e.g., fry of sardines and
herring).

As the bottom of the marine food chain, the amount of phytoplankton and zooplank-
ton may have significant impact on other aquatic living and water quality. For this reason,
the theoretical and experimental researches about phytoplankton-zooplankton systems
have become important themes for the marine science and environmental protection. It
is pointed out in [5, 7, 13] that the interaction between phytoplankton and zooplankton is
closely related to the supply of nutrients, such as nitrate, phosphate and dissolved silicic
acid. It has also been reported that phytoplankton and zooplankton population are exten-
sively exploited by humans in the real world. In [6, 8], paying attention to this fact, the
harvesting effect was added to a phytoplankton-zooplankton system which is the classi-
cal Rosenzweig-MacArthur model, and an appropriate harvesting strategy was proposed.
Moreover, since the presence of fish that ingest plankton may have a significant influ-
ence on the plankton community, many studies have focused on the predation effect of
fish in the food web and considered some tritrophic food chain models of plankton-fish
interaction (for example, see [3, 15]).

Focusing on the above-mentioned interactions among phytoplankton, zooplankton,
fish, we propose a multiple species system consisting of lowest level preys, middle preda-
tors, and high level predators. In this paper, we also consider the fact that zooplankton
ingest nutrients from the microbial food chain. Since the seasonal factors such as tem-
perature and sunshine duration have influence on the activity of phytoplankton and zoo-
plankton, we assume that the coefficients for phytoplankton and zooplankton are time-
dependent. However, due to the indeterminacy of the environment, these factors do not
always change periodically. We do not use any periodic property of these factors in this
paper.

We consider the model

P’ = y(t)P - —~P* - g(t)PZ,

h(t)
K
7' =aZ + f()PZ - bZF - j(t)Z,

F' = —cF +dZF

where the prime denotetydt; the lettersP, Z and F mean the population densities of
phytoplankton, zooplankton and fish, respectively. To be exact, the densities &t time
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are represented by(t), Z(t) andF(t), which are usually measured in milligrams of dry
weight per millilitre. We assume that the unit of tirhes day and the unit of densitid%
Z andF ismg-ml~1.

Here, we explain the parameted, ¢, d andK, and the functiong, g, h, vy andj. All
parameters are positive constants. Paranzetepresents the growth rate of zooplankton
which is supported by the nutrient from the microbial food chain. Pararbasathe rate
of zooplankton eaten by fish. Parametes the natural mortality rate of fish. Parameter
d is the rate at which fish increase by preying zooplankton. We may considet ¢hht
ParameteK represents the carrying capacity of phytoplankton. The un#& ahdc is
day~1, the unit ofb andd is ml-mg-t-day~! and the unit oK is mg-ml~1. All functions f,

g, h, y and | are defined ofi0, c0) and nonnegative. The functidnis the growth rate of
zooplankton by preying phytoplankton, the functgprs the decay rate of phytoplankton

due to be ingested by zooplankton and the funchias the density limiting rate for the
carrying capacityK due to the intraspecific competition of phytoplankton. The function

v is the intrinsic growth rate of phytoplankton population. The funcijiesthe mortality

rate of zooplankton due to the harvest effect by human beings and the ingesting by other
marine organisms except fish. The unitfondg is ml-mgt-day~! and the unit o,

y andj is day-. Hence, the unit of both sides of each equation of the system above is
ml-mgt-day1.

We have only to consider the system above in the octant

O={(PZF)eR*:P>0,Z>0,F >0,

because it is a biological model. The intrinsic growth ratis often assumed to be the
same as the density limiting rate such as in the logistic equation which predicts the
variation of the population of the organism (population size) when a certain single kind
of organism grows in a constant environment. However, in this paper, in addition to the
relationship betweem andh, we think that the intrinsic growth rate will increase when
zooplankton become active and take much phytoplankton, conversely, the intrinsic growth
rate will decrease when zooplankton become inactive and do not prey on phytoplankton.

o . )
Hence, we suppose thaft) = h(t) + g g(t). Also, we think that the mortality rate of
zooplankton due to the harvest effect will increases when zooplankton become active and
eat more phytoplankton, conversely, the mortality rate due to the harvest effect will de-
creases when zooplankton become inactive and do not take much phytoplankton. Hence,
we suppose thgit) = Kf(t). As a result, our model becomes

h
P = (h(t) N g g(t))P - %PZ —g()PZ,
Z' = azZ + f(t)PZ - bZF - Kf(1)Z, (B)
F’ = —cF + dZF.

It is easy to check thaH) has a unique interior equilibriu, c/d, a/b).



To describe our results, we need some notations. We say that a continuous and non-

negative functiorp belongs taF wig if

; f o(t)dt =

for every pair of sequencés,} and{o} satisfyingr, < o < 7.1,

Iirr]ninf(an —717) >0 and limsup(thiy — o) < oo.

=00 nN—oo

Hatvani [4] had first named that the functions belongingri@s are weakly integrally
positive. From this definition, any function with a positive lower bound belongs to the
family of functions#wip. Moreover, it is possible that belongs to7 i even if p does

not have a positive lower bound. For example, the functibifs + t) andsin’t/(1 + t)
approach zero astends toco, but both functions belong tBwq (for the proof, see [19,
Proposition 2.1]). For any functiom: [0, ) — R, let

g-() = max {0, -q(t)} and q.(t) = max {0, q(t)}.

