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SEQUENTIAL PATTERN RECOGNITION SYSTEMS L

ON THE DIVERGENCE AND CHERNOFF’S DISTANCE
FOR THE FEATURE SELECTION AND ORDERING

Minoru YABUUCHI*

Abstract : In sequential pattern recognition systems, the selection and ordering
of effective features from a given set of feature measurements is an important
problem. The purpose of this paper is to discuss the efficiency of the
divergence and Chernoff’s distance (particularly, Bhattacharyya’s distance) as a
criterion of feature selection and ordering. After these probabilistic measures
were reviewed, a very simple multiclass pattern recognition was simulated as
an example of the application of these. In this situation, to maximize the
expected divergence and the expected Bhattacharyya’s distance was adopted as
a criterion of feature selection and ordering. The relations of these measures
to the number of features and to the mean probability of misrecognition were

obtained.

1. INTRODUCTION

The class of pattern recognition systems to be considered in this paper, the
so-called statistical pattern recognition systems, is characterized as follows: 1)
information about the patterns is stored in the form of feature measurements
and 2) the system’s decision is based on the methods of statistical decision
theory.® & ? 1In the statistical recognition systems which a number of studies
had been performed, all the feature measurements were processed by the
systems at one stage. This procedure is also called as fixed-sample size
decision procedure.

In this procedure, the cost of feature measurements has not been taken into
consideration® : 1) if the number of feature measurements is insufficient, it
will not be able to give satisfactory results in correct classification and 2) on
the other hand, an arbitorarily large number of features to be measured is

impractical.
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Hence, recent studies in the design of pattern recognition systems have
applied sequential decision procedures to this class of recognition problems to
minimize misrecognition and average number of feature measurements.

In sequential pattern recognition systems, the selection and ordering of
effective features from a given set of feature measurements is an important
problem. Unfortunately, it is often difficult to obtain an analytical expression
for the probability of misrecognition and even if one can be obtained it will
usually be complicated to permit numerical computation.”

Hence, certain probabilistic distance measures, such as divergence and Chernoff’s
distance, which are easy to evaluate, are used for the selection of effective
feature measurements.

The purpose of this series is to apply the divergence and Chernoff’s distance
to hand-drawn simple geometrical figures, and exdmine the funétional relations
between these and the number of featune measurements and the probability

of misrecognition.

2. STATISTICAL PATTERN RECOGNITION SYSTEMS

Statistical pattern recognition systems consist of two parts®: a feature
extractor, which generaies a set of feature measurements of the input sample
to be recognized, and a classifier, which performs the function of classification.

A simplified block diagram of a pattern recognition system is shown in Fig. 1.

I
input Feature —
x .o . .
? ? — 5| Classifier —> Decision
patterns Extractor .
Zp o
—
Measurements

Fig. 1. A Pattern Recognition System

The feature extractor generates p feature measurements, xy,..., &, of each

input sample. We will write these as a column vector

2y

Zp
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This quantity is the input to the classifier ; it is the argument of the discriminant
function D(x). The discriminant function D, x) associated with pattern class
wj, j=1,..., m, is such that if the input pattern represented by the feature
vector X is in class w;, denoted as X~ w;, the value of D;(x) must be the
largest. That is, for all X~ w;,

D;(x) > Dy(x), i,j=1,...,m, i+j €))

For the case that the multivariate probability density function of the feature
vector x, P(x|w,),i=1,..., m, is a multivariate normal density function, the
computational algorithm of these processings has been shown by the author,®

for example.

3. THE DIVERGENCE and CHERNOFF'S DISTANCE

3. 1. The Divergence

divergence and norinal variables with unequal covariance mmatrices Assume
that we are dealing with a feature extractor which for any w;, maps inputs
of pattern class w; into the multivariate normal density with mean g and
covariance matrix 2;. Thus, when the input is from pattern class w;, the

measurement vector X has density,
P(xlw) = @m)™"| 2|7 exp {— % (x—p) 27 (x—p.)'} @)

where X;'is the matrix inverse of %;, and (x—g,)" is the transpose of the
column vector (x—g).

