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Abstract This paper gives several sets of sufficient conditions which guarantee that
all radially symmetric solutions of

div(D(u)∇u)+
k(||x||)
||x|| x · (D(u)∇u)+ωp|u|p−2u= 0

converge to zero as||x|| → ∞. Here,x is anN-dimensional vector in an exterior do-
main andN ∈ N \ {1}; D(u) = ||∇u||p−2 with p > 1; k is a nonnegative and locally
integrable function on [a,∞); ω is a positive constant. All of the obtained sufficient
conditions have the advantage that it is possible to check relatively easily. In that
sense, our results are practical enough. The relationships between those sufficient
conditions are also clarified. To achieve our purpose, we discuss the asymptotic sta-
bility of the equilibrium of the equation

(
|x′|p−2x′

)′
+h(t)|x′|p−2x′+ωp|x|p−2x= 0,

whereh: [0,∞)→ [0,∞) is locally integrable.
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1 Introduction

The nonlinear elliptic equation

div(D(u)∇u)+ f (x,u,∇u) = 0

and various more general forms including this equation have been studied in a very
broad field. Here,x is anN-dimensional vector withN≥ 2; D(u) means||∇u||p−2 with
a real numberp> 1; || · || is the usual Eclidean norm;∇ is the usual nabla operator.
For example, the subject of those researches are the behavior of weak solutions to the
Dirichlet problem with boundary condition (Alkhutov and Borsuk [1]); the existence
of a positive solution and a negative solution to the Dirichlet boundary value problem
(Faraci et al. [7]); regularity and qualitative properties of weak solutions (Pucci and
Servadei [20]); maximum principle and comparison theorems for weak solutions to
the Dirichlet problem on complete Riemannian manifolds (Antonini et al. [2]). We
can also find researches on the oscillation of (classical) solutions on an exterior do-
main inRN. Those results can be obtained by using the so-called generalized Riccati
transformation, integral average techniques and Picone-type inequalities (for exam-
ple, see [17, 18, 35–38, 40]).

One reason that the research field is wide seems to be that the steady solution of
the reaction-diffusion equation

ut = div(D(u)∇u)+ f (x,u,∇u)

satisfies the above elliptic equations. The diffusion term div(D(u)∇u) is usually called
the p-Laplacian. As is well known, the diffusion causes energy dissipation.

In this paper, we consider the equation

div(D(u)∇u)+
k(||x||)
||x|| x · (D(u)∇u)+ωpϕp(u) = 0, (1.1)

wherex is in an exterior domainGa
def
=

{
x ∈ RN : ||x|| ≥ a

}
for somea > 0; k is a

nonnegative and locally integrable function on [a,∞); ω is a positive constant;ϕp is
a nonlinear function defined by

ϕp(u) =

 |u|
p−2u if u, 0,

0 if u= 0.

In equation (1.1), the reaction termf (x,u,∇u) consists of two parts. The first part and
the second part may be called a damping and a restoration, respectively.

If there is no damping, namely, the damping coefficientk is identically zero, then
every radially symmetric solutionu of (1.1) converges to zero as||x|| tends to∞
together with||∇u||, because the diffusion occurs energy loss. Then, what kind of
influence does the damping have on convergence of solutions of (1.1)? As well as the
diffusion, will the damping always promote convergence of solutions? The purpose
of this paper is to answer these questions.
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Let p∗ be the conjugate number ofp; namely,

1
p
+

1
p∗
= 1.

Then p∗ is also greater than 1. Note thatϕp∗ is the inverse function ofϕp. Recently,
Sugie and Minei [29, Theorem 1.1] have presented a necessary and sufficient condi-
tion for convergence of all radially symmetric solutions of quasilinear elliptic equa-
tions including equation (1.1). By applying their result to equation (1.1), we have the
following result.

Theorem A Suppose that

there exists anε0 > 0 and aδ0 > 0 such that

|k(t)−k(s)| < ε0 for all t ≥ a and s≥ a with |t− s| < δ0.
(1.2)

Then, every radially symmetric solution u of(1.1)satisfies the property that u(x) and
||∇u(x)|| tend to zero as||x|| → ∞ if and only if∫ ∞

a
ϕp∗


∫ t
a

eK(s)ds

eK(t)

dt=∞, (1.3)

where K(t) =
∫ t
a

k(s)ds+ (N−1) logt for t ≥ a.

