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SEQUENTIAL PATTERN RECOGNITION SYSTEMS I. 

ON THE DIVERGENCE AND CHERNOFF'S DISTANCE 

FOR THE FEATURE SELECTION AND ORDERlNG 

Minoru YABUUCHI* 

Abstract : In sequential pattern recognition systems, the selection and ordering 

of effective features from a given set of feature measurements is an important 

problem. The purpose of this paper is to discuss the efficiency of the 

divergence and Chernoff's distance (particularly. Bhattacharyya's distance) as a 

criterion of feature selection and ordering. After these probabilistic measures 

were reviewed, a very simple multiclass pattern recognition was simulated as 

an example of the application of these. In this situation, to maximiz;e the 

expected diver*"ence and the expected Bhattacharvya's distance was adopted as 

a criterion of feature selection and ordering. The relations of these measures 

to the number of features and to the mean probability of misrecognition were 

obtained. 

1. INTRODUCTION 

The class of pattern recognition systems to be considered in this paper, the 

so -called statistical pattern recognition systems, is characterized as follows : 1) 

information about the patterns is stored in the form of feature measurements 

and 2) the system's decision is based on the methods of statistical decision 

theory. " g" 1) In the statistical recognition systems which a number of studies 

had been performed, all the feature measurements were processed by the 

systems at one stage. This procedure is also called as fixed-sample size 

decision procedure. 

In this procedure, the cost of feature measurements has not been taken into 

consideration2) : 1) if the number of feature measurements is insufficient, it 

will not be able to give satisfactory results in correct classification and 2) on 

the otICLer hand, an arbitorarily large number of features to be measured is 

impractical. 
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lO SEQUENTIAL PATTERN RECOGNITION SYSTEMS I 

Hence, recent studies in the design of pattern recognition systems have 

applied sequential decision procedures to this class of recognition problems to 

minimize misrecognition and average number of feature measurements. 

In seqttential pattern recognition systelns, the selection ~nd drdering of 

effective features from a given set of feature measurements is an important 

problem. Unfortunately, it is often difficult to obtain an analytical expression 

for the probability of misrecognition and even if one can be obtained it will 

usually be complicated to permit numerical computatioh.3) 

Hence, certain probabilistic distance measures, such as divergence and Chernoff's 

distance, which are easy to evaluate, are used for the selection of effective 

feature measurements 

The purpose of this series is to apply the divergence and Chernoff's distance 

to hand-drawn simple geometrical figures, and examine the functional relations 

between these and the number of featune measurements and the probability 

of misrecognition. 

2. STATISTICAL PATTERN RECOGNITION SYSTEMS 

Statistical pattern recognition systems consist of two parts2) : a' feature 

extractol~, which generates a set of feature measurements of the input sample 

to be recognized, and a classif,ler, which performs the function of classiLication. 

A simplified block diagram of a pattern recognition system is shown in Fig. l. 

X1 

input 

-~ 
Feature 

patterns Extractor 

-> 
x2 _> Classif er ~~ Decrsron 

xp . 

-> 
Measurements 

Fig. l. A Pattern Recognrtlon System 

The feature extractor generates p feature measurements, xl" " ' xp, of each 

input sample. We will write these as a column vector 

Xl 

X X2 
Xp 
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This quantity is the input to the classifier ; it is the argument of the discriminant 

Lunction D(x). The discriminant function Djr~) associated with pattern class 

. , m, is such that if the input pattern represented by the feature a)j, j = l,. . 

vector x is in class c)i., denoted as x-d)i,, the value of Di (x) must be the 

largest. That is, for all x - c) 
i, 

D (x) > DJ(x), i, j - l,. . ., In, i ~ j (1) 

For the case that the multivariate probability density function of the feature 

vector x, P(x I cDi), i - 1, . . . , m, is a multivariafe normal density function, the 

computational algorithm of these processings has been shown by the author,4) 

for example. ' ' ~ ' ' 

3. THE DIVERGENCE and CHERNOFF'S DISTANCE 

3. 1. The Divergence 

divellgence and nor;nal variables with unequal cova.riance matrices Assume 
that we are dealing with a feature 'extractor which for any coi, maps inputs 

of pattern class coi into the multivariate normal density with mean fgi and 

covariance matrix ~i. Thus, when the input is from pattern class a),, the 

measurement vector x has density, 

P(xlcvi) - (27r) "/ I~ I */' exp { I (x p)~ (x p)} (2) 

where ~ Is the matnx mverse of ~,, and (~C pi)t is the transpose of the 

column vector (x-pi). 