Then, the likelihood function #; is expressed as

_ Plxlw) 1, %]
uij—log P(xle> _210g|27,|

— % tr I7 (e —p)(x— ) + & tr 27— ) (e — ) )

where tr A is the trace of matrix A.
On the assumption that the input is from pattern class w;, the expected
value of u;” S


sokyu
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Elus|d = [Pxl00) log pe|24- dx

2
log {5+ 4 tr (T~ 57

o=

+
o

tr 27 (pe — ) (gt — 2" 4,
Whereas, if the input is from pattern class w,, the corresponding value is

P(x|w)

Eluy]1) = | P(x]0,) log By o)

dx

= % log ||§’|I +tr I3 -3

— & tr 7 — ) (e — ) (5)
Then, the divergence J(w;, w;) between the classes w; and w; is defined as

_P(x|w)
“P(x|w;)

T, 0) = | [P(x]0)— P(x]0)] log dx

= % tr (&, 227 -3
+ & tr (77— ) (e — ) (6)

Certain properties of divergence may be noted.”

1°) J(w;, ;) =0

2°) J(wi, w) =0 & P(x|w;) = P(x|w),)

3%) S, ) = J(w;, )

4°) If the features, ¢,..., t,, have statistically independent outputs, then,
J(wi, wjlt1,.e., ) =’;Z)1} J (Wi, w;] )

5°) Adding new features to a set of features never decreases the divergence
ri.e.,

‘](a)ia a)j]tho LICE] tp) <J(w£’ wj]th' ° o9 tp: t]J-H)

divergence and normal variables with equal covariance matrixz —— Consider
now the divergence in the case of normal variables with equal covariance
matrix, i.e., 2, =2,i=1,..., m.

In this case, we obtain the likelihood function
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wy = — % tr J(x—p)(x— )"+ F tr T (0 — pe ) (x— pe)!
=tr I (e —p)) X' — % tr I (g + pe) (e — g2’ (6)

the expected value of #,, when input is from pattern class w,

Eluy|i] =% tr 377 (pa— pe)(pts— pe)' %,
and, the expected value of u;, when input is from pattern class w;

Eluyljl = — % tr 27(pes— ) (pe — p2.)' 8
Substracting (7) from (8), the divergence is given by

J(wi, ;) = tr Z7 (e — o) (gt — o)’ ©

It is noted if ¥'=
I, the identity matrix, then J(w;, ®,) represents the squared distance between

the probability of misrecognition and the divergence

2 and g;. If a fixed sample size or nonsequential Bayes decision rule is used

for the classifier, then for P(w;) = P(w;) = % (see for example®),

X ~ W, if uij>0’
X~ @y, if u; <0 10)

The probability of misrecognition is
P, j) = % P(uy > 0lw)+ % Pu; < 0lw,)

It is readily shown that in this case the error probabiliy is given by the

following quantity”

P, j) =S @0)7" exp {— % %} dy (11)

where J = J(w;, w;).

Hence, the probability of misrecognition P,(z, j) is a monotonically decreasing
function of J(w;, w;). Therefore, features selected and ordered according to
the magnitude of J(w;, w,) will imply their corresponding discriminatory power
between ; and w;.”

For the case of normal variables with unequal covarince matrices there is

no simple function that relates divergence to the probability of misrecognition.
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Marill and Green® have shown upper and lower bounds on probability of
correct recognition as a function of divergence for normal variables with
unequal covariance matrices, with the aid of a Monte-Carlo type computer

program.

the expected divergence between any pair of pattern classes For more
than two pattern classes, the criterion of maximizing the minimum divergence
or the expected divergence between any pair of pattern classes has been
proposed for signal detection” and pattern recognition. The expected divergence

between any pair of pattern classes is given

J) = 5 5 P@) P@) Jo,0) (12)
Let

&t =Min J(0, 0), i%j (13)
then

J@) > & {1- 3 P@)r} a
Hence

& < ) (15)

1— Z;n:l [P(CUJ‘)]Z

The tightest upper bound of d* must occur when 1,—£:][P(a)j)]2 is a maxi-

mum. This maximum is 1 — (1/m) which yields

= J(w)

T om—1

(16)

3. 2. Chernoff’s Distance

In the case of normal variables with equal covariance matrix 2, if the
features have statistically independent and X = o* I, the divergence (9) is

transformed as follows :

T ) = A (17)
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where |[ge;— gl is the norm of g, —ge;.