If k is either uniformly continuous or bounded on [a,∞), then condition (1.2) is
satisfied. Of course, the converse is not true. Condition (1.3) is a criterion related to
the degree of growth of the damping coefficientk. We see that the growth condition
(1.3) is satisfied whenk has an upper boundk or the polynomial degree ofk is less
than or equal top−1 (for the proof, see [39, Theorem 3.1]). On the other hand, if
the degree ofk is too large in the sense that condition (1.3) does not hold, then it
can happen that a radially symmetric solution of (1.1) does not converge to zero. For
example, let us consider the case that

k(||x||) = ωp||x||p−1(1+ ||x||)p−1+
2p−N−1
||x|| .

Then, equation (1.1) has a radially symmetric solutionu satisfying(
u(x),∇u(x)

)
=

(
1+ ||x||
||x|| ,−

x
||x||3

)
.

This radially symmetric solution does not converge to zero as||x|| → ∞. Such a situ-
ation is caused by “overdamping”.

Condition (1.3) is necessary and sufficient to ensure that all radially symmetric
solutions of (1.1) converge to zero, but it is difficult to ascertain whether condition
(1.3) holds or not. To get rid of this inconvenience, we give other growth conditions
concerning the damping coefficientk. Our main results are as follows.
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Theorem 1.1 Suppose that condition(1.2)holds. If

limsup
t→∞

K(t)
tp <∞, (1.4)

then every radially symmetric solution u of(1.1)satisfies the property that u(x) and
||∇u(x)|| tend to zero as||x|| → ∞.

Remark 1.1Condition (1.4) is equivalent to the condition

limsup
t→∞

ϕp∗(K(t))

tp∗ <∞.

Theorem 1.2 Suppose that condition(1.2)holds. If

∞∑
i=m

ϕp∗

(
1

K(i +1)−K(i)

)
=∞

for any fixed integer m≥ a, then every radially symmetric solution u of(1.1)satisfies
the property that u(x) and ||∇u(x)|| tend to zero as||x|| → ∞.

Let K−1 be the inverse function ofK. Since limt→∞K(t) =∞, the inverse function
K−1 is defined on [0,∞).

Theorem 1.3 Suppose that condition(1.2)holds. If

∞∑
n=1

(
K−1(n)−K−1((n−1))

)p∗
=∞,

then every radially symmetric solution u of(1.1)satisfies the property that u(x) and
||∇u(x)|| tend to zero as||x|| → ∞.

2 Damped half-linear oscillators

Let u be any radially symmetric solution of (1.1), and letξ be the function defined by

ξ(t) = u(x) andt = ||x|| ≥ a. Then, we have∇u(x) =
ξ′(t)

t
x, and therefore,

div
(
D(u(x))∇u(x)

)
=

N∑
i=1

∂

∂xi

(
||∇u(x)||p−2 ∂u

∂xi

)
=

(
|ξ′(t)|p−2ξ′(t)

)′
+

N−1
t
|ξ′(t)|p−2ξ′(t)

and

x · ||∇u(x)||p−2∇u(x) =
N∑

i=1

xi ||∇u(x)||p−2 ∂u
∂xi

= t |ξ′(t)|p−2ξ′(t).
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Hence, the functionξ is a solution of the second-order nonlinear differential equation(
ϕp(x′)

)′
+

(
k(t)+

N−1
t

)
ϕp(x′)+ωpϕp(x) = 0, (2.1)

whereϕp is the function given in Section 1. The only equilibrium of (2.1) is the origin
(x, x′) = (0,0). The equilibrium is said to beasymptotically stable[AS] if

lim
t→∞

x(t) = lim
t→∞

x′(t) = 0

for every solutionx. As the above-mentioned transformation shows, the convergence
of radially symmetric solutions of (1.1) is reduced to the asymptotic stability of the
equilibrium of (2.1).

