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Abstract This paper gives several sets offstient conditions which guarantee that
all radially symmetric solutions of

k(l1x1)

lIxII

div(D(u)Vu) + X - (D(U)VU) + wPluP2u=0

converge to zero di|| — . Here,x is anN-dimensional vector in an exterior do-
main andN € N\ {1}; D(u) = |[Vu||P~? with p > 1; k is a nonnegative and locally
integrable function ond, ); w is a positive constant. All of the obtainedfBcient
conditions have the advantage that it is possible to check relatively easily. In that
sense, our results are practical enough. The relationships between tliosendu
conditions are also clarified. To achieve our purpose, we discuss the asymptotic sta-
bility of the equilibrium of the equation

(|x’|p‘2x’)' +h®IXP2X +wPIxP?x =0,

whereh: [0, 00) — [0, o) is locally integrable.
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1 Introduction
The nonlinear elliptic equation
div(D(u)Vu) + f(x,u,Vu) =0

and various more general forms including this equation have been studied in a very
broad field. Herex is anN-dimensional vector witt > 2; D(u) meang|Vu||P~2 with
a real numbep > 1; ||-|| is the usual Eclidean norn¥ is the usual nabla operator.
For example, the subject of those researches are the behavior of weak solutions to the
Dirichlet problem with boundary condition (Alkhutov and Borsuk [1]); the existence
of a positive solution and a negative solution to the Dirichlet boundary value problem
(Faraci et al. [7]); regularity and qualitative properties of weak solutions (Pucci and
Servadei [20]); maximum principle and comparison theorems for weak solutions to
the Dirichlet problem on complete Riemannian manifolds (Antonini et al. [2]). We
can also find researches on the oscillation of (classical) solutions on an exterior do-
main inRN. Those results can be obtained by using the so-called generalized Riccati
transformation, integral average techniques and Picone-type inequalities (for exam-
ple, see [17, 18, 35-38, 40]).

One reason that the research field is wide seems to be that the steady solution of
the reaction-dfusion equation

U = div(D(u)Vu) + f(x,u, Vu)

satisfies the above elliptic equations. Th&udiion term divD(u)Vu) is usually called
the p-Laplacian As is well known, the difusion causes energy dissipation.
In this paper, we consider the equation

k(l1x1)

Il

div(D(u)Vu) + X+ (D(U)VU) + wPgp(u) = 0, (1.2)

o . . def .
wherex is in an exterior domairc, = {x e RN |Ix|| > a} for somea > 0; k is a

nonnegative and locally integrable function @n); w is a positive constantpy, is
a nonlinear function defined by

uP2u if uz0,
¢p(U) = )
0 if u=0.

In equation (1.1), the reaction terf(x, u, Vu) consists of two parts. The first part and
the second part may be called a damping and a restoration, respectively.

If there is no damping, namely, the damping fméentk is identically zero, then
every radially symmetric solution of (1.1) converges to zero 4g|| tends toco
together with||Vu||, because the fiusion occurs energy loss. Then, what kind of
influence does the damping have on convergence of solutions of (1.1)? As well as the
diffusion, will the damping always promote convergence of solutions? The purpose
of this paper is to answer these questions.
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Let p* be the conjugate number pf namely,

Thenp® is also greater than 1. Note tha: is the inverse function af,. Recently,
Sugie and Minei [29, Theorem 1.1] have presented a necessary fictesti condi-

tion for convergence of all radially symmetric solutions of quasilinear elliptic equa-
tions including equation (1.1). By applying their result to equation (1.1), we have the
following result.

Theorem A Suppose that

there exists a@g > 0 and adg > 0 such that

1.2
lk(t) —k(s)| < eo forallt >aand s> a with|t— g < dp. (1.2

Then every radially symmetric solution u ¢1.1) satisfies the property tha(x) and
[IVu(X)|| tend to zero agx|| — oo if and only if

o0 fateK(s)ds
fa oo | = e |dt==, (1.3)

where Kt) = ['k(s)ds+(N-1)logt fort>a.

If kis either uniformly continuous or bounded am ¢o), then condition (1.2) is
satisfied. Of course, the converse is not true. Condition (1.3) is a criterion related to
the degree of growth of the damping ¢deientk. We see that the growth condition
(1.3) is satisfied whek has an upper bourklor the polynomial degree dis less
than or equal tgp— 1 (for the proof, see [39, Theorem 3.1]). On the other hand, if
the degree ok is too large in the sense that condition (1.3) does not hold, then it
can happen that a radially symmetric solution of (1.1) does not converge to zero. For
example, let us consider the case that

2p-N-1

K(IXI) = wPlIXIP~2 @+ IxIPL + i

Then, equation (1.1) has a radially symmetric solutiaratisfying

(u(x),Vu(x)) = (1+ L] X ) .