Then, the likelihood function uij is expressed as 

P(x I coi) I I ~i l 
uij = Iog p(xlcoj) ~ 2 10g f ~; I 

- ~ tr ~~l(x pi)(x-;ei)' + ~ tr ~Tl(x fej)(x-pj)' (3) 

where tr A is the 'trace of matrix A. 

On the assumption that the input is from pattern class (vi, the expected 

value of uij5) 

sokyu



12 SEQUENTIAL PATTERN RECOGNITION SYSTEMS I 

P(x I (vi ) I
 

E [uij I i] P(x I coi) Iog p(x I (L)j~ dx 

I ~j l 

~log 1~i +~ tr~(~ ~ ) 

+ tr ~ (p Je~ )(pi -Pj)t (4. 
Whereas, iL the input is from pattern class coj, the corresponding value is 

P(x I coi) 

J J E Luij lj] P(x I (D ) Iog p(x I coj) dx 

~L Iog 1 ~,i I + ~ tr ~j(~71-~f~1) 

2 1 ~i 

- ~ tr ~~1(pi -Pj)(Pi ~j)t (5) 

Then, the divergence J(coi, CDj) between the classes co and co rs defined as 

J(cvi, (Dj) P(x I (Di) dx J , [P(xlco ) P(xlcoj)] lo~a p(x I a)j) 

~ tr (~i -~j)(~71_~~1) 

+ _12_ tr (~~1+~71)(pi Pj)(Pei -Pj)t (6) 

Certain properties of divergence may be noted.6) 

l') J((Di, coj) l> O 

2 ) J(CD,, (D ) O ~ P(xl(L)i) - P(xlcoj) 

3') J(cvi, coj) J(cvj, (Di) 

4') If the features, tl" ' " tp, have statrstrcally mdependent outputs then 
1
'
 

J(cDi, cDj I tl" "' tp) ~: J((Di, coj I tk) 
ic=1 

5') Adding new features to a set of features never decreases the divergence 

: i. e., 

J(cv,, CDJ I tl" "' tl') <¥ J(a)i, a)j J tl" ' " tp, tl'+1/ ~
 

Consider divergence and nol~lnal variables with eqt,tal covariance matrix 

now the divergence in the case of nonnal variables with equal covariance 

matrix, i. e., ~i ~, i l,. . . , In. 

In this case, we obtain the likelihood function 
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~ ~ tr ~-1(x pi)(x-pi)t+ ~ tr ~-1(x-

tr ~:~1(fei Jeej) xt - ~ tr ~-1(fei + pj)(fei Pj)t (6) 

the expected value of u,7 When mput rs from pattern class co 

- ~ tr ~-1 (pi -pj)(fLt -Pj)t 

and, the expected value of ulj when input is from pattern class (L).j 

E [uij l j] - (8) 
tr ~ (ke p )(p~ -le.j)t 

Substracting (7) from (8), the divergence is given by 

J(Cvi, coj) = tr ~-1(p,i-Pj)(fei fej)t (9) 

the p/ obabil'ity of Inisrecognition an.d the dive/~gence It is noted if ~:-l 

I, the identity matrix, then J(coi, coj) represents the squared distance between 

fLi and pj. If a fixed sample size or nonsequential Bayes decision rule is used 

for the classifier, then for P((L)i) P(cvj) ~ (see for example2)), 

x - (Di, if uij > o, 

x - coj, if uij < O (10) 
The probability of misrecognition is 

P.(i, j) ~ P(uij > o I coj) + ~ p(uij < O [ coi) 

It is readily shown that in this case the error probabiliy is given by the 

following quantity7) 

P.(i, j) I (27r)~1/2 exp { y } dy (11) 
-*.-vJ 

where J J(coi, coj). 

