A NOTE ON SOME WEAKLY MODULAR SEMIMODULATED LATTICES

by

Shigeru FUJIWARA*

Introduction

D. Sachs [4] has introduced the notion of a modulated lattice which has enough modular elements and given a characterization of partition lattices. In the previous paper [1], we showed that in some non-atomic modulated lattices, modular elements play a role instead of points.

In the present paper, we introduce the notion of a semimodulated lattice (Definition (3.7)) and give a characterization of some semimodulated Wilcox lattice (Theorem (3.10)). And moreover we show that some modulated lattice L and \mathfrak{M} which is the set of all modular elements in L have analogous properties (Theorem (4.7)). By the above considerations, it seems that in some non-modular semimodulated lattice L, \mathfrak{M} plays a role in the same way as a Wilcox lattice $L \equiv \Lambda - S$ does in Λ and that we obtain a generalization of modulated lattices.

§ 1. Preliminary statements.

In this section, we give some known definitions and lemmas which will be used without explicit mention throughout of this paper.

DEFINITION (1. 1). In a lattice L, (a, b)M means $(c \lor a) \land b = c \lor (a \land b)$ for every $c \leq b$ and $(a, b)M^*$ means $(c \land a) \lor b = c \land (a \lor b)$ for every $c \geq b$. A lattice L is called an *M*-symmetric lattice when (a, b)M implies (b, a)M. And a lattice L is called a *weakly modular* lattice when $a \land b \neq 0$ implies (a, b)M. Sometimes an M-symmetric lattice is called a semi-modular lattice. (Cf. [2], [4].)

DEFINITION (1.2). Let L be a lattice with 0. When a covers b, we write $a \ge b$. An element $p \in L$ is called an *atom* or a *point* when $p \ge 0$. An

^{*} Laboratory of Mathematics, Faculty of Education, Shimane University, Matsue, Japan.

element a is called a *modular* element when (x, a)M for every $x \in L$. The elements 0, 1 and every points, if they exist, are modular elements. The set of all modular elements of L is denoted by \mathfrak{M} .

LEMMA (1.3). Let a, b and c be elements of a lattice L. If (a, b)M and $(a \land b, c)M$, then $(a, b \land c)M$.

PROOF. Cf. [3] p. 2.

LEMMA (1.4). Let a and b be modular elements of a lattice L, then $a \wedge b$ is a modular element of L.

PROOF. Cf. [4] p. 326.

LEMMA (1.5). Let a be an element of a lattice L. Then (a, x)M for every $x \in L$ if and only if $(a, x)M^*$ for every $x \in L$.

PROOF. Cf. [3] p. 1.

When a < b in a lattice L, then the interval $\{x \in L; a \leq x \leq b\}$ is denoted by L[a, b].

LEMMA (1.6). If L is an M-symmetric lattice, $a \in \mathfrak{M}$ and $b \in L$, then the sublattices $L[a \land b, a]$ and $L[b, a \land b]$ are isomorphic by the following mutually inverse mappings: $x \rightarrow x \lor b$ and $y \rightarrow y \land a$.

PROOF. Cf. [3] p. 2.

DEFINITION (1.7). A lattice L is called a relatively complemented lattice when $a \leq x \leq b$ implies the existence y such that $x \vee y = b$, $x \wedge y = a$. Let L be a lattice with 0, then L is called a *left complemented* lattice when a, $b \in L$ implies the existence of b_1 such that $a \vee b_1 = a \vee b$, $b_1 \wedge a = 0$, $b_1 \leq b$ and $(b_1, a)M$. (Cf. [6] p. 453.)

LEMMA (1.8). A left complemented lattice is a relatively complemented M-symmetric lattice.

PROOF. Cf. [6] p. 454 and [3] p. 12.

DEFINITION (1.9). Let $\{a_{\delta}; \delta \in D\}$ be an increasingly directed set of a complete lattice L. When $\bigvee (a_{\delta}; \delta \in D) = a$ implies $\bigvee (a_{\delta} \wedge b; \delta \in D) = a \wedge b$, L is called an *upper continuous* lattice.