Hereafter, we consider the following more general form than equation (2.1),(
ϕp(x′)

)′
+h(t)ϕp(x′)+ωpϕp(x) = 0, (2.2)

whereh is a nonnegative and locally integrable function on [a,∞). Equation (2.2) is
often called thedamped half-linear oscillatorwhenp, 2. It is well-known that the
solution space of the damped half-linear oscillator is homogeneous, but not additive.

To describe some results on the asymptotic stability of the equilibrium of (2.2),
we need to define the following family of functions. A functionh: [a,∞)→ [0,∞) is
said to belong toF[WIP] if

∞∑
n=1

∫ σn

τn

h(t)dt=∞

for every pair of sequences{τn} and{σn} satisfyingτn < σn < τn+1,

liminf
n→∞

(σn−τn) > 0 and limsup
n→∞

(τn+1−σn) <∞.

The concept of the weak integral positivity was first published in Hatvani [8]. Even
if liminf t→∞h(t) = 0, the damping coefficient h is allowed to belong toF[WIP] . For
example, the functions 1/t and sin2t/t belong toF[WIP] (for the proof, see [28, Propo-
sition 2.1]). However, the function 1/t2 no longer belongs toF[WIP] . From these fact,
we see that the weak integral positivity plays a role in prohibiting too fast decline of
the damping coefficienth.

Let

H(t) =
∫ t

a
h(s)ds

for t ≥ a. Using a growth condition of Smith-type, Sugie and Minei [29, Theorem 2.5]
gave a necessary and sufficient condition for the equilibrium of (2.2) to be asymptot-
ically stable (refer to [21] for Smith’s criterion).

Theorem B Suppose that

there exists anε0 > 0 and aδ0 > 0 such that

|h(t)−h(s)| < ε0 for all t ≥ a and s≥ a with |t− s| < δ0
(2.3)
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and h belongs toF[WIP] . Then, the equilibrium of(2.2) is asymptotically stable if and
only if ∫ ∞

a
ϕp∗


∫ t
a

eH(s)ds

eH(t)

dt=∞. (Sp)

As mentioned in Section 1, the Smith-type condition (Sp) is asuumed to prohibit
too growth of the damping coefficient h. In general, however, it is hard to check
whether the growth condition (Sp) holds or not. For this reason, we present different
growth conditions which are easy to check.

Theorem 2.1 Suppose that condition(2.3)holds and h belongs toF[WIP] . If

limsup
t→∞

H(t)
tp <∞, (Ap)

then the equilibrium of(2.2) is asymptotically stable.

Theorem 2.2 Suppose that condition(2.3)holds and h belongs toF[WIP] . If

H(i +1)> H(i) for any integer i≥ a and

there exists an integer m≥ a such that
∞∑

i=m

ϕp∗

(
1

H(i +1)−H(i)

)
=∞,

(Hp)

then the equilibrium of(2.2) is asymptotically stable.

If h belongs toF[WIP] , thenH diverges to∞. Hence, we can define

H−1(s) =min
{
t ∈ [a,∞) : H(t) ≥ s

}
for all s∈ [0,∞). The functionH−1 is a generalization of the usual inverse function.

Theorem 2.3 Suppose that condition(2.3)holds and h belongs toF[WIP] . If

∞∑
n=1

(
H−1(n)−H−1((n−1))

)p∗
=∞, (Dp)

then the equilibrium of(2.2) is asymptotically stable.

Recall that the nonlinear elliptic equation (1.1) is reduced to equation (2.1) which
is a special case of (2.2). Since the damping coefficient h of (2.2) corresponds to
k(t)+ (N−1)/t in equation (2.1), condition (1.2) implies that

|h(t)−h(s)| ≤ |k(t)−k(s)|+
∣∣∣∣∣N−1

t
− N−1

s

∣∣∣∣∣
< ε0+

N−1

a2
δ0

def
= ε1.
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for t ≥ a ands≥ a with |t− s| < δ0. Hence, condition (2.3) is satisfied withε1 andδ0.
Sinceh(t) > (N−1)/t for t ≥ a, the damping coefficienth naturally belongs toF[WIP] .
In this special case, we have

K(t) =
∫ t

a
k(s)ds+ (N−1) logt =

∫ t

a
h(s)ds= H(t)

for t ≥ a and
K(i +1)> K(i) for any integeri ≥ a.