Hence, the probability of misrecognition P. (i, j) is a monotonically decreasing 

function of J((~)i, (L)j)' ThereL0re, features selected and ordered according to 

the magnitude of J(coi, coj) will imply their corresponding discriminatory power 

between coi and (pj.2) 

For the case of normal variables with unequal covarince matrices there is 

no simple function that relates divergence to the probability of misrecognition. 
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Marill and Green8) have shown upper , and lower bounds on probability of 

correct reco*anition as a function of divergence for normal variables with 

unequal covariance matrices, with the aid of a Monte-Carlo type computer 

program 
the expected divergence betze'een any pair of pattern classes For more 

than two pattern classes, the criterion of maximizing the minimum divergence 

or the expected divergence between any pair of pattern classes has been 

proposed for signal detection9) and pattern reco,gnition. The expected divergence 

between any pair of pattern classes is given 

J(a)) 
~
:
 i*=1 

", 

~: P(a)i) P(CDj) J(CVi, CDj) 
j= l 

(12) 

Le t 

d2 Min J(a)i, CV'i). 
'i, i i~j (13) 

then 

j ~ J((D) >~ d' }1-j~=, [P(coj)]'} 
(14) 

Hence 

d2 <¥ 
J((D) 

The 

mum 

1 - ~:J:!'__1 [P(co )] 

tightest upper bound of d2 , must occur when 

This maximum is I - (1/m) which yields 

d2 m J(co) 
In - l 

(15) 

m 1=~: [P(co.i)]2 is a 
*i=1 

maxl-

(16) 

3 . 2 . Chernoff's Distance 

In the case 

features have 

transformed as 

of normal 

statistically 

L0110ws : 

variables with equal covariance 

independent and ~ - a2 I, the 

J(CVi (L)j) 
ilpi P'ill2 

matrix ~, if the 

divergence (9) is 

9
 

a~ 
(17) 
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where llket-12jll is the norm of ftei Pj-

Then, adding the above result to properties of the divergence l), 2), and 3) 

the divergence satisfies the requirernent called metric axiom.10) 

On the other hand, when we deal with a feature extractor, which, for any 

coi, maps inputs of pattern class (vi into any multivariate distribution other 

than normal density, the diver*"ence does not necessarily satisfy the requirement 

of metric axiom, and it is difficult that the probability of misrecognition is 

expressed by the diver*"ence in that case. 

Then, in order to overcome this difficulty, we may introduce Chernoff's 

distance defined by the following equation, 

Cher (cJ,, (Dj ; ~) - I0>' r}p(x la) ) P(xICL)j)'-'dx, O < ~ < I (18) 

We may also write the distance, 

Cher((vi' cL)j ; ~) Io'"E P(xl(L)i) R j}, 0<~<l 
)
f
 - {( - (D P(x I (Dj) 

(19) 

certain prope7-ties of Cl'rernoff's distance In the same manner as the 

divergente, certain properties of Chernoff's distance may be noted,ro) 

lo) Y O < ~ < I : Cher ((L)i, coj ; ~) >/ O 

20) Y O < ~ < I : Cher (oi, coj ; ~) - O ~ p(xlwi) - P(xJ(vj) 

30) Y O < ~ < l, ~ ~ l//2 : Cher (coi, cvj ; ~) ~ Cher (~Jj, cvi ; ~) 

40) If the features tl' " " tp hav'e statistic.ally independent outputs, then 

Y O < ~ < I : Cher (coi, coj ; ~, ,.-tl" ' " tp) ~ ~ Cher (cvi, cvj ; ~, tA,) 

k=1 

50) Adding new features to a set of features never decreases distance 

y O < ~ < I : Cher (coi, coj ; ~, tl" ' " tp) 

<¥ Che7' ((v,i, (L)j ; ~, tl" "9 tp, tp+1) 

Particularly, when ~ 1/~, Chernoff's distanee 1's called E:hattacha7-yya's 

d istance. 