[

This radially symmetric solution does not converge to zerfixfs»> c. Such a situ-
ation is caused by “overdamping”.

Condition (1.3) is necessary andflicient to ensure that all radially symmetric
solutions of (1.1) converge to zero, but it igfiult to ascertain whether condition
(1.3) holds or not. To get rid of this inconvenience, we give other growth conditions
concerning the damping cfiientk. Our main results are as follows.
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Theorem 1.1 Suppose that conditiofl.2) holds If
Iimsup&pt) < oo, (1.4)

t—oo

then every radially symmetric solution u ¢f.1) satisfies the property thatx) and
[[Vu(x)|| tend to zero a§x|| — oo.

Remark 1.1Condition (1.4) is equivalent to the condition
«(K(t
lim supw < o0

t—oco

Theorem 1.2 Suppose that conditiofl.2) holds If

Z¢(m)*

for any fixed integer m a, then every radially symmetric solution u f.1) satisfies
the property that (x) and||Vu(x)|| tend to zero agx|| — oo.

Let K~1 be the inverse function &€. Since lim_,., K(t) = o0, the inverse function
K~ is defined on [0o).

Theorem 1.3 Suppose that conditiofi.2) holds If

(KX -K(n-1))" = oo,

Ms

1

>
1]

then every radially symmetric solution u ¢f.1) satisfies the property thatx) and
[[Vu(x)|| tend to zero a§x|| — oo.

2 Damped half-linear oscillators

Letu be any radially symmetric solution of (1.1), and4die the function defined by

£(t) = u(x) andt = ||x|| = a. Then, we hav&u(x) = ¢ t(t)x, and therefore,

N

AV OETU) = Y 7 17U 252

=
= (1€ OP2 ) + NT_llé-"(t)lp’zé"(t)
and

|P*2@

N
X-IVUIP2U() = > IVl 2
i=1 !

=g ()1P2 (1).
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Hence, the functiod is a solution of the second-order nonlineateliential equation

N-1
t

(¢p(x)) + (k(t) + )¢p(x') +wPPp(X) =0, (2.1)
whereg,, is the function given in Section 1. The only equilibrium of (2.1) is the origin
(x,X") = (0,0). The equilibrium is said to basymptotically stablgAS] if

tIim x(t) = tIim X({t)=0

for every solutionx. As the above-mentioned transformation shows, the convergence
of radially symmetric solutions of (1.1) is reduced to the asymptotic stability of the
equilibrium of (2.1).

Hereafter, we consider the following more general form than equation (2.1),

(#p(x)) +h(®)¢p(X) +wPpp(x) = 0. (2.2)

whereh is a nonnegative and locally integrable function eyx$). Equation (2.2) is

often called thedamped half-linear oscillatowhenp # 2. It is well-known that the

solution space of the damped half-linear oscillator is homogeneous, but not additive.
To describe some results on the asymptotic stability of the equilibrium of (2.2),

we need to define the following family of functions. A functibn[a, o) — [0, ) is

said to belong toFwipy if

3 [ hidt=eo
n=1+v7n

for every pair of sequencés,} and{oy} satisfyingr, < o < Th1,

Iirr]n inf(on—7h) >0 and limsufrpi1—omn) < co.
=00 n—co
The concept of the weak integral positivity was first published in Hatvani [8]. Even
if liminf (. h(t) = 0, the damping cd&cienth is allowed to belong t& wp;. For
example, the functions/Land sirft/t belong toFwip; (for the proof, see [28, Propo-
sition 2.1]). However, the function/1? no longer belongs t@Fwip). From these fact,
we see that the weak integral positivity plays a role in prohibiting too fast decline of
the damping cocienth.

Let

H(t) =fth(s)ds

fort > a. Using a growth condition of Smith-type, Sugie and Minei [29, Theorem 2.5]
gave a necessary andfcient condition for the equilibrium of (2.2) to be asymptot-
ically stable (refer to [21] for Smith’s criterion).