LEMMA (1.10). Let $\{m_{\delta}; \delta \in D\}$ be an increasingly directed set of modular elements of an M-symmetric upper continuous lattice L, then $\bigvee (m_{\delta}; \delta \in D) = m$ is a modular element.

PROOF. Cf. [4] p. 332.

$\S 2$. Modular elements of some weakly modular lattices.

DEFINITION. (2.1). Let L be a lattice with partially ordered by a relation $a \leq b$ and having the operations $a \vee b$, $a \wedge b$. Let \mathfrak{M} be the set of all modular elements of L. If \mathfrak{M} is a lattice with partially ordered $a \leq b$, then it is a lattice with operations $a \cup b$, $a \cap b$ such that $a \cup b \geq a \vee b$, $a \cap b = a \vee q^*$. And the dual of \mathfrak{M} is denoted by $\overline{\mathfrak{M}}$.

LEMMA (2.2). Let L be a lattice and \mathfrak{M} be the set of all modular elements of L. If \mathfrak{M} is a lattice and $a, b \in \mathfrak{M}$ implies $(a, b)M^*$ in \mathfrak{M} .

PROOF. Suppose $a, b \in \mathfrak{M}$ and $a \lor b \in \mathfrak{M}$, then $a \cup b = a \lor b$. Let $c \geq b$ and $c \in \mathfrak{M}$, then $c \cap (a \cup b) = c \land (a \lor b) = (c \land a) \lor b \leq (c \cap a) \cup b$. The reverse inequality is obvious, and so $c \cap (a \cup b) = (c \cap a) \cup b$. Hence $(a, b)M^*$ in \mathfrak{M} .

DEFINITION (2.3). Let L be a lattice with 0. L is called *semicomplemented* when for any element $a \in L$ (with $a \neq 1$ if 1 exists) there exists a non-zero element $b \in L$ such that $a \wedge b = 0$. (Cf. [3] p. 20.)

LEMMA (2.4). Let L be a weakly modular semicomplemented M-symmetric lattice. Then $a \in \mathfrak{M}$ and $a \neq 1$ imply $L[0, a] \subset \mathfrak{M}$.

PROOF. Let $a \in \mathfrak{M}$ and $a \neq 1$. Since L is semicomplemented, there exists a non-zero element $b \in L$ such that $a \wedge b = 0$. Since L is M-symmetric, the intervals L[0, a] and $L[b, a \vee b]$ are isomorphic by (1.6). Since $b \neq 0$ and Lis weakly modular, $L[b, a \vee b]$ is a modular lattice and hence L[0, a] is a modular lattice. Let $a_1 \in L[0, a]$ and $x \in L$, then (x, a)M and $(x \wedge a, a_1)M$ in L. By (1.3) $(x, a \wedge a_1)M$ and hence $(x, a_1)M$.

REMARK (2.5). By (2.4) in a weakly modular semicomplemented M-symmetric lattice, modular elements are modular in the sense of [2].

THEOREM (2.6). Let L be a semicomplemented M-symmetric lattice. If L is a weakly modular complete lattice, then $\overline{\mathfrak{M}}$ is a weakly modular complete lattice.

PROOF. We shall first show that if $a_{\alpha} \in \mathfrak{M}$ for every $\alpha \in I$, then the meet $a = \bigwedge (a_{\alpha}; \alpha \in I)$ in L belongs to \mathfrak{M} . This is evident when I is empty or when $a_{\alpha} = 1$ for every $\alpha \in I$. When $a_{\alpha} \neq 1$ for some $\alpha \in I$, it follows from (2.4) that $a = \bigwedge (a_{\alpha}; \alpha \in I)$ belongs to \mathfrak{M} . Hence a is the meet $\bigcap (a_{\alpha}; \alpha \in I)$ in \mathfrak{M} and hence \mathfrak{M} is complete and so is \mathfrak{M} . Next we shall show that \mathfrak{M} is weakly modular. Let $a, b \in \mathfrak{M}$ and $a \cap b \neq 0$ in \mathfrak{M} . If $a \lor b \notin \mathfrak{M}$, then by (2.4) $a \lor b \leq x < 1$ implies $x \notin \mathfrak{M}$. Hence $a \cup b = 1$ in \mathfrak{M} and hence $a \cap a$

b = 0 in \mathfrak{M} . This contradicts $a \cap b \neq 0$. Hence by $a \lor b \in \mathfrak{M}$ and (2.2), $(a, b)M^*$ in \mathfrak{M} and hence (a, b)M in \mathfrak{M} .