Chel~noff's distance and normal val-iables ~vith unequal coval~isnce 17zatrices 

In the case of normal variables with unequal covariance matrices, Chernoff's 

distance is expressed as 
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Che"((L)i,cvj ; /1) -~(1 ~) (p /i) {(1 ~) 2 +~~ } (pi-Pj) 

+ _12 Iog I (l-~) ~i+~Ej] (20) 
1~il~-1 l~:jll 

Che/~noff's distance and normal val~idbles with equal covariance Inatrix 

In the case of normal variables with eqal covariance matrix, equation (20) can 

be written as 

_12: ~ (1 -~) (fal ~ pj)t ~~1(pi - PJ) 

Cher ((vi, aJf ; ~) (21) 
the probability misrecognition alid Chernoff's distance The mean proba-

bility of misrecognition obtained with aid of Bayes' decision rule is 

)1-aij jp(x I (D ) P. <¥ ~: P (co.i)QiiJp (cv .' P(x I (Dj)1-aij d_~c, J i aij l <~t< j<.'~* 

z j 1, . . . , m, O <¥ octj <¥ I (22) 

Then, from (18), (22), the mean probability of nusrecogmtron rs grven by 

11 P. ¥< P((Di)R p((L)j) - exp { Cher ((L),, (L)J , ~)} O <¥ ~ ¥< I (23) 

4 . A NUMIERICAIJ EXAMPI4ES 

As an example of the application of the divergence or Chernoff's distance 

as a criterion of the feature selection and orderin~a, a very simple multiclass 

pattern recognition situation was simulated. 

4 . I . Tentative Experimental Sitnation 

Let's imagine the experimental situation asking subjects to draw three kinds 

of fiegures (let (DA, cDB, and CDO denote three figure classes). These figures may 

have been as is seen in Fig. 2. 
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x7 

x~ 

. ( c ) I*attern cla-ss_ 'u'c* ( b ) Pattern Class 'WB (. a ) Patte,rn Class w.1 

Fig. 2. Tentative Pattern Samples and their Feature Measurements 

. . , t8 Were selected for hand-drawn figures Assume that eight features, tl' t2, . 

and the distance from the square to the edge of each figure (Fig. 2; see also 

e. g.,2,4,u)) was measured and the mean vectors estimated were given in TABLE 

I. Again, assurne that the features measurements are statistically independent 

and the covariauce matrices of these classes are the same, ~i - ~ z A B C 

TABLE I 
MEAN MEASUREMENT VECTORS BASED EIGHT TESTS 

/~~ = C5.0 5.0 5 O 5 O O O 5 O 5.0 5 O) 
/~h = C9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0) 
I~'c = C8.0 3.0 8.0 3.0 8.0 3.0 8.0 3.0] 

That is, in the case of normal variables with mean vectors in TABLE I and 

equal covariance matrix ~ a2 I, it is the purpose of this section to examine 

the efficiency of the divergence and Chernoff's distance (Bhattacharyya's 

distance) as a criterion of feature selection and orderin*a, and the relation of 

these to the mean probability of misrecognition. 

4 . 2 . The Expected Drvergeuce and the Probabllrty of Mlsrecoglutiou 

In the case of ~ 21, first, the expected divergence (12) between any pair 

of classes for ei~'ht individual tests were calculated (see TABLE II). Next, 

when (1) the success. ive features were unordered (i. e ; following the natural 

order tl' t2,' . ' , t8), or (2) ordered (i. e ; following the criterion of maximizing 

the expected divergence) or (3) insuccessive features were ordered (i. e ; by 

minimizing the expected divergence), the expected divergence versus the number 

of features was obtained (see TABLE II). The probability of misrecognition 

corresponding with each expected divergence was obtained by (11). This 
probability is given in the right side of TABLE II. 

sokyu
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TABELE II 
THE EXPECTED DIVERGENCE AND THE PROBABILITY OF MISRECOGNITION 

FOR VARIOUS SETS OF TESTS ~ = 21 

The Expected Divergence 
The Probability of 
Misrecognition* 

Individual Tests J((~) t*, 

J((D 

J(co 

J((D 

J((V 

J(co 

J((~) 

J(CD 

t,2 , 

t3 , 

t4 , 

t5, 

t6, 

t7 , 

) = 2.89 

) = 4.22 

) = 1.56 

) = 1.56 

) = 2.00 

) = 0.67 

) = 4.22 

t8 ) = 1.56 

. 198 

. 152 

. 264 

. 264 

. 239 

. 341 

. 152 

. 264 

Natural Order 
Subsets 

J(CL) t 'l' 