In biology, the ratiof /g means the conversion rate from biomass of phytoplankton
into biomass of zooplankton. Judging from the biological significance of the functions
g andh, it is natural to assume thgtis not less tharf and these functions are bounded,
namely, there exist positive constariitgj andh such that

f<fit)<g)<g and O<h(t)<h (1.1)

for all t > 0. Throughout this paper, we assume that the réfig is differentiable on
[0, ). Define the functiorf: [0, o) — R by

f(t))
(t
0=(ing
From (1.1), we can choose positive constdatandk, so that
ky < fg <k, for t>0. (1.2)
Note thatk, > f/gandk; < 1. Define the functiony,,: [0, «0) — R by
(1-e7r)?
= -——h
U0 = €0 = =550
foranyp > 0. If
[ w.odt < w3)
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holds for some > 0, we can find ar. > 0 so that

0 sfm(wpp(t)dt <L
0

Define the functiond: R — [0, o) by
ow) =w-1+¢e™

For anyp > 0, let pg be a positive number satisfying

D(=po) = 7€ Do),

where

m:min{i < kl} andM:max{ a ¢ k}.

dK’ dK’ dK’ dK’
Judging from the increase and decreas®,ofve see that ip tends toxo, thenpg diverges
{0 oo.
We are now ready to state our main theorem. The following result gives conditions
for the interior equilibrium of E) to be uniformly stable and equiasymptotically stable.

Theorem 1.1. Let condition(1.1) holds and suppose that there ip& 0 with (1.3)and
(¥p)- € Frwim- (1.4)

Then the interior equilibrium ofE) is uniformly stable and equiasymptotically stable in

the space
P\2 dz\? bF \?
Spo:{(RZ’ F)€R3:(InR) +(|n?) +(|n€) <pg}

About the definitions of uniform stability, equiasymptotic stability, and global asymp-
totic stability to be mentioned later, refer the books [11, 21] for example. Note that the
interior equilibrium of €) is equiasymptotically stable in the whole octénif it is glob-
ally asymptotically stable.

In Theorem 1.1, the functiop, plays an important role. This function is composed
of two functions¢ andh. Note that even if the function, satisfies conditions (1.3) and
(1.4), the functior¢ is not always absolutely integrable. In other words, Theorem 1.1
can be applied whether the functiéns absolutely integrable or not. If the functidns
absolutely integrable, we can obtain the following result which is more sharper.

Theorem 1.2. Let condition(1.1) holds and suppose that

‘flmm<m (1.5)
0

and
he 7’~[W|p]. (16)

Then the interior equilibrium ofE) is uniformly stable and globally asymptotically sta-
ble.



We here show that Theorem 1.2 can be reduced to Theorem 1.1. Under the assumption
(1.1), condition (1.5) implies that

fo " ()t < oo,

f{’+(t)dt<oo and ff_(t)dt:oo,
0 0

In fact, if

then

fo {(t)dt = fo (€. (t) — €_(t)dt = — co.
However, we have

LoD 1) g0
L“ﬁ“‘”mo 50 =" F0u0

fort > 0. From condition (1.1) it follows thain ((g(0) f (t))/(f(0)g(t))) does not diverge
to — 00 ast — . This is a contradiction. Hence, we have

fomlf(t)ldt = fom€+(t)dt+ fomf_(t)dt < oo,

This means that the functiahis absolutely integrable. Sinag,(t) < £(t) fort > 0, we
obtain

jkwmmngﬁwmm<w,

namely, condition (1.3). Also, we have

#0), (o)
ORI

< (p)-(0) <

h(t) - £.(t) + £-(0) = - ¥, (1)
(o)
(o)

fort > 0. We therefore conclude that condition (1.4) holds for any O if and only if
condition (1.6) holds provided that conditions (1.1) and (1.5) are satisfied. It is clear that

| B, =R,

po>0

h(t) + £_(t)

Thus, by the definitions of global asymptotic stability and equiasymptotic stability in the
sphereB,,, we may consider that Theorem 1.2 is a special case of Theorem 1.1.
Hereafter, we will give only the proof of Theorem 1.1.



2. One-to-one transformation

Let
x=-In(bF/a), y=-In(dZ/c) and z=-In(P/K).

Then model E) becomes the system
X =c(l-¢e7”),
y =-a(l-e)+Kf{t)(1-e7), (2.1)
Z=- g g()(1 - €) - h{t)(L - 2.

This transformation is a one-to-one correspondence from the @@taintE) to the whole

spaceR? of (2.1). The interior equilibriun{K, c/d, a/b) of (E) is transformed into the
origin (0, 0, 0) of (2.1) and the spacs,, is transferred to the sphere

B, :{(x,y,z)eR3: x2+y2+22<p§}.

As can be seen from systef)( the terms which represent the transfer of energy due
to predation are a bilinear form with or without time-varying. On the other hand, there
is no product term of the variables y and z on the right side of (2.1). Although the
above variable transformation may seem strange, it works to make the biological model
structure easier. By using this variable transformation, it can be said that this research is
clearly distinguished from others.

Thanks to this one-to-one transformation, in order to prove Theorem 1.1, it is sufficient
to verify the following result.