§ 3. Weakly modular semimodulated lattices.

DEFINITION (3.1). Let L be a lattice and \mathfrak{M} be the set of all modular elements of L. We introduce the following four conditions on L.

- (a) If $a \in \mathfrak{M}$, $b \in L-\mathfrak{M}$ and a < b, then there exists a non-zero $c \in \mathfrak{M}$ such that $b \wedge c = a$ and a < c < b.
- (β) If $a, b \in \mathfrak{M}$, $c \in L-\mathfrak{M}$ and a < c < b, then there exists $c' \in \mathfrak{M}$ such that $c \wedge c' = a$ and a < c' < b.
- (7) If $a, b \in \mathfrak{M}$, $c \in L-\mathfrak{M}$ and a < c < b, then there exists $c' \in \mathfrak{M}$ such that $c \lor c' = b$ and $c \land c' = a$.
- (d) In a lattice L with 1, if $a \in \mathfrak{M}$, $b \in L-\mathfrak{M}$ and a < b, then there exists $c \in \mathfrak{M}$ such that $b \lor c = 1$ and $b \land c = a$.

EXAMPLE. Let Λ be a relatively complemented modular lattice with 0 and the operations \bigvee , \wedge , of length ≥ 3 which contains a point p. We define

$$L \equiv \Lambda - \{p\}.$$

If L is partially ordered in the natural manner, then L is a weakly modular M-symmetric lattice with operations \cup , \cap which satisfies the following conditions :

$$a \cup b = a \lor b,$$

$$a \cap b = a \land b \text{ if } a \land b \neq p,$$

$$a \cap b = 0 \text{ if } a \land b = p.$$

And for $a, b \in L$

(a, b)M in L if and only if a = 1 or $a \ge p$.

It is easy to show that

- (1) L satisfies (α) and if L has no unit 1, then (β) and (γ) are trivial propositions, and
- (2) If L has unit 1, then it satisfies (δ). (Cf. [4] p. 327.)

LEMMA (3. 2). (i) In any lattice, $(\gamma) \Rightarrow (\beta)$. (ii) In any lattice with 1, $(\beta) \Rightarrow (\alpha)$ and $(\gamma) \Leftrightarrow (\delta)$.

PROOF. (i) It is evident. (ii) Let L be a lattice with 1. Since $1 \in \mathfrak{M}$,

 $(\beta) \Rightarrow (\alpha) \text{ and } (\gamma) \Rightarrow (\delta) \text{ are evident. } (\delta) \Rightarrow (\gamma).$ Let $a, b \in \mathfrak{M}, c \in L-\mathfrak{M}$ and a < c < b. By (δ) there exists $c' \in \mathfrak{M}$ such that $c \wedge c' = a$ and $c \vee c' = 1$. Let $d = c' \wedge b$, then $d \in \mathfrak{M}$ by (1.4) and $c \wedge d = c \wedge (c' \wedge b) = (c \wedge c') \wedge b = a \wedge b = a, c \vee d = c \vee (c' \wedge b) = (c \vee c') \wedge b = 1 \wedge b = b$.

LEMMA (3.3). Let L be a lattice with (β) and a, $b \in \mathfrak{M}$. Then a < b in \mathfrak{M} if and only if a < b in L.

PROOF. Let $a, b \in \mathfrak{M}$. Assume $a \leq b$ in \mathfrak{M} and there exists $x \in L - \mathfrak{M}$ such that $a \leq x \leq b$. By (β) there exists $x' \in \mathfrak{M}$ such that $a \leq x' \leq b$ which contradicts the hypothesis. Conversely if $a \leq b$ in L, then $a \leq b$ in \mathfrak{M} by $\mathfrak{M} \subset L$.

THEOREM (3.4). Let L be a lattice with (β) and \mathfrak{M} be a lattice, then $(a, b)M^*$ in \mathfrak{M} if and only if $a \lor b \in \mathfrak{M}$.