J((D ti, t29 

J(co t t t 1' 2, 3, 
J((v tl' t2, t3, t4, 

J(co tl, t2, t3, t4, t5, 

J((D 119 t2, t3, t4, t5, t6, 

J((D tl' t2, t3, t4, t , te, t7, 

) = 2.89 

) = 7.11 

) = 8.67 

) =10.22 

) =12.22 

) =12.89 

) =17.11 

. 198 

. 090 

. 071 

. 055 

. 040 

. 036 

. 019 

Effective Order 
Subsets 

J((D 

(or J(co 

J(C) 

J((1) 

J((D 

J(O) 

(or J(co 

(or J((D 

J((D l 

(or J(a) 

(or J(CD 

J((D 

t2 , 

to 
*, 

tl' tQ., 

tl' t2, t5, 
tl' t2, to' t5, ~ 

tl' t2, t4, t,5, 

tl' t2, t5, 
tl' t2, t3, t49 t5, 

tl' t t t5, 2? 3P 

tl' to*, t4, t5, 

tl' t2, t3, t4, t5, 

t7, 

t7 , 

t7 , 

t7, 

t7 9 

t
 7, 

t7, t8 

t7 , 

t7, t8 

t7, t8 

t7, t8 

) = 4.22 

) = 4.22) 

) = 8.44 

) =11.33 

) =13.30~ 

) =14.89 

) =14.89) 

) =14.89) 

) =16.44 

) =16.44) 

) =16.44) 

) =18.00 

. 152 

( . 152) 

. 072 

. 047 

. 034 

. 027 

( . 027) 

( . 027) 

. 021 

( . 021) 

( . 021) 

. 017 

Inef f ective 

Order 
Subsets 

J((D ' 

J(co 

(or J((v 

(or J((() 

J ((D 

(or J((v l 

(or J(co l 

J(co 

J((D 

te , 

t6, 

t4 , t6 , 

t3, t6 , 

t4 , t6 9 

t3 , tc , 

t3, t4, t6 , 

t3, t4, t6 , 

t.3, t4, t5, t6, 

t
8
 

t
8
 
t
8
 

t
8
 
t
8
 

) = 0.67 

) = 2.22 

) = 2.22) 

) = 2.22) 

) = ,*3.78 

) = 3.78) 

) = 3.78) 

) = 5.33 

) = 7.33 

. 341 

. 227 

( . 227) 

( . 227) 

. 166 

( . 166) 

( . 166) 

.123 , 

. 087 
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J(co 

(or J(co 
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tl, t t t t t8 ) 3, 4, 5~ 6, 

* ) tl, t3, t4, t5, t6, t7, t8 

tl, t2, t8, t4, t5, t6, t8 ) 

= 10 . 22 

= 14 . 44 

= 14 . 44) 

. 055 

. 029 

( . 029) 

19 

All Tests J((D tl, t2, t3, t4, t5, t6, t7, t8 ) =18.66 . 015 

cx) 

*pc~a(i' j)  J 11 (27r)~ 72 
=~1_1/ J 

( I ' exp ~~1~,)'2 f dy 

In the same manner, Fig. 3 shows the expected divergence and the expected 

Bhattacharyya's distance versus the number of feature measurements for each 

ordered condition when covariance matrix ~r I. 

For the successive order subsets; the expected divergence and the expected 

Bhattacharyya;s distancA_ versus the number of features, when covariance matrix 

~r a21, a2 - 11/2, l, 2, 3 and 4 respectively, is shown in Fig. 4. 

Effectve order subsets ~~ ./" ~~ '~i 5.0 ' ^., 

.~.~. 