Proposition 2.1. Let conditions(1.1), (1.3)and (1.4) hold. Then the origin of(2.1) is
uniformly stable and equiasymptotically stable in the sphgye

It would be meaningful to mention a little about the research related to Proposition 2.1
here. Linear approximation oE{ is the system

X =cy,
y = -—ax+Kf(f)z (2.2)
Z = -~ gy -h()z

The second author and Ogami [17, 18] have already discussed global asymptotic stability
of the origin for systems that are more general than system (2.2). We can derive the
following result from the method that they have used.

Theorem A. Let conditiong1.1) holds and suppose that

fo W.0dt <o and (). € Fw.

wherey : [0,0) — R is the function defined hy(t) = £(t) — 2h(t). Then the origin of
(2.2)is uniformly stable and globally asymptotically stable
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Of course, we cannot obtain Propositon 2.1 from Theorem A directly. The big dif-
ference between system (2.2) and system (2.1) is that the former is linear but the latter is
nonlinear. Although the mothod of linear approximation is useful for local theory, it is
useless for nonlocal theory like Theorem 1.1 and Proposition 2.1. To prove Proposition
2.1, the idea in the proof of Theorem A helps, but a more detailed discussion is required
than that of Theorem A.

To verify that Proposition 2.1 is correct, we will proceed with the discussion as fol-
lows. In Section 3, we examine some properties of the funciigrend®(w) which are
useful to prove Proposition 2.1. Section 4 is divided into two subsections. In the first
subsection, we show that the origin of (2.1) is uniformly stable, namely, forany0,
there exists @(e) > 0 such thaty > 0 and||xq|| < ¢ imply [|X(t; to, Xo)|| < & for all t > to,
wherexg = (X(to), Y(to), Z(to)) andx(: ; to, Xo) is the solution of (2.1) starting from the ini-
tial point xo at the initial timet,. In the second subsection, we prove that the origin of
(2.1) is equiattractive in the spheB3,, namely, for anyt, > 0 and anyn > O, there is
aT(tp,7) > 0 such that|xl| < po iImplies||x(t;to, Xo)|l < p forallt > to + T. To prove
the equiattractivity, it is enough to show that> 0 andxy € B,, imply [IX(t; to, Xo)|| tends
to 0 ast — 0. In Section 5, we make a conclusion and give two examples together with
figures in which are drawn a solution curve.

3. Preliminaries

Recall thatb(w) = w— 1+ e for w € R. Itis clear thaid(0) = 0. For convenience,
we write

5) = - a(w).

Sincegp(w) = 1 — e we see that the derivativeof @ is strictly increasing and satisfies

$(=W) < $(0) = 0 < p(w)

for w > 0. Hence,® is strictly increasing om0, o) and strictly decreasing ofxoo, 0].
We also see that

lpW)| < — (=) for we [—u, ], 3.1

whereu > 0. For other properties ab andg, refer to [22].
Consider the ratig?(w)/®(w) for w # 0. Then it is clear that

2 2
im W _ 6 and 1im £W _
W— 00 (D(W) W——00 (D(W)
By L'H opital’s rule, we have
L GW)
M o) ~wm2wW =2



The ratio is nonnegative and strictly decreasingrorin fact,
d(@*(w)/ W) _ ¢W)
dw D2(W)
_dwe™
o D2(w)

_ ¢(W) e s n+1
T T 2w [; @n+ 1)!] <0

(-1+2we™ + e‘z“”)

(-e"+2w+e™")

for w # 0. Hence, we see that

(W) _ ¢%(0)

ow) Do)
wherep is an arbitrary positive number. The functigp can be written as
¢*(p)
D(p)
for t > 0. From the above property @f/® and the nonnegativity df, it turns out that

Yo (1) < ¥, (1) < £(1)
for any numberg, andp, with 0 < p; < p,, and therefore,

(o) + (1) < (W) (1) < £.(D).

Hence, if condition (1.5) is satisfied, then condition (1.3) also holds fopany.
Define functionsy andg: R — [0, ) by

for |w| < p, (3.2)

(1) = £(t) - h(t)

W) it weo, W) i w0,
aw)={ W and pw)=4q W
1/2 if w=0 1 if w=0.

Then the functions andg are continuously differentiable and strictly decreasingron
In fact, by L'Hopital’s rule, we have

. 1 .
\!JL%(X(W) =5 and Mr(l)ﬁ(w) =1

It is also clear that

) = W20 oy WD)
for w # 0. By a straightforward calculation, we see that
LS MW 5 i wso,
. w & (n+2)!
" 15nEw 0 if w<0
w (n+2)!



and

= e <0 ffw<o
We therefore conclude that
a(e)W? < (W) < a(-e)W? for we (-¢,¢) (3.3)
and
BloW < wp(w) < B(-p)w?  for w e (=p,p). (3.4)

The inequalities (3.3) and (3.4) will be used in Subsections 4.1 and 4.2, respectively.

4. Proof of Theorem 1.1

4.1. Uniform stability

To prove uniform stability of the origin of system (2.1), we will use only an idea of
Lyapunov direct method, because using the standard Lyapunov theorem is inconvenient
for proving the equiattractivity.

For any0 < ¢ < p, we take

D(=0(e)) = e 0@,

wherem, M andL are constants given in Section 1. Note th@f) = po. Sincem < M,
L>0and

= 0,
i+ 1)
we see that
D(-6(e)) < D(e) < D(-¢).
By taking into account thab is strictly decreasing oo, 0], it turns out that

o(e) < e.