Hence, Theorems 1.1, 1.2 and 1.3 are derived from Theorems 2.1, 2.2 and 2.3, re-
spectively.

It would be meaningful to touch a little bit on the background of this research.
Equation (2.2) contains naturally the damped harmonic oscillator

x′′+h(t)x′+ω2x= 0. (2.4)

Many attempts have been made to provide sufficient conditions and necessary con-
ditions for the asymptotic stability of (2.4) (or more general forms). For example,
refer to [3–6, 8, 10–16, 19, 21–27, 30–34]. Among them, it would be allowed to say
that Levin and Nohel [16, Theorem 1] was a pioneering work. They dealt with a little
more general equations than equation (2.4). To apply their result, we have to assume
the existence of an upper bound and a positive lower bound ofh. At almost the same
period of time, Smith [21, Theorems 1 and 2] proved that condition∫ ∞

a

∫ t
a

eH(s)ds

eH(t)
dt=∞. (S2)

is a necessary and sufficient condition for the equilibrium of (2.4) to be asymptoti-
cally stable, under the assumption that the damping coefficienth has a positive lower
bound. In other words, he removed the upper limit ofh and gave a criteria for the
degree of divergence ofh that ensures the asymptotic stability of the equilibrium of
(2.4). Condition (S2) has a form of double integral. We call this double integral a
growth condition in this paper. Incidentally, we can rewrite this growth condition to∫ ∞

a
u(t)dt= −∞,

whereu is a solution of the first-order linear differential equation

u′+h(t)u+1= 0

satisfying the initial conditionu(a) = 0. After that, Artstein and Infante [3] gave the
different growth condition

limsup
t→∞

H(t)

t2
<∞ (A2)

for the asymptotic stability of (2.4). They also showed thatH(t)/t2 cannot be replaced
by H(t)/t2+ε for anyε > 0 in their condition. Condition (A2) is easier to handle than
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condition (S2), but it is not a necessary and sufficient condition. For example, consider
the case thath(t) = t log(1+ t) for t ≥ a= 1. Then, we have

H(t) =
∫ t

1
slog(1+ s)ds=

1
2

(1+ t)2 log(1+ t)− 1
4

(1+ t)2− (1+ t) log(1+ t)+ t.

Hence, condition (A2) is not satisfied. On the other hand, from Theorem 3.3 in [39] it
turns out that condition (S2) holds in this case (see also [4, Corollary 7]). We have to
mention results given by Hatvani, Krisztin and Totik [13, Theorem 1.1] as well. They
clarified that the growth condition (S2) is equivalent to the discrete condition

∞∑
n=1

(
H−1(n)−H−1(n−1)

)2
=∞ (D2)

provided thatH(t) diverges to∞ ast→∞. However, please note that these are not
the original form. Using this result, they also gave several sufficient conditions for
the asymptotic stability of (2.4). As one of them, we can cite the condition that

H(i +1)> H(i) for any integeri ≥ a and

there exists an integerm≥ a such that
∞∑

i=m

1
H(i +1)−H(i)

=∞
(H2)

(see Corollary 3.6 in [13]).
As can be seen from the above, the growth conditions (Sp), (Ap), (Hp), and (Dp)

are natural extensions of (S2), (A2), (H2), and (D2), respectively.

3 Proofs of Theorems 2.1–2.3

To clarify the relationships between the growth conditions defined in Section 2, we
prepare the following propositions.

Proposition 3.1 Suppose that H(i +1) > H(i) for any integer i≥ a. Then condition
(Ap) implies condition(Hp).

Proposition 3.2 Suppose thatlim
t→∞

H(t) =∞. Then condition(Hp) implies condition

(Dp).

Proposition 3.3 Suppose thatlim
t→∞

H(t) =∞. Then condition(Ap) implies condition

(Dp).

Proposition 3.4 Suppose thatlim
t→∞

H(t) = ∞. Then condition(Dp) implies condi-

tion (Sp).