Then, adding the above result to properties of the divergence 1), 2), and 3),
the divergence satisfies the requirement called metric axiom.®

On the other hand, when we deal with a feature extractor, which, for any
Wi, maps inputs of pattern class ; into any multivariate distribution other
than normal density, the divergence does not necessarily satisfy the requirement
of metric axiom, and it is difficult that the probability of misrecognition is
expressed by the divergence in that case.

Then, in order to overcome this difficulty, we may introduce Chernoff’s
distance defined by the following equation,

Cher (01, ;3 ) = — log [P(x;wi)ﬂ P(xlw)—dx, 0<A<1 (18)

We may also write the distance,

Cher (wi, w; 3 M) = — log E {(%gigﬁ_ Z

wj}, 0<A<1 (19)

In the same manner as the

certain properties of Chernoff’s distance

divergence, certain properties of Chernoff’s distance may be noted,'®

1°) vO<<A<1: Cher (ws, w;32) =0
2°) VO A <1 : Cher (w;, w;; A) =0 Plx|w,) = P(x|w,)
3 VO A<, A3Y% 2 Cher (wi, w; ; A) =% Cher (w;, w; 3 A)
4°) If the featu£es Ly uuor by ha{ré statistically independent outputs, then
 VO<AL Lt Cher oy Al ty) = 3 Cher (w4, 0,3 10 2)
5°) Adding new features to a set of features never decreases distance
V 0 A< : Cher (Wi, ;3 A tiye vy ty)
< Cher (Wi, 55 Ay biye v oy byy bpir)

Particularly, when A =14, Chernoff’s distanee is called Bhattacharyya’'s
distance.

Chernoff’s distance and normal variables with unequal covarisnce matrices——
In the case of normal variables with unequal covariance matrices, Chernoff’s

distance is expressed as
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Cher (Wi, w; 3 A) = FAA—=2) (s— ) {1 =) Ti+ 22337 (e —pey)

1-2) SiHEJL_)
[ 2 | 2]

+ 4 log (14 (20)

Chernof’s distance and normal varidbles with egqual covariance matrix

In the case of normal variables with eqal covariance matrix, equation (20) can
be written as

Cher (Wi, w; 5 A) = EAA—=2) (et — )" T~ (pts— p,) (21)

the probability misrecognition and Chernoff’s distance The mean proba-

bility of misrecognition obtained with aid of Bayes’ decision rule is

P,< 5. P(w) P(w) SP@ lw)™ P(xlw) ™ dx,

l<i<j<m

Li=1...,m 0<a;<<1l (22)
Then, from (18), (22), the mean probability of misrecognition is given by

P, < P(w,)" Plw;"*exp {—Cher (w:;, w;; 1)}, 0<<A<<1 (23)

4. A NUMERICAL EXAMPLES

As an example of the application of the divergence or Chernoff’s distance
as a criterion of the feature selection and ordering, a very simple multiclass

pattern recognition situation was simulated.
4. 1. Tentative Experimental Sitnation
Let’s imagine the experimental situation asking subjects to draw three kinds

of figures (let w., ws and w, denote three figure classes). These figures may
have been as is seen in Fig. 2.
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X Xy Y7o o X X, Xy %,
5.0 5.0 420 3.0
5.0 .
3.0 8.0 8/0
4 9.0 ’
. . 3. 3.0
2 5.0 5.0 1, gl 8.0 S S .
8.0
7.0 5.0 e
5.0 8.0 '
5.0 5.0 6.0 / 3.0
¥ % EP EN T ¥ X, s
(a) Pattern Class w, (b) Pattern Class wy (¢ ) Pattern Class w

Fig. 2. Tentative Pattern Samples and their Feature Measurements

Assume that eight features, #, &,...,% were selected for hand-drawn figures
and the distance from the square to the edge of each figure (Fig. 2, see also
e. g.,2*") was measured and the mean vectors estimated were given in TABLE
I. Again, assume that the features measurements are statistically independent
and the covariance matrices of these classes are the same, ¥, = ¥, i = A4, B, C.