Letty > O be the initial time and lex(-; to, Xo) = (X(t), y(t), z(t)) be the solution of (2.1)
starting from the initial poink, = (X(to), y(to), Z(to)) € R? at the initial timet,. We will
show that||Xo|| < ¢ implies ||X(t; to, Xo)|| < & for all t > to. For simplicity, we write
X(-; to, Xo) @sX(-).

By way of contradiction, suppose that there exists:aty, with |x(t,)|| = € and

IXEON = VD) + y2(t) + 2(t) <& for to<t<ty. (4.1)
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Define the functiorv: [0, o) — [0, =) by

v(t) = —(D(X(t)) + —CD(Y(t)) + %(D(Z(t))

From (1.2), (3.3) and (4.1) it follows that
ma(e)XOIF < m(@(x(t)) + Oy(D) + D))
< V() < M(D(x(D) + D(y(D) + D(1)))
< Ma(=&)lIx()| (4.2)
fortyg <t <t;. We have

(t)
9(v)

) o) + D p(r)z 1)

V() = _¢(x(t))x (t) + —¢(y(t))>/ -+ ( g(t)

F(t) f(h(t)
((t)) M)

From (3.2) and (4.1) it follows that

2
v < (19 oty - £ 1O

(O ¢0) }f(t)
{(' g(t)) o) "V gy PED)
)

()
o6 20 < GO

for tp <t <t;. This estimation and (1.3) lead to

¢*(@(D)).

=¥ —= D((1)) < (o) (OU()

t
v(t) < V(to) exp (f (wp)+(s)ds) <V(tg)e- for tg<t<t.
to
Using (4.2) and the assumption thiag|| < 6, we obtain
V(to) < M(®(x(to)) + D(y(to)) + P((to))) < Ma(-5)lIxoll€"
Hence, by (4.2) again, we can estimate that
ma (&) IXMI* < V(1) < V(t)€" < Ma(=5)lIxoll”€e"

D(=05)

<M 57 5%e- = Md(-6)e

= md(g) = Ma(e)e?

forty <t < t;. Hence, we havgx(t)|| < e for to < t < t;. This contradicts the assumption
that||x(t,)|| = e. We therefore conclude that

XMl <& for t>to,

namely, the origin of (2.1) is uniformly stable.
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4.2. Equiattractivity inB,,

Since this subsection is the core part of this paper, we here need to a very careful
discussion. Before proving that the origin of (2.1) is equiattractive in the s@gret
would be helpful to mention its broad outline.

The proof is divided into four parts. To begin with, we will show that

(i) the functionv given in Subsection 4.1 approaches a honnegative véalue

If v* is zero, then every solution of (2.1) tends to zero as time passes. This conclusion is
desirable. To complete the proof, we show tiais zero by way of contradiction. For
this purpose, we define an auxiliary functioty

f(t)
ut) = —=o(z(t)).
0 = 5 ®@)
Sinceu is positive and is not greater than the functiothe inferior and the superior limit
of u exist. Then, we prove that

(i) liminf,_. u(t) = 0;
(iii) limsup,_,, u(t) = 0.

The proof of part (ii) is simple, but that of part (iii) needs a detailed calculation and
considerable patience. In the proof of part (iii), we assume that the superior limit of
is positive and then examine the behavior of the auxiliary function detail. Since
liminf_. u(t) = 0 < limsup,_,, u(t), the value of the functiom repeats increasing and
decreasing. Hence, we can find three sequefsgst,} and{on} with T, < 1, < §, <

on < Tnp1 @Ndt, — oo asn — oo such thatu(s,) = 2¢,, u(ry) = u(oy,) = &2 and

g <Ut) <2 for Tp<t<s,
ut) > e, for r, <t< oy,

ult) < 2e, for o, <t <,

whereg; is a sufficiently small number. We next transform system (2.1) into an equivalent
system by using cylindrical coordinatésy, z) — (r,0,2) by x = r cosé andy = r siné

and examine any solutiofr(t), 6(t), z(t)) of the transformed system in detail. We pay
particular attention to the movement @ft), 6(t)) on the time intervaJo,, Tn.1] for each

n € N and show that there is an upper limit for the lengths of these intervals. From this
conclusion and the assumptions (1.3) and (1.4), we can denMaf,_..(s, — 7,) = O.

This leads us to the conclusion thathsup,_, ., u(t) = 0. From parts (ii) and (iii), we see
thatlim,_., u(t) = 0. Using this fact and repeating the same argument as in part (iii), we
can show that

(iv) z(t) does not converge to zeroas» .
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However, from the definition af, we see that il converges to zero, theralso converges.
This contradicts part (iv). Hence, the case thas positive does not occur.

Now, let us go through step-by-step to prove that the origin of (2.1) is equiattractive
in the spheres,,.

Part (i): We will show that, > 0 andx, € B,, imply [IX(t; to, Xo)|| tends to 0 as — oo.
As have shown in Subsection 4.1xi§ € B,,, thenx(t; to, Xo) € B, for all t > to, where

Bp:{(x,y,z)eR3: x2+y2+22<p2}.