Theorem B Suppose that

there exists agg > 0 and adg > 0 such that

2.3
[h(t) —h(s)| < o forallt >aand s>a with|t—g < dp (-3)
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and h belongs t&wip;. Then the equilibrium of(2.2)is asymptotically stable if and

only if
o0 fateH(S)ds
L ¢p* w dt = 090, (Sp)

As mentioned in Section 1, the Smith-type conditiog)(8 asuumed to prohibit
too growth of the damping cdiécient h. In general, however, it is hard to check
whether the growth condition (Fholds or not. For this reason, we preseriaient
growth conditions which are easy to check.

Theorem 2.1 Suppose that conditiof2.3) holds and h belongs ®ywipy. If

lim suth—g[) < o0, (Ap)

t—oo
then the equilibrium of2.2)is asymptotically stable
Theorem 2.2 Suppose that conditiof2.3) holds and h belongs ®Bwip;. If
H(i + 1) > H(i) for any integer > a and

1 ):OO (Hp)

there exists an integer ma such thatg;nqbp*(m

then the equilibrium of2.2) is asymptotically stable

If h belongs taf e, thenH diverges tao. Hence, we can define
H=Y(s) = min{t € [a,00): H(t) > s}

for all se [0, ). The functionH™! is a generalization of the usual inverse function.

Theorem 2.3 Suppose that conditiof2.3) holds and h belongs Bwip;. If

(H XM -H(-1)))" =, (Dp)

Ms

1

>
1]

then the equilibrium 0{2.2) is asymptotically stable

Recall that the nonlinear elliptic equation (1.1) is reduced to equation (2.1) which
is a special case of (2.2). Since the dampingfitcient h of (2.2) corresponds to
k(t) + (N — 1)/t in equation (2.1), condition (1.2) implies that

N-1 N-1

Ih(t) - h(9)l < Ik(t) — k()| + ‘T B
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fort > aands> awith |t— g < §g. Hence, condition (2.3) is satisfied with anddp.
Sinceh(t) > (N- 1)/t for t > a, the damping caicienth naturally belongs t& wip;.
In this special case, we have

K(t) = ft k(s)ds+(N-1)logt = ft h(s)ds= H(t)

fort>aand
K(i+1)> K(i) foranyintegeri > a.

Hence, Theorems 1.1, 1.2 and 1.3 are derived from Theorems 2.1, 2.2 and 2.3, re-
spectively.

It would be meaningful to touch a little bit on the background of this research.
Equation (2.2) contains naturally the damped harmonic oscillator

X" +h(t)X +w?x=0. (2.4)

Many attempts have been made to providfisient conditions and necessary con-
ditions for the asymptotic stability of (2.4) (or more general forms). For example,
refer to [3-6, 8,10-16, 19, 21-27, 30-34]. Among them, it would be allowed to say
that Levin and Nohel [16, Theorem 1] was a pioneering work. They dealt with a little
more general equations than equation (2.4). To apply their result, we have to assume
the existence of an upper bound and a positive lower bouhd/Asf almost the same
period of time, Smith [21, Theorems 1 and 2] proved that condition

o [TeH
G ®ds
. &0

is a necessary and fficient condition for the equilibrium of (2.4) to be asymptoti-
cally stable, under the assumption that the dampindficeenth has a positive lower
bound. In other words, he removed the upper limihand gave a criteria for the
degree of divergence dfthat ensures the asymptotic stability of the equilibrium of
(2.4). Condition (9) has a form of double integral. We call this double integral a
growth condition in this paper. Incidentally, we can rewrite this growth condition to

fa Ut = —co,

whereu is a solution of the first-order linearftrential equation

dt = co. (S2)

U+h®u+1=0

satisfying the initial conditioru(a) = 0. After that, Artstein and Infante [3] gave the
different growth condition

. H(t)

limsup—-= <0 (A2)
t—oo t

for the asymptotic stability of (2.4). They also showed #Hét)/t* cannot be replaced
by H(t)/t?*¢ for anye > 0 in their condition. Condition (4) is easier to handle than



8 J. Sugie, K. Ishihara

condition (), butitis not a necessary andBaient condition. For example, consider
the case that(t) = tlog(1+t) for t > a= 1. Then, we have

H(t) = fltslog(1+ s)ds= %(1+t)zlog(1+t) - %(1+t)2— (1+1t)log(1+t) +t.