Remark 3.1In order for condition (Dp) to hold,H−1(n) has to exist for eachn ∈ N.
Hence, in Proposition 3.4, it is guaranteed thatH is a monotone divergent function.
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Proposition 3.1 can be easily proved by using the following lemma that is a gen-
eralization of an idea in Artstein and Infante [3].

Lemma 3.5 Let {an} be a sequence. If

there exist a K> 0 and an m∈ N such that

an > 0 for n≥m and
ℓ∑

i=m

ai ≤ K(ℓ+1)p for ℓ ≥m,

then
∞∑

i=m

ϕp∗

(
1
ai

)
=∞.

Proof of Lemma3.5 For any fixed integern≥m, let b j = a2n+ j > 0 with j =m, . . . ,2n.
Then, by assumption, we have

2n∑
j=m

b j =

2n∑
j=m

a2n+ j =

2n+1∑
i=2n+m

ai <

2n+m−1∑
i=m

ai +

2n+1∑
i=2n+m

ai =

2n+1∑
i=m

ai ≤ K
(
2n+1+1

)p
.

Hence, it follows from the Ḧolder inequality that

2n−m+1=
2n∑
j=m

(
b j

)1/p (
1
b j

)1/p
≤

 2n∑
j=m

((
b j

)1/p)p

1/p 2n∑

j=m

( 1
b j

)1/pp∗
1/p∗

=

 2n∑
j=m

b j


1/p 2n∑

j=m

ϕp∗

(
1
b j

)
1/p∗

< K1/p
(
2n+1+1

) 2n∑
j=m

ϕp∗

(
1
b j

)
1/p∗

.

Thus, we obtain
2n∑
j=m

ϕp∗

(
1
b j

)
>

(
2n−m+1

K1/p (
2n+1+1

) )p∗

.

We therefore conclude that

∞∑
i=m

ϕp∗

(
1
ai

)
>

2m−1∑
k=0

ϕp∗

(
1

am+k

)
+

∞∑
n=m

 2n∑
j=m

ϕp∗

(
1

a2n+ j

) > ∞∑
n=m

 2n∑
j=m

ϕp∗

(
1
b j

)
>

∞∑
n=m

(
2n−m+1

K1/p (
2n+1+1

) )p∗

=
1

Kp∗/p

∞∑
n=m

(
1− (m−1)/2n

2+1/2n

)p∗

.

Since
1− (m−1)/2n

2+1/2n ↗ 1
2

asn→∞, we see that

∞∑
i=m

ϕp∗

(
1
ai

)
=∞.

This completes the proof. ⊓⊔
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Using Lemma 3.5, we give the proof of Proposition 3.1.

Proof of Proposition3.1 From condition (Ap), we can find aK > 0 and aT ≥ a such
that

H(t) < Ktp for t ≥ T. (3.1)

Let mbe an integer satisfyingm≥ T. Define

ai = H(i +1)−H(i)

for any integeri ≥m. Then, from the assumption ofH we see thatan > 0 for n≥m.
By (3.1), we have

ℓ∑
i=m

ai = H(ℓ+1)−H(m) ≤ H(ℓ+1)< K(ℓ+1)p

for ℓ ≥m. Hence, from Lemma 11 we obtain

∞∑
i=m

ϕp∗

(
1

H(i +1)−H(i)

)
=

∞∑
i=m

ϕp∗

(
1
ai

)
=∞;

namely, condition (Hp). The proof is complete. ⊓⊔

Proof of Proposition3.2 By the assumption ofH, the generalized inverse function
H−1(n) exists for eachn ∈ N. Let t0 = a andtn = H−1(n). Then, the sequence{tn} is
strictly increasing with respect ton ∈ N and diverges to∞ asn→∞. Define∆tn =
tn− tn−1 ≥ 0 for eachn ∈ N.