Taking account of this and repeating the same way as Subsection 4.1, we get that

ma(p)IX®II* < v(t) < Ma(-p)IIX(t)I? (4.3)
and ‘o
V(t) < wp(t)ﬁcb(za)) < (¥,)+ (OV(Y) (4.4)

fort > to. From (1.3) and (4.4) it follows that(t) < v(to)€- for t > to. Hence, by (4.4)
again, we have
V(1) < V(to)e-(,).(t) for t>to

Since the right-hand side of this inequality is nonnegative, we see that

(V): () < V(to) € () (1) for t>to.

Integrating both sides fromg to oo and using (1.3) again, we obtain

ij%mﬁswwéL<w

On the other hand, sinc&t) > O for t > ty, we have

ft W)t = ft V). @dt - ft V)t < oo,

From the two evaluations above, we see that

| W= [ .0+ -0 <.
0 0

namely, the derivative’ is absolutely integrable ofty, o). Hence, the function has a
nonnegative limiting valug* > 0.

If v = 0, then it follows from (4.3) thafx(t)|| tends to 0 a$ — . This is our desired
conclusion. Therefore, in order to complete the proof, we have only to show that the case
of v > 0 does not occur.

If v¢ > 0, then there exists @ > ty such that

1

0
<2

V< V() < gv* for t>T. (4.5)
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Let {0
u(t) = —= O((t)
a(t)
fort > T. Since the functiom is not greater than the function there exist the inferior
limit and the superior limit ofi ast tends toco.
Part (ii): We first suppose thaiminf,_,., u(t) > 0. Then there exist as, > 0 and a

T, > T such thau(t) > &, fort > T;. Using (4.4) and (4.5), we obtain
V(D) < g, (Ou(t) = (&) (OU(D) = (&,)-(Ou(t)
< )+ (OV(1) — (¥,)-(Du(t) < g\f“ W)+ () — £2(,)-(1)

fort > T;. Hence, by (4.5) again, we have

-0 < %\f* —V(Ty) < v(t) —w(Ty) = t\/(s)ds

T1

3

<5V | Wp)i(S)ds—er | (#)-(s)ds
Ta T1

fort > T,. This contradicts (1.4). We therefore conclude tiatinf,_,., u(t) = O.
Part (iii): Next, we suppose that® limsup,_,., u(t) > 0. Lete, be sufficiently small
s0 as to satisfy thdl < &, < min{\/F/Z, /1/2} and

_ IZMQ(—P)¢ _ 2e7

V- — e, ki (o)
dm _cf  3dPmMKZs(-p) \/ Ma(-p)e; 46
29" +2dh nwh kia(p)(v* — 4e2) [ '

< B(p) min{

Note that we can choose ap satisfying (4.6). In fact, the right-hand side of (4.6) ap-

proaches a positive numbergstends to 0. On the other hand, the left-hand side of (4.6)

approaches zero as tends to 0.
Sinceliminf,_,., u(t) = 0, we can find &, > T, so thatu(T,) < &,. By the assumption
thatlimsup,_,., u(t) = 1 > 2¢,, the functionu will sometime exceed the valie,. Let

s =inf{t > T,: u(t) > 2&,}.

Then it is clear thati(s;) = 2e, andu(t) < 2¢, for T, <t < s;. SinceT, < s, andu(Ty)
< &, the seft < s;: u(t) < &,} is not empty. Let

Ty =sup{t < s1: u(t) < &z}

Then we see thai(r;) = &, ande, < u(t) < 2, for r; < t < s;. Because ofiminf,_,., u(t)
= 0, the functionu becomes smaller than the valgeagain. Let

o =inf{t> s u(t) < ).
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Then we see that(o;) = &, andu(t) > &, for r; < t < o-1. Similarly, let
s =inf{t>o1: u(t) > 2e,},
T, = SUpft < S0 u(t) < &3},
oz =inf{t > 50 u(t) < &y}.

Then,u(s,) = 2¢;, U(t2) = U(o2) = &2, andu(t) < 2e, for o <t < 1, ande; < U(t) < 2¢;

for r, <t < s,. By repeating the same process as above, we can choose three sequences
{sh}, {Tn} @and{o,} with To < 1, < S, < 0y £ The1 @nd7, — o0 asn — oo such that

U(sh) = 2&2, U(tn) = U(om) = &2 and

g <Ult) <2 for tp<t< s, 4.7)
ult) > e, for m, <t< oy, (4.8)
ult) < 2e, for o, <t <tpng. (4.9)

Recall that the functiom is strictly decreasing ofR. Since|z(t)| < |x(t)|| < p for
t > ty, we see thab(z(t)) = a(z(t))Z(t) > a(p)Z(t) for t > t,. Hence, by (1.2) we have

o) = T 0z(0) > k(D) = k()2 Tor t2 to,

o(t)
From this estimation and (4.9) it follows that

U(t) 2o
|(t)| < \/kla(p) < \/kla'(p) for o <t < 1pa. (4.10)

We transform system (2.1) into polar coordinates by

Xx=rcos# and y=rsgné.