.~ 

-Natural order subsets ~ ~
 .~ ~Ineffective order suhsets.' ."' . ~~ .~ 

. ･ ･ / { ; ~) .~. ~~ 4,0 132 ,~~ ~: 32 1) 
~~-. 4.0 

~: 

~ .
~
 

i =vl'~ 

'// / ~ ~; ,/ : =vT~ ' '
 

.1~'~= r ~
~
 ~ .~. 3 o ~ . 3.0 ~ ~: ~ ' /" ~ ../' I, ~ .~ -=vT.7 ,

l
 

~, =v~.i~l 

~; ~ ' I ~: _ _ ~ 2r pc) ' .'/ ~ ~i _l 

' ' 2.0 16 ~; ･-- 16 ~ ~. ~ /~- = ~~ ~~ 

* ~ /¥'= 31 __ ~ ~ . /" ~ li 

"' l/~f ~~ ~
 ~

!
 H 

~
;
 

o 1 2 3 4~5 6 7 8 H ~ o 1 2 3 4 5 6 7 8 
Numbcr of obser¥'ation I~Tumber of ohservtitiOn 

Fig. 3. The Expected Divergence and the Fig. 4. The Expected Divergence and the 
Expected Bhattacharyya's Distance versus Expected Bhattacharyya's Distance versus 

the Number of Feature Measurements for the Number of Feature Measure ments 
Each Ordered Condition (when ~ = I) when Covariance Matrix ~ = a21 

As we described, the relation betw*~en the mean probability 0L misrecognition 

and the expected Bhattacharyya?s distance Bhat (a)) was given by (23). Fig. 5 

shows upper bounds on the mean probability of misrecognition as a function 

of the exp*-cted Bhattacharyya s distance when covariance matrices are varied 

l//2l~ I, 21, 3~ and 41, respectrvely 
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~~. 

~3 0.30 
~~ 
ccl 

~ p* 
x 0.25 

~~<a) 
~- ~a' 
:~~ Il 

~, _C~] 0.20 

~~! P~O .* 
~:* c:5 '* 15 (L) ~O. 

~o c!) rlq) 
o~cn 
(/) '* O O1 
~)c:~: -
::IH* 

oo OCi 

~ O . 05 (L) 

~~ 

o ~ ~J 

O_,O. ･~ ' 0.1 2 5 1.0 2 5 10.0 
Expected Bhattacharvva's Distance 

Frg. 5. Upper Bounds on the Mean Probility of Misrecognition as a 

Function of the Expected Bhattacharyya's Distance 

J＝2∫

J：∫
E
D
　
　
　
1
↓
　
　
E
O

．Σ．＝4∫Σ：3∫

Σ：一1

2

5 . DISCUSSION 

As is evident from TABLE 11 and Fig. 3, although the expected divergence 

and Bhattacharyya's distance for all eight features is constant regardl,ess of 

three ordered conditions, the first several measurements can be very effective 

in leading to correct recognitions when the measurements are ordered following 

the criterion of maximizing the expected value. That is, for example, the 

probability of misrecognition corresponding with the expected divergence using 

effective four features was O . 034, whereas the probability of misrecognition 

using six features according to natul^al orde/~ was O . 036, and the probability 

of misrecognition using ineffective seven features was O . 029 (Table II]. 

However, care must be taken that the probability of misrecognition defined 

by the equation (ll) is given in the particular case of P((D,.) P:cDj) - ~ and 

the cost of misrecognition. being equal. Fu, Min, and Lin) have suggested that 

in a multiclass pattern recognition problem, the performance of classification 

can be expressed in terms of a weighted sum of all pairvvise probability of 

nusrecogmtion, 1. e., 

l ~~ e ~ ~ P.(i,j), i ~J 17~(17Z l) i=1j=1 
(24) 
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In order to Ininimizing this probability measure e, the criterion of maximizing 

the minirnum divergence would be adopted rather than the criterion of max-

imizing the expected value. For example, when covariance matrix ~ 21, 

the probability of misrecognition correspondinga with the expected divergence 

using only feature t5 or only feature t3 (or tl) was O . 239 or O . 264, respectively, 

whereas, contorary above results, the weighted sum of all pairwise probability 

of misrecognition using only feature t5 or only feature t3 (or t4) was O . 265 or 

0.231, respectively. 

In a multiclass pattern recognition problem, whether th~ criterion of maxim-

izing the minimum divergence must be adopted or the criterion of maximizing 

the expected divergence must be adopted can not be known untill further 

study is done. 
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