If ∆tn does not converge to 0 asn→ ∞, then condition (Dp) obviously holds.
Consider the case that∆tn converges to 0 asn→∞. For any integeri ≥ a, let ni =

min{n∈N : tn ≥ i} andki =max{k ∈N : tni+k ≤ i+1}; that is,ni is the smallest positive
integer satisfyingtni ≥ i ≥ a andki is the largest positive integer satisfyingtni+ki ≤
i +1. Since∆tn→ 0 asn→∞, there exists an integerN ≥ a such thati ≥ N implies
∆tni < 1/3. Hence, we can estimate that

1= i − (i −1)= i − tni+ki + tni+ki − tni + tni − (i −1)

< ∆tni+ki+1+ tni+ki − tni +∆tni

<
1
3
+ tni+ki − tni +

1
3

for i ≥ N, namely,

tni+ki − tni >
1
3

for i ≥ N. (3.2)

Taking into account thatH is an increasing function on [a,∞) anda≤ i ≤ tni < tni+ki ≤
i +1, we have

H(i +1)−H(i) ≥ H(tni+ki )−H(tni ) = ni +ki −ni = ki .
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Hence, we obtain

ϕp∗

(
1
ki

)
≥ ϕp∗

(
1

H(i +1)−H(i)

)
for each integeri ≥ a. (3.3)

From the Ḧolder inequality, we see that

(tni+ki − tni )
p∗ =

 ki∑
j=1

∆tni+ j


p∗

≤

 ki∑
j=1

1p


p∗/p ki∑

j=1

(∆tni+ j)
p∗

= ϕp∗ (ki)
ki∑
j=1

(∆tni+ j)
p∗ (3.4)

for each integeri ≥ a. Using (3.2)–(3.4), we conclude that

∞∑
n=1

(
H−1(n)−H−1(n−1)

)p∗
=

∞∑
n=1

(∆tn)p∗ ≥
∞∑

i=N

ki∑
j=1

(∆tni+ j)
p∗

≥
∞∑

i=N

ϕp∗

(
1
ki

)
(tni+ki − tni )

p∗

≥
(
1
3

)p∗ ∞∑
i=N

ϕp∗

(
1

H(i +1)−H(i)

)
.

Hence, condition (Hp) implies condition (Dp). ⊓⊔

Proof of Proposition3.3 Recall that from condition (Ap) it follows that inequality
(3.1) holds for aK > 0 and aT > a. Let {τi} be an strictly increasing sequence satis-
fying τ1 ≥ T +1 andτi+1 = 2τi for eachi ∈ N. Then, from (3.1) we obtain

τi+1−τi = τi ≥ τ1 ≥ T +1> 1 (3.5)

and

(
H(τi+1)−H(τi)

)p∗−1
=

(∫ τi+1

τi

h(s)ds

)p∗−1

≤
(∫ τi+1

0
h(s)ds

)p∗−1

(3.6)

<
(
Kτp

i+1

)p∗−1
= ϕp∗(K)τp∗

i+1 = ϕp∗ (K)
(
2(τi+1−τi)

)p∗

= 2p∗ϕp∗(K) (τi+1−τi)p∗

for eachi ∈ N.
SinceH is a monotone divergent function,H−1(n) exists for eachn ∈ N. As in

the proof of Proposition 3.2, we definet0 = a, tn = H−1(n) and∆tn = tn− tn−1. Then,
we see that the sequence{tn} is strictly increasing and diverges to∞ asn→∞, and
∆tn ≥ 0 for eachn∈N. Since condition (Dp) inevitably holds if∆tn does not converge
to 0 asn→∞, we consider the opposite case. Then, there exists anN ∈ N such that

∆tn < 1/3 for n≥ N. (3.7)
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Let ni =min{n≥ N : tn ≥ τi} andki =max{k ∈ N : tni+k ≤ τi+1}. Then, we have

tni−1< τi ≤ tni < tni+ki ≤ τi+1< tni+ki+1.

From (3.7) it follows that

tni −τi < ∆tni <
1
3

and τi+1− tni+ki < ∆tni+ki+1 <
1
3

for eachi ∈ N. Hence, we obtain

tni+ki − tni = − (τi+1− tni+ki )+τi+1−τi − (tni −τi) > τi+1−τi −
2
3

for eachi ∈ N. From (3.5), we see that

tni+ki − tni > τi+1−τi −
2
3

(τi+1−τi) =
1
3

(τi+1−τi) (3.8)

for eachi ∈ N. SinceH is an increasing function on [a,∞) anda< τi ≤ tni < tni+ki ≤
τi+1, we have

H(τi+1)−H(τi) ≥ H(tni+ki )−H(tni ) = ni +ki −ni = ki .