TABLE I
MEeAN MEASUREMENT VECTORS BASED EIGHT TESTS

uth=05.0 50 50 50 50 50 50 5.0
45 =090 80 7.0 6.0 5.0 4.0 3.0 2.0]
U, =108.0 3.0 80 3.0 80 3.0 80 3.0J

That is, in the case of normal variables with mean vectors in TABLE I and
equal covariance matrix 2 = ¢ I, it is the purpose of this section to examine
the efficiency of the divergence and Chernoff’s distance (Bhattacharyya’s
distance) as a criterion of feature selection and ordering, and the relation of
these to the mean probability of misrecognition.

4. 2. The Expected Divergeuce and the Probability of Misrecognition

In the case of ¥ = 2I, first, the expected divergence (12) between any pair
of classes for eight individual tests were calculated (see TABLE II). Next,
when (1) the successive features were unordered (i. e; following the natural
order #, &,..., %), or (2) ordered (i. e; following the criterion of maximizing
the expected divergence) or (3) insuccessive features were ordered (i.e; by
minimizing the expected divergence), the expzacted divergence versus the number
of features was obtained (see TABLE II). The probability of misrecognition
corresponding with each expected divergence was obtained by (11). This
probability is given in the right side of TABLE IL
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TABELE II

THE ExPECTED DIVERGENCE AND THE PROBABILITY OF MISRECOGNITION
FOR VARIOUS SETS OF TEsTS: ¥ = 27T

The Expected Divergence

The Probability of

Misrecognition®
Individual Tests J(w | #, ) = 2.89 .198
J| ) = 4.22 .152
J( | L3, ) = 1.56 .264
J(w | ta, ) = 1.56 .264
J(w | ts, ) = 2.00 .239
J(w | L6, ) = 0.67 .341
J(w | L7, ) = 4.22 .152
J(w | ts ) = 1.56 .264
Natural Order J(w | #, ) = 2.89 .198
Subsets J | t, t ) = 7.11 .090
J(o | ty, ts, ts, ) = 8.67 .071
J(w | b, b, t3, by ) =10.22 .055
J(o | ti, ts, ts, by, 5, ) =12.22 .040
J(w | 1y, to, ts, ty, ts, L, ) =12.89 .036
J(w | t1, Lo, ta, s, b, e, to, ) =17.11 .019
Effective Order J(w | to, ‘ ) = 4.22 152
Subsets (or J(w | tr, ) = 4.22) (.152)
J(w | L2, iz, ) = 8.4 .072
J(w | 1, to Ly, ) =11.33 .047
J(w | ty, s, s, g ) =13.33 .034
Jw | t, &, ts, ts, iy, ) =14.89 .027
(or J(w | ty, to, by 5, tr, ) =14.89) (.027)
(or J(w | 4, tay i, ity ) =14.89) (.027)
J(| by, ty, 3, by &5, In, ) =16.44 .021
(or J(w | t1, Lo, 23, 5, Ir, tg ) =16.44) (.02D
(or J(w | t1, to,  tiyts,  to, Ig ) =16.44) (.021)
J(w | ty, &, tg, By, ks, B, B ) =18.00 .017
Ineffective J(w i te, ) = 0.67 341
Qrder J(w | t, s ) = 2.22 227
(or J(w | Ly, g ) = 2.22) (.227)
(or J(w | ta, tg, ) = 2.22) - (.227)
J(| ty L, ts ) = 3.78 .166
(or J(w | i3, te, tg ) = 3.78) (.166)
(or J(w | i3, By, Egs ) = 3.78) (.166)
J(w | ts, tiy  le, 23 ) = 5.33 123
J(w | i3, ty, 5, tgy I ) = 17.33 .087



Minoru YABUUCHI 19

J(w ]| t, L3, 4, s, Lg, ig ) =10.22 .055

J((U ] tl’ t3: t4’ t59 tﬁ’ t7, tS ) =14.44 .029

(or J(w | ty, to, Ly, by, B5, tsy  1g ) =14.44) (.029)

All TEStS J(a) I zl, t2> t3’ t4’ t5’ t6’ t7, tS ) :18'66 ~015

e ( {

—14 ,___]-_ )2 d
‘47(27[) % exp |~y dy

#Pe(i, j) = |

&

In the same manner, Fig. 3 shows the expected divergence and the expected
Bhattacharyya’s distance versus the number of feature measurements for each
ordered condition when covariance matrix ¥ = 1.