Then we have
Ir' = co(y)cosd —ag(xX)singd + Kf(t)¢(2) sing,

g = Kf(tr) ¢(2) cos — rlz(ax(ﬁ(x) + Cy¢(y)), (4.12)

Z = - 2 g9 - DY@

Let(r(-),0(-), z(-)) be the solution of (4.11) correspondingX@). Sincelx(t)| < [x(t)|| < p
andy(t)] < [[x(®)Il < pfort > ty, we see thab(x(t)) < a(—p)x2(t) andd(y(t)) < a(—p)y3(t)
fort > to. Hence, by (4.5), (4.9) and the definition df, we have

SV = 262 < V(D) U = g ®(Y) + - PY(D)

< Ma(=p) () + Y*(1)) = Ma(-p)r (9
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for o <t < 1h41. Arranging this, we obtain

V¢ — dgs
2Ma(-p)

<rt) <Xl <p for oy <t<Ttha. (4.12)

From (4.10) and (4.12), we see that the pd(t), 6(t), z(t)) stays in the rectangular solid

(r,0,2): Vi—de2 <O0<nx and |z < 282
=(r,0,2): \|——= - n <
2Ma(—p) P kaar(p)

for o, <t < 1,1. Itis clear thatR corresponds to a thin disc in tiie, y, 2)-space. From
(3.4) and the definitions ahandM it follows that

dmKA(p) (X°(1) + (1)) < aB(p)X2(t) + cA(p)y (1)
< ax(D)p(x(1) + cyOs(y(®)
< a(-p)x*(t) + CA(—p)Y(t) < AMKB(—p) (X(t) + YA(t))
fort > to. Hence, by (1.1), (4.11) and (4.12), we have

2Ma(p) STOIZE0)]
~ KO\ W(E0)] ~ AMKB(—p) < — === — AMKA(—p)

<o)< —Kf(t?r'(qtj)(z(t)) | dmk (o)

< KTy 2 (a0 - dmkp(o)

for oy <t < 1h41. Using (3.1) and (4.10), we obtain

—w—dMKB(=p) < #/(t) < w — dMKB(p) (4.13)

for o <t < 141, Where

3 _ [2Ma(-p) 2e5
w=-Kg y— ¢(— kla(p)J>O.

From (4.6), we see that

w < %de,B(p).

Hence, because of the strictly decreasing proper; afe can estimate that

%deﬁ(p) < dmKpB(p) — w < dmKB(p)
< dMKpB(-p) < w + dMKB(-p)

< %de,B(p) + dMKS(-p) < ng KB(=p). (4.14)

16



Define a rectangl@ by

f 4, T w m w
{(r@) m<r<p,§(l—m)<9<§(l+m)},

which corresponds to a sector in they)-plane. Since

1 T non 3
=5 (4 dman) <3 <3 amea) < 3 (449
the central angle of this sector is not greater thah
Here, we show that
2n
Tht1 — Op < W for ne N (416)

If this inequality does not always hold for any natural numbgthen there exists an
no € N such thatr,,.1 — o, > 27/(dMKB(p) — w). Let us focus on the movement of the
point (r(t), 6(t)) in detail. From (4.12) it follows that the poii(t(t), 6(t)) remains within

for on, < t < 7h41. The rectangleA corresponds to an annulus in tle y)-plane.
Integrating (4.13) fronary, to 7.1, We obtain

Tng+1

00g) — Otnt) = — f o/ ()t > (AMKB() — )(Tnpsr — o) > 21,

"o

This means that the poifit(t), 6(t)) penetrates the rectandle Lett, andt; be constants
with o, <ty < t3 < 741 SUCh that

and H(tg):g(l——w )

i) = ( dmK (o)

dm Kﬂ(p))

and
(r(),0() e Q for t <t<ts. (4.17)

By (4.13) and (4.14), we get
0(t) = 0(t) < (0 + AMKB(-p)) (s - o) < SAMKB(-p)(ts ~t).

Hence, we have

2(6(t2) — 0(ts)) _ 2nw
3dMKB(-p) ~ 3d?mMK2B(p)B(—p)’

17
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From (4.15) and (4.17), we see that

YO = rOISnoE)] > || 22 dn(g (1— L))

2Ma(—p) dmKp(p)

Ve — 482 . T _ Vv — 482

2Ma(-p) SN 4" AMa(-p) (4.19)
for t, <t < t3. Using the third equation of (2.1), we obtain

201> G000 - HOlEO) = a0 [ “ 15 ol - nloa)
fort > to. From (1.1) and (3.4) it follows that
201> £ FAEYOI-RlsED) for b<t<ts
Combining (3.1), (4.6), (4.10) and (4.19), we get
C Vi — dgs — 2e-
1Z(t)l > aiﬁ(p)\/m + h¢[— kla(p)]
> 3PmMMK3B(p)B(=p) | 2e2 >0 (4.20)

w kia(p)

fort, <t < t3. SinceZ(-) is continuous orjty, ), it does not change sign diy, t3].
Hence, the equality

i3 i3
f Z(t)dt‘ = [ 1z(s1ds
t t2

holds. By (4.10), (4.18) and (4.20), we have

2/ Zs(p > 2t + latt) = [ 2@t

3d*mMK?B(0)B(-p) 2e5
W kior (p)](tS_tZ) 72 kia(p)’

This is a contradiction. Thus, it was verified that (4.16) holds.
Using (4.4), (4.5) and the same way as above, we obtain

V(1) < ¢p(Ou(t) < (&) (OV(E) — (p)-(Ou(t) < g\f"(lﬂp%(t) = (¥)-(Ou(t)
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fort > T,. From (4.5) and (4.8), we see that