PROOF. Suppose $a, b \in \mathfrak{M}$ and $(a, b)M^*$ in \mathfrak{M} . If $a \lor b \notin \mathfrak{M}$, then $b < a \lor b < a \sqcup b$ in L. By (β) , there exists $c \in \mathfrak{M}$ such that $(a \lor b) \land c = b, b < c < a \sqcup b$. Then $c \cap a = c \land a = c \land ((b \lor a) \land a) = (c \land (b \lor a)) \land a = b \land a$, whence $(c \cap a) \sqcup b = (b \land a) \lor b = b < c = c \cap (a \sqcup b)$. Therefore $(a, b)\overline{M}^*$ (\overline{M}^* being the negation of the relation M^*). This contradicts $(a, b)M^*$ in \mathfrak{M} . Sufficiency follows from (2. 2).

COROLLARY (3.5). If L is a lattice with (β) and \mathfrak{M} is a lattice, then the following propositions hold.

- (i) \mathfrak{M} is an M-symmetric lattice.
- (ii) $\overline{\mathfrak{M}}$ is weakly modular if and only if $a, b \in \overline{\mathfrak{M}}$ and $a \wedge b \notin \overline{\mathfrak{M}}$ imply $a \cap b = 0$ in $\overline{\mathfrak{M}}$.

THEOREM (3. 6). Let L be a weakly modular semicomplemented M-symmetric lattice. If L is an upper continuous lattice, then (α) , (β) , (γ) and (δ) are equivalent.

PROOF. Let $a \in \mathfrak{M}$, $b \in L-\mathfrak{M}$ and a < b. Define $S = \{c \in \mathfrak{M} ; a < c \text{ and } b \land c = a\}$. By (α) $S \neq \phi$. Let X be a chain of S, then $c' = \bigvee (x; x \in X)$ is modular by (1.10) and a < c'. Since L is upper continuous and the set $\{x \land b; x \in X\}$ is an increasingly directed set, $\bigvee (x \land b; x \in X) = c' \land b$. Therefore $c' \land b = a$ since $x \land b = a$ for every $x \in X$ and hence $c' \in S$. According to Zorn's lemma there exists a maximal element $c_0 \in S$. If $c_0 \lor b \neq 1$, then $c_0 < c_0 \lor b < 1$. By (2.4) $b \lor c_0 \in L-\mathfrak{M}$ and by (α) there exists $c_1 \in \mathfrak{M}$ such that $(b \lor c_0) \land c_1 = c_0$ and $c_0 < c_1$. Then $b \land c_1 = b \land (b \lor c_0) \land c_1 = b \land c_0 = a$ and hence $c_1 \in S$ which contradicts the definition of c_0 . Therefore we have $b \lor c_0 = 1$ and hence $(\alpha) \Rightarrow (\delta)$. Consequently by (3.2) and $(\alpha) \Rightarrow (\delta)$, in a

weakly modular semicomplemented M-symmetric lattice, all four conditions (α) , (β) , (γ) and (δ) are equivalent, if it is an upper continuous lattice.

DEFINITION (3.7). Let L be an M-symmetric lattice with 1 and \mathfrak{M} . L is called a *semimodulated* lattice when it satisfies (δ) . (Cf. [1] p. 112.)

THEOREM Let Λ be a complemented modular lattice having the lattice operations $a \lor b, a \land b$. Let S be a fixed subset of $\Lambda - \{0, 1\}$ with the following two properties:

(1) $a \in S$ and $0 < b \leq a$ imply $b \in S$.

(2) $a, b \in S$ implies $a \lor b \in S$.

If in the set $L \equiv \Lambda - S$ we give the same order as Λ , then L is a weakly modular M-symmetric lattice where the lattice operations $a \cup b$ and $a \cap b$ satisfy the following conditions :

(3) $a \cup b = a \lor b$

 $a \cap b = a \wedge b$ if $a \wedge b \in L$

 $a \cap b = 0$ if $a \wedge b \in S$.

Moreover for $a, b \in L$

(4) (a, b)M if and only if $a \wedge b \in L$.

(5) $a \lt b$ in L if and only if $a \lt b$ in A.

PROOF. Cf. [5] pp. 497-498.