For the successive order subsets, the expected divergence and the expected
Bhattacharyya’s distance versus the number of features, when covariance matrix

2 =01, 0" =1%%,1, 2,3 and 4 respectively, is shown in Fig. 4.

~. 5.0, 40 3: - 7 0 @:
= ~——Effectve Order Subsets \3/ ﬁ; 5.0 // §;
3 +~— Natural Order Subsets 2 ) . =
3 *Ineffective Order Subsets” - k) § / / / =
Y s 2 Y a
5 40 / 32 g = 4.0 32 —
= , Ay 3 3
g8 / / 212 5 5
5% /// / e g 1L
28 / TR i s S0
& 230 y / L z 230 24 )"
@ 1T Y, / © =R 5
£l ] PR 2
g Wl ’ / 5 2=l >
< A i B 2o ]
S 5 2.0 / 16 = 23 20 6 5
= = = B &
5 '\E / "5.:) ] ,_: E
5 A B m M A
Y / o -
k] = 9 <
2 L0 g 8 = 2 10 s £
0 1 2 3 4 5 6 7 8 0 N R S -y B
Number of Observation Number of Observition

Fig. 3. The Expected Divergence and the Fig. 4. The Expected Divergence and the

Expected Bhattacharyya’s Distance versus Expected Bhattacharyya’s Distance versus
the Number of Feature Measurements for the Number of Feature Measure ments
Each Ordered Condition (when 3 =1) when Covariance Matrix J = ¢2]

As we described, the relation between the mean probability of misrecognition
and the expected Bhattacharyya's distance Bhat (w) was given by (23). Fig. 5
shows upper bounds on the mean probability of misrecognition as a function

of the expected Bhattacharyya’s distance when covariance matrices are varied

141, I, 21, 3I, and 4I, respectively.
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Fig. 5. Upper Bounds on the Mean Probility of Misrecognition as a
Function of the Expected Bhattacharyya's Distance

5. DISCUSSION

As is evident from TABLE II and Fig. 3, although the expected divergence
and Bhattacharyya’s distance for all eight features is constant regardless of
three ordered conditions, the first several measurements can be very effective
in leading to correct recognitions when the measurements are ordered following
the criterion of maximizing the expzcted value. That is, for example, the
probability of misrecognition corresponding with the expected divergence using
effective four features was 0.034, whereas the probability of misrecognition
using six features according to natural order was 0,036, and the probability
of misrecognition using ineffective seven features was 0.029 (Table II\.

However, care must be taken that the probability of misrecognition defined
by the equation (11) is given in the particular case of P(w,) = Pw;) =% and
the cost of misrecognition being equal. Fu, Min, and Li'® have suggested that
in a multiclass pattern recognition problem, the performance of classification

can be expressed in terms of a weighted sum of all pairwise probability of
misrecognition, i. e.,

=—771<mlf1)§;:1’e(i,j), ij (24)
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In order to minimizing this probability measure e, the criterion of maximizing
the minimum divergence would be adopted rather than the criterion of max-
imizing the expected value. For example, when covariance matrix 3 = 21,
the probability of misrecognition corresponding with the expected divergence
using only feature # or only feature ¢ (or z,) was 0.239 or 0.264, respectively,
whereas, contorary above results, the weighted sum of all pairwise probability
of misrecognition using only feature #; or only feature # (or ;) was 0.265 or
0.231, respectively.

In a multiclass pattern recognition problem, whether the criterion of maxim-
izing the minimum divergence must be adopted or the criterion of maximizing
the expected divergence must be adopted can not be known untill further

study is done.
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