Hence, condition (4) is not satisfied. On the other hand, from Theorem 3.3 in [39] it
turns out that condition ($ holds in this case (see also [4, Corollary 7]). We have to
mention results given by Hatvani, Krisztin and Totik [13, Theorem 1.1] as well. They
clarified that the growth condition ¢pis equivalent to the discrete condition

S (H A - H (- 1) = o0 (D)

n=1

provided thatH(t) diverges towo ast — co. However, please note that these are not
the original form. Using this result, they also gave severéigant conditions for
the asymptotic stability of (2.4). As one of them, we can cite the condition that

H(i + 1) > H(i) for any integei > a and

. . - 1 (Hz)
h h th e ——
there exists an integen> a such t at;n A6+ D-A0) 00

(see Corollary 3.6 in [13]).
As can be seen from the above, the growth conditiog$, (8,), (Hp), and (D)
are natural extensions of{ (A>), (Hz2), and (), respectively.

3 Proofs of Theorems 2.1-2.3

To clarify the relationships between the growth conditions defined in Section 2, we
prepare the following propositions.

Proposition 3.1 Suppose that b+ 1) > H(i) for any integer i> a. Then condition
(Ap) implies condition(Hp).

Proposition 3.2 Suppose thatlim H(t) = co. Then conditior(H) implies condition
(Dp).

Proposition 3.3 Suppose thatlim H(t) = co. Then conditior(Ap) implies condition
(Dp).

Proposition 3.4 Suppose thatlim H(t) = co. Then condition(Dp) implies condi-
tion (Sp).

Remark 3.1In order for condition () to hold, H=(n) has to exist for each € N.
Hence, in Proposition 3.4, it is guaranteed tHais a monotone divergent function.
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Proposition 3.1 can be easily proved by using the following lemma that is a gen-
eralization of an idea in Artstein and Infante [3].

Lemma 3.5 Let{a,} be a sequencéf

there exist a K> 0 and an me N such that
¢

a,>0 forn>m andZa <K(€+1)P for £>m,
i=m
then

2eofa)-=

Proof of Lemm&.5 For any fixed integar> m, letb; = aon,j > 0 with j=m,..., 2"
Then, by assumption, we have

on on on+1 2Mym-1 on+1 on+1

p
Y= Y= 5 a< 3 a3 8z Yask( i)
j=m j=m i=2"+m i=m i=2"+m i=m

Hence, it follows from the Elder inequality that

- Sip () (S o] (512 )

j=m j=m
on 1/p/ on 1/p* on 1 1/p*
= [I_Zmbj] [Z(f?p ( )] < Kl/p(2n+1+1)[j_zm¢p*(b—j)] .

Thus, we obtain

5

Serli)- et

Sl Bolar ZlEw ) ElE(3)

& m+1 1-(m-1)/2"
>Z(Kl/p(2n+l+1)) Kp*/p ( 2+1/2n )

n=m

1-(m-1)/2"

1
21 1o J > asnhn — oo, we see that

Since

This completes the proof. ]
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Using Lemma 3.5, we give the proof of Proposition 3.1.

Proof of Propositior8.1 From condition (4), we can find & > 0 and aT > a such
that

H(t) < KtP for t>T. (3.1)

Let mbe an integer satisfyingn > T. Define
a = H(@i+1)-H()

for any integeii > m. Then, from the assumption &f we see thaé, > 0 for n > m.
By (3.1), we have

4
}:azH@+n—Hmvus+n<Kw+1w

i=m

for € > m. Hence, from Lemma 11 we obtain

-~ 1 - 1
| —————— | = «| — | = oo,
§¢p(H(|+1)_H<.)) Zm‘b"(a)
namely, condition (k). The proof is complete. O

Proof of Proposition3.2 By the assumption dfl, the generalized inverse function
H~1(n) exists for eacn € N. Let ty = a andt, = H™1(n). Then, the sequendé,} is
strictly increasing with respect toe N and diverges teo asn — co. Define4t, =
th—th_1 >0 foreachne N.

If 4ty does not converge to O as— oo, then condition ([3) obviously holds.
Consider the case thdt, converges to 0 as — co. For any integer > a, letn; =
min{ne N: t, > i} andk; = maxk e N: t .k < i+1}; that is,n; is the smallest positive
integer satisfying, > i > a andk; is the largest positive integer satisfyitgi <
i + 1. Sincedt, — 0 ash — oo, there exists an integd®t > a such that > N implies
Aty < 1/3. Hence, we can estimate that

1: | —(| —1)= | _tni+ki "'tnl.'_k| —tni +tn| —(l —1)
< Ak +1+ kg — Ty + Aty
< 1+t th +
3 N +Ki N 3
fori> N, namely,

MM‘%>% for i > N. (3.2)

Taking into account thatl is an increasing function om[co) anda<i < tp, < ty4k <
i+1, we have