_m<%w—wm<ﬂmmywag: Vbt

T2

. .
<v fT )0t~ fT @) uoet

< [ wawa-=Y [ w0

n=1%7n
By (1.3), we have
|RZXE

and therefore,

N ffnp_ dt < oo.
Zf (,)- (M)t <

If liminf,_.(on —mn) > 0, then from (1.4) and (4.16) it turns out that

[ee)

> [ W) (9ds= e

n=1v7n

This is a contradiction. Hence, we see thatinf,_ . (o, — 7,) = 0. Since[r,, S\ C
[T, o] fOr anyn € N, we get

liminf(s, =) = 0. (4.21)

Sincely(t)| < p and|z(t)| < p for t > ty, we can estimate that

o (1O f)
40 = (S o) + Doayze)
(0 gy FOND o
- (20) oaten - 10 7at0) - S 001500000

= V() - £ OO < VO + F(-p)

fort > to. Integrating this inequality from, to s,, we obtain
B Cg »
£2 = U(S) —U(tn) < [ IV(DIdt+ - (=) (Sn — )

for eachn € N. However, by (4.21), the right-hand side of the above inequality approaches
zero amn — oo. This is a contradiction. We therefore conclude that

limsupu(t) = 0.

t—oo
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Part (iv): Sinceu(t) tends to zero as— oo, there exists d3 > ty such that
u(t) <2, for t>Ts.

Using this inequality instead of (4.9) and repeating the same process as above, we can
choose two numbettg andts with T3 < t4 < t5 such that

¢ 0}
~ 7 3EmMMKZ3(0)B(—p)

Z (1) > 3d2mMK2ﬁ(p)ﬁ(_p),/ 220 for tb<t<ts
w kia (o)

Hence, we have

ts

and

|2(ts)] + |2(ts)] > f Slz(t)|dt

7}

SPMMKBEB(p) [ 200 | oy, [ 2
>{ 7w kla(p)}(tS > 2\ )

On the other hand, by (1.1) we have

f
u(t) > E D(z(t))

fort > T. HenceZz(t) also tends to zero ds— ~. This is a contradiction. Thus, it turns
out that the case af > 0 does not happen. We therefore conclude that the origin of (2.1)
is equiattractive in the spheR,.

The proof of Proposition 2.1 is now complete. O

5. Conclusion and examples

In this paper, we proposed a time-varying phytoplankton-zooplankton-fish syjem (
taking into account the energy transfer by the food chain of microorganisms and the har-
vesting effect of zooplankton. We presented two theorems. One guarantees that the inte-
rior equilibrium of (E) is equiasymptotically stable in a bounded domain. Another relates
to global asymptotic stability of the interior equilibrium.

As a common condition of two theorems, we assumed that the functiog&ndh
are bounded. The intrinsic growth rate of phytoplankton and the harvesting effect are also
assumed to be bounded, namely,

c
d
According to the former assumption, phytoplankton is supplied with the nutrients nec-
essary for proliferation, but explosive growth due to excessive nutrients does not occur.

i<y(t)<ﬁ+§§ and Kf < j(t) < Kg.
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Also, the latter assumption means that there is also an intake of zooplankton by other
marine organisms and human beings, except fish, but it is limited. It would be reasonable
to think that suitable nutritional supply and well-balanced food distribution will helps to
keep the ecological system sustainable.
To get our results, we focused on the functtosefined by
fo\

0 ( " g(t)) '
Here, the ratiof /g is the conversion rate from individuals of phytoplankton into individ-
uals of zooplankton. There are two cases to be considered: (i) the fudicti@solutely
integrable; (ii) the functiorf is not absolutely integrable. As explained in Section 3,
conditions (1.1) and (1.5) yield th&ts absolutely integrable. Hence, the integral

f 1£(s)lds
0

converges to some value e&nds too, and therefore, there exists a cons@rsuch that
lim_. f(t)/g(t) = C. This means that the conversion r&jg approaches a steady state in
the future. In addition to conditions (1.1) and (1.5), if condition (1.6) is satisfied, then the
interior equilibrium of €) (or the origin of (2.1)) becomes globally asymptotically stable
(see Theorem 1.2). On the other hand, when the fune¢tiemot absolutely integrable,
Theorem 1.2 is not available. There is a possibility to be able to apply Theorem 1.1 in the
case that the functiofiis not absolutely integrable. To be exact, under the assumption
(1.1), if there exists a positiyesuch that

(1-e7r)?
p—1l+evr

(1) = £(t) - h(t)
satisfies conditions (1.3) and (1.4), then the interior equilibriumE)f(6r the origin of
(2.1)) is equiasymptotically stable in a bounded domain.

Needless to say, whether such axists or not depend dmeven if¢ is the same. For
example, consider the case that

£(t) = exp(x/ésjn(t ; %) - 1) and g(t) = exp(sint + 1),

Then we have

UG =exp(cost—2) <1 and (t) = ( n@)/: - sint

a(t) g(t)
fort > 0. Hence, itis clear that the functighs not absolutely integrable and

1 def _

< fh<a<@®y

;o
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fort > 0. If h(t) = (2+t)/(1+t) fort > 0, then the upper bourtis 2. Since2.7 < e < 2.8,

we see that
(D) _(e-1?  (27-17

o1 e 28
Letp = 1. Then we have

1.