Hence, we obtain

ϕp∗

(
1
ki

)
≥ 1(

H(τi+1)−H(τi)
)p∗−1

for each i ∈ N. (3.9)

Using the Ḧolder inequality with (3.6), (3.8) and (3.9), we conclude that

∞∑
n=1

(
H−1(n)−H−1(n−1)

)p∗
=

∞∑
n=1

(∆tn)p∗ ≥
∞∑

i=1

ki∑
j=1

(∆tni+ j)
p∗

≥
∞∑

i=1

ϕp∗

(
1
ki

)
(tni+ki − tni )

p∗

≥
(
1
3

)p∗ ∞∑
i=1

(τi+1−τi)p∗(
H(τi+1)−H(τi)

)p∗−1

>

(
1
6

)p∗ ∞∑
i=1

1
ϕp∗(K)

=∞.

Hence, condition (Dp) holds. ⊓⊔

Proof of Proposition3.4 Let t0 = a, tn = H−1(n) and∆tn = tn − tn−1 for eachn ∈
N. From the monotone divergence ofH, we see that the sequence{tn} is strictly
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increasing and diverges to∞ asn→∞. Hence,∆tn ≥ 0 andtn−1 ≥ a for eachn ∈ N.
SinceH is an increasing function on [a,∞), we can estimate that

∫ ∞

a
ϕp∗


∫ t
a

eH(s)ds

eH(t)

dt =
∫ ∞

a
e−(p∗−1)H(t)

(∫ t

a
eH(s)ds

)p∗−1

dt

≥
∞∑

n=1

∫ tn

tn−1

e−(p∗−1)H(t)
(∫ t

tn−1

eH(s)ds

)p∗−1

dt

≥
∞∑

n=1

∫ tn

tn−1

e−(p∗−1)H(tn)
(
eH(tn−1)(t− tn−1)

)p∗−1
dt

=

∞∑
n=1

e−(p∗−1)(H(tn)−H(tn−1))
∫ tn

tn−1

(t− tn−1)p∗−1dt

=
e−(p∗−1)

p∗

∞∑
n=1

(
H−1(n)−H−1((n−1))

)p∗
.

Hence, condition (Dp) implies condition (Sp). ⊓⊔

We can sum up Theorem B and Propositions 3.1–3.4 as follows.

H(i + 1) > H(i) for any integer i � a

#

(A

p

) =) (H

p

)

lim

t!1

H(t) = 1 �! + w � lim

t!1

H(t) = 1

(D

p

)=) (S

p

)() [AS℄

" "

lim

t!1

H(t) = 1 (2:3)& h 2 F

[WIP℄

Fig. 1 The marks “−→”, “ =⇒”, “⇐⇒” and [AS] mean “addition to”, “implies”, “if and only if” and the
asymptotic stability of (2.2), respectively.

Taking into account thath ∈ F[WIP] implies lim
t→∞

H(t) =∞, we can give the proofs

of Theorems 2.1–2.3 by combining Propositions 3.1–3.4 with Theorem B (we omit
the details).
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Appendix – About condition (1.2)

Here, we examine condition (1.2) from several angles. Ifk is uniformly continuous on
[a,∞); namely, for eachε > 0, there is aδ(ε) > 0 such that|k(t)−k(s)| < ε for all t ≥ a
ands≥ a with |t− s| < δ, then condition (1.2) is satisfied. In fact, letε0 be any positive
fixed number. Then we can findδ0 = δ(ε0) so that|k(t)− k(s)| < ε0 for all t ≥ 0 and
s≥ 0 with |t− s| < δ0. Hence, the uniform continuity ofk implies condition (1.2). Of
course, the converse is not always true. Ifk is a bounded function on [a,∞), then there
exists ak > 0 such that 0≤ k(t) ≤ k for t ≥ a. Hence,|k(t)− k(s)| ≤ |k(t)|+ |k(s)| ≤ 2k
for all t ≥ a ands≥ a, and therefore, the bounded functionk satisfies condition (1.2)
with respect toε0 = 2k and anyδ0 > 0. Condition (1.2) may be satisfied even ifk is
unbounded and not uniformly continuous. For example, consider the case that

k(t) =
(√

t+sin
(
t2
)
+1

)(
sin
√

t
)2
.