H(i+1)-H() = H(ty 1) —H(ty) = ni + ki —ni = k.
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Hence, we obtain

¢p*(%) > (]Sp*(m) for each integeii > a. (3.3)
From the Holder inequality, we see that
ki p* K P/P i
(tni+k _tni)p* = (Zdtnﬁj] = [Z 1p] Z(Atniﬂ)p*
=1 =1 =1

ki
= ¢p (k) ) (At )" (3.4)
j=1

for each integer > a. Using (3.2)—(3.4), we conclude that

00 3 > 2 &
D (HH-H0-1)" = 3 ) = 3 > ()
- n=1

n=1 i=Nj=1

S 1 +
i=N

- (3] S (s

Hence, condition () implies condition (0). O

Proof of Proposition3.3 Recall that from condition (4 it follows that inequality
(3.1) holds for &K > 0 and aT > a. Let{r;} be an strictly increasing sequence satis-
fying 1 > T + 1 andr;,1 = 21 for eachi € N. Then, from (3.1) we obtain

Tim—-Ti=Ti>2T1>T+1>1 (3.5)

and

(H(ris) ~H(r))P ™t = ( frimlh(s)ds)p*_ls ( i

< (KTip+1)p*_l = ¢p*(K)Tip:1 = ¢p (K) (2(ri1-70))”

Ti+1

—1
h(s)ds)p (3.6)

= 2 9p (K) (risa - 71)”

for eachi e N.

SinceH is a monotone divergent functioh}~1(n) exists for eacm e N. As in
the proof of Proposition 3.2, we defitg= a, t, = H™1(n) and4t, = t, —t,_1. Then,
we see that the sequentg} is strictly increasing and diverges 0 asn — o, and
4ty > 0 for eachn € N. Since condition ([3) inevitably holds if4t, does not converge
to 0 asn — oo, we consider the opposite case. Then, there exisk$ @il such that

Aty <1/3 for n>N. 3.7)
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Letn =min{n> N: t, > 7} andk; = maxk e N: tp .k < 7i+1}. Then, we have
thi—1<7i Sty <k < Tie1 <ok

From (3.7) it follows that

1
tni -7 < Atni < and Ti+1_tni+ki < Atni+ki+1 < §

3

for eachi € N. Hence, we obtain

2
toyek =ty = = (Ties = toek) + Tiva = 7i = (ty = 70) > Tiva —7i — 3
for eachi € N. From (3.5), we see that
2 1
toyek — oy > Tiv1 —Ti — é(Ti+1—Ti) = é(Ti+1—Ti) (3.8)

for eachi e N. SinceH is an increasing function oraJeo) anda < 7j <ty <ty <
Ti+1, We have

H(7i+1) —H(7i) 2 H(ty+k) — H(tn) = ni + ki —nj = k;.

Hence, we obtain

1 1 .
¢”*(E)Z (H(ris1) - H(x)P 2 foreachi <t @)

Using the Hlder inequality with (3.6), (3.8) and (3.9), we conclude that

) * & © &
D (HH-HH =) = 3t 2 3D (e )
4 i—1 j=1

n=1 n=1

l 1 .
> 300 o )
i=1

>(1)P N (Ti+1—Ti)p*

“\3) & (H(riy) - HE@)" ™

g (%)pi ¢p*1(l<) -

i=1

Hence, condition (i) holds. O

Proof of Proposition3.4 Letty = a, t, = H™1(n) and 4t, = t, —t,_1 for eachn e
N. From the monotone divergence B, we see that the sequen(g} is strictly
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increasing and diverges to asn — . Hence At, > 0 andt,_1 > a for eachn e N.
SinceH is an increasing function omJco), we can estimate that

p-1

oo teH(9) o

[, €"0ds X t
ol 2o 5|t :f e—(p—l)H(t)(f eH(s)dS) at
[ovl B e |

© tn t p*-1
53 f e—(p*—l)H(t)( f eH<S>ds) dt
n=1 th-1 th-1
i f " (P-DHG ) (Moo ))P*—ld
> e e Ut —th_q t
n=1 th-1
sl t
=) e P-DtH)-H-2) f " (-t Lt
n=1 th-1
e & ) o
=—— > (H ) -H((n-1))".
P n=1
Hence, condition (i) implies condition ($). O

We can sum up Theorem B and Propositions 3.1-3.4 as follows.