1-e)? . 2(1 1
) = €00 - T = - sint- (fD((l)) (“ m)
<—sint—1—i<_i
1+t~ 1+t

fort > 0, and thereforey). (t) = 0 and(y1)-(t) > 1/(1 +t) for t > 0. Hence, conditions
(2.3) and (1.4) hold fop = 1. If h(t) = 1/(1 +t) for t > O, then the upper bounidis 1.
As have shown in Section 3, sing&p)/®(p) < 2 for anyp > 0, we see that

(1-e*)? o $*(p) 1
P Trer 0= SNt T

Wﬂ(t) = f(t) -

> — sint 2
1+t

fort > 0. Hence, it is not difficult to show that

fo W) dt=co and (). ¢ Foum

for anyp > 0, namely, we cannot find a > 0 such thaty, satisfies conditions (1.3)
and (1.4). As can be seen from the above example, in the case that the funhistioot
absolutely integrabl€s,)- may not belong toFjwie even ifh belongs taFjwig. For this
reason, conditions (1.3) and (1.4) are required in Theorem 1.1 instead of conditions (1.5)
and (1.6).

To illustrate our results, we give an example for each of the above two cases. In these
two examples, the constants in the mod®li6 fixed as followsa = 0.4,b = 0.1, c = 0.3,
d = 0.2 andK = 3. Hence, the interior equilibriurK, c/d, a/b) is (3, 3/2, 4).

Example 5.1. Consider systemE) with

£(t) = %exp(sin(%t ; 1)) g(t) = %exp(sin(%t ; g)) and h(t) = g (5.1)

Then the interior equilibrium is uniformly stable and equiasymptotically stable in the
spaceS; (see Figure 1).

Itis clear that condition (1.1) holds fdr=1/(4€), g = /2 andh = 3/5. Since

@—}ex sin(ﬂ—t+1)—sin ﬂ—t+§ —}ex —ZSin}cos H—t+§
g~ 27P1%" % 6 2))7 2% 2°®\6 "3))
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Figure 1: A solution curve ofE) with (5.1) is drawn in the left figure. The initial timi is 0 and the
initial point (Po, Zo, Fo) is (3,3e/2,4) € S;. The point(P(t), Z(t), F(t)) moves on the solution curve from
the initial point(1, 1, 1) toward the interior equilibriun(3, 3/2, 4) according to increase of The right three
figures show the movements of the componéht&Z andF. The component®, Z andF finally converge
to the values 3, 3/2 and 4, respectively.

we have

f(t)
o) ~ =2

fort > 0. Hence, we can choose 0.304 and 0.82k,aandk,, respectively. Hence, we
see that

1 1
0.304 < éexp( 2sin= ) p(23|n4)<0.821

m= mln{g ; 0304} 0.304 and M = max{g ; 0821}:0.821.

(0 fO) 7 g T[Tt 8
f(t)_(n@)_39n4sm(6 +4)

fort > 0O, it is a nontrivial periodic function whose period is 12 (of course, there is no
special meaning in the fact that the period¢a$ 12, but the value can be understood 12
months). Hence, the functidhis not absolutely integrable, and therefore, Theorem 1.2 is
not available. However, we can apply Theorem 1.1 to this examplep E€B. Then we
have

Since

2 2
ws(t) = £(t) — ‘fbg’)) ht) < gsini g‘fpg’))

<0.260-06x%x0.44=-0004<0

fort > 0. From this estimation it turns out théts),(t) = 0 and(y3)_(t) > 0.004 for
t > 0. Hence, conditions (1.3) and (1.4) hold jo= 3. Finally, let us evaluate the value
of po. We may choose to zero. Since

0.304 oL
0.821 x 2.04 < M D(3) <

0.304

0.755 < 0.821

x 2.05 < 0.760,
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®(-1.02) < 0.754 and @(-1.03) > 0.771,

we can estimate thdt02 < pg < 1.03. We therefore conclude that all solution curves
starting from spac&; c S,, asymptotically approach the interior equilibrivchof (E).

Example 5.2. Consider systemE) with

f(t):}+isin(ﬂ—t), g(t):3+2t(3+%sjn(”—t)) and ht) = —— (5.2)

5 10 6 1+t \5 6 1+t

fort > 0. Then the interior equilibrium is uniformly stable and globally asymptotically
stable (see Figure 2).

0 50 100 150

0 50 100 150

Figure 2: A solution curve offf) with (5.2) is drawn in the left figure. The initial timtg is 0 and the initial
point (Po, Zo, Fo) is (1,1, 1). The point(P(t), Z(t), F(t)) moves on the solution curve from the initial point
(1, 1,1) toward the interior equilibriung3, 3/2, 4) according to increase of The right three figures show
the movements of the componeftsZ andF. The componentP, Z andF oscillate up and down around
3, 3/2 and 4, respectively, and they finally approaches 3, 3/2 and 4, respectively.

It is clear that the function$, g andh are positive and bounded, and

) 1+t 1
@_3+2t<§ andtZO
Since . ) .
1= ('” g(t)) " @ oG

fort > 0, we see thaf, (t) = ¢(t) and¢_(t) = 0. Hence, we have

t 1+t 1
foa(s)ds_lnmdné for t>0.

It is also clear thah € Fwip. Since we have confirmed that conditions (1.1), (1.5) and
(1.6) hold, we can use Theorem 1.2.
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