Then it is clear thatk is a nonnegative and continuous function on [1,∞). However,
the functionk is not bounded. Sincek contains the term sin

(
t2
)
, it is not uniformly

continuous. On the other hand, condition (1.2) is satisfied. In fact, letε0 = 5 and
δ0 = 1. Then, whenevert ≥ 1, s≥ 1 and|t− s| < δ0 = 1, we have

|k(t)−k(s)| ≤
∣∣∣∣∣√t

(
sin
√

t
)2−
√

s
(
sin
√

s
)2

∣∣∣∣∣
+

∣∣∣∣∣sin
(
t2
)(

sin
√

t
)2− sin

(
s2

)(
sin
√

s
)2

∣∣∣∣∣
+

∣∣∣∣∣(sin
√

t
)2−

(
sin
√

s
)2

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ t

s

d
dτ

√
τ
(
sin
√
τ
)2

dτ

∣∣∣∣∣∣+4

=

∣∣∣∣∣∣∣∣∣
∫ t

s


(
sin
√
τ
)2

2
√
τ
+

sin
(
2
√
τ
)

2

dτ

∣∣∣∣∣∣∣∣∣+4

≤ |t− s|+4< 5= ε0.

Even if condition (1.2) is satisfied, the damping coefficient k does not always
belong toF[WIP] . For example, consider the case that

k(t) =


αn+1 (t−n)+np−1 if n−1/2n+1 ≤ t ≤ n,

−βn+1 (t−n)+np−1 if n< t ≤ n+1/2n+1,

1/(1+ t) otherwise,

(A.1)

where

αn = 2n
(
(n−1)p−1− 2n

2nn−1

)
and βn = 2n

(
(n−1)p−1− 2n

2nn+1

)
.
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Since

αn+1 (t−n)+np−1− 1
1+ t

≥ − αn+1

2n+1
+np−1− 1

1+n−1/2n+1

= −np−1+
2n+1

2n+1(n+1)−1
+np−1− 1

1+n−1/2n+1
= 0

for n−1/2n+1 ≤ t ≤ n, and

−βn+1 (t−n)+np−1− 1
1+ t

≥ − βn+1

2n+1
+np−1− 1

1+n+1/2n+1

= −np−1+
2n+1

2n+1(n+1)+1
+np−1− 1

1+n+1/2n+1
= 0

for n< t ≤ n+1/2n+1, we see thatk(t)≥ 1/(1+ t) for t ≥ 0. From the fact that 1/(1+ t) ∈
F[WIP] , we see thatk also belongs toF[WIP] . However, in this case, condition (1.2)
does not hold. In fact, leta = 3/4, tn = n and sn = n−1/2n+1. Then, it is clear that
tn > sn ≥ a, and

tn− sn→ 0 and k(tn)−k(sn) = np−1− 1

1+n−1/2n+1
→∞ as n→∞.

Hence, there are no constantsε0 andδ0 satisfying condition (1.2). Note thatk(t)≤ tp−1

for t ≥ a = 3/4. Hence, the functionk given by (A.1) satisfies the growth condition
(Sp).

Conversely, even ifk belongs toF[WIP] , condition (1.2) is not always satisfied.
For example, consider the case that

k(t) =

 1 if 2(n−1)≤ t < 2n−1,

0 if 2n−1≤ t < 2n
(A.2)

for n ∈ N. In this case, the damping coefficientk is piecewise continuous on [0,∞).
It is clear that condition (1.2) is satisfied with anyε0 > 1 and anyδ0 > 0. However,
k does not belong toF[WIP] . In fact, letτn = 2n− 1 andσn = 2n. Then we see that
τn < σn < τn+1, σn−τn = τn+1−σn = 1 and

∞∑
n=1

∫ σn

τn

k(t)dt= 0.

Since the ‘on-off’ switching functionk given by (A.2) is bounded on [0,∞), it satisfies
the growth condition (Sp).
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