H(i + 1) > H(i) for any integer i > a
S
(Ap) = (Hp)

mH() =0 — || & «— limH(t) =
[—x

(Dp)=(S,) &= [AS]
T T
lim H(f) = c0o  (2.3) & h € Frwip;

t—o0
Fig. 1 The marks “—", “ =", “ <" and [AS] mean “addition to”, “implies”, “if and only if” and the

asymptotic stability of (2.2), respectively.

Taking into account that € e impliestlim H(t) = 0, we can give the proofs
of Theorems 2.1-2.3 by combining Propositions 3.1-3.4 with Theorem B (we omit
the details).
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Appendix — About condition (1.2)

Here, we examine condition (1.2) from several anglesidfuniformly continuous on
[a,o); namely, for eacls > 0, there is a(g) > 0 such thaik(t) - k(s)| < e forallt > a
ands>awith [t— g < §, then condition (1.2) is satisfied. In fact, kgtbe any positive
fixed number. Then we can fini} = 6(eo) so thatlk(t) — k(s)| < &o for all t > 0 and
s> 0 with |t — § < §p. Hence, the uniform continuity & implies condition (1.2). Of
course, the converse is not always trudc if a bounded function o[ ~), then there
exists ak > 0 such that G k(t) < k for t > a. Hence |k(t) — k()| < [k(t)| + k()| < 2k
forallt>aands> a, and therefore, the bounded functibsatisfies condition (1.2)
with respect taeg = 2k and anysp > 0. Condition (1.2) may be satisfied everkifs
unbounded and not uniformly continuous. For example, consider the case that

K(t) = (VE+sin(?) + 1)(sin V).

Then it is clear thak is a nonnegative and continuous function ore$). However,
the functionk is not bounded. Sinck contains the term sii?), it is not uniformly
continuous. On the other hand, condition (1.2) is satisfied. In fackglet5 and
6o =1. Then, whenevdr> 1, s> 1 andjt— § < dg = 1, we have

k() —k(9)l <

VE(sin Vi)’ - v(sin 3]
+[sin(t2)(sin V)" - sin(<)(sin V3] |
+'(sin\/f)2— (sinvs) ]

sm\/_ 2dr

t (sin\/?) sin(2\/?)
=L[ " t—> ]dr+4
<|t-g+4<5=g¢.

+4

Even if condition (1.2) is satisfied, the damping ftaéent k does not always
belong tofwip). For example, consider the case that

ans (t—n)+nP 1 if n-1/2"l<t<n,
K®) ={ —Bnirt—n)+nP 1 if n<t<n+1/2™% (A1)

1/(1+1) otherwise,

where

2n
_on _1\p-1_ —on _1)p-1_
ap=2 ((n 1) 2”n—1) and g =2 ((n 1) 2”n+1)'
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Since
— 1 an+1 —1 1
t-n)+nP o _— > +nP o —
anv1(t=") 1+t° oot 1+n_1/2m1
_ _np—l 2n+1 o1 1

+ —+N -———=0
2%l(n+1)-1 1+n—1/2n+1

forn-1/2™1<t<n, and

1
— t—n np_l__ _ﬂn_-"l np_l_—
Prea (t=1)+ Tit- omi l+nt1/2mt
2n+l 1
=Pty _——— 4Pl — -0
27N+ 1)+1 1+n+1/2m1

forn<t<n+1/2"% we see thak(t) > 1/(1+t) for t > 0. From the fact that/A1+t) €
Fiwip), we see thak also belongs towip). However, in this case, condition (1.2)
does not hold. In fact, led = 3/4, t, = n ands, = n—1/2"1. Then, it is clear that
th > sp > a, and

_ 1
tn—Sq—>O and k(tn)—k(&)znpl—m—)m as n— oo.

Hence, there are no constangsandsy satisfying condition (1.2). Note thift) <tP-1
for t > a= 3/4. Hence, the functiok given by (A.1) satisfies the growth condition
(Sp)-

Conversely, even ik belongs tofwip;, condition (1.2) is not always satisfied.
For example, consider the case that

1 if2(n-1)<t<2n-1,
k(t) = (A.2)
0 if2n-1<t<2n

for ne N. In this case, the damping dieientk is piecewise continuous on,[®).

It is clear that condition (1.2) is satisfied with any> 1 and anysp > 0. However,
k does not belong t&wipy. In fact, letry = 2n—1 ando, = 2n. Then we see that
Th<Oh<TmL,On—Tn=Tn+1—0n=1and

o0

3 "kdt= 0.

n=1vn

Since the ‘on-@" switching functionk given by (A.2) is bounded on [&), it satisfies
the growth condition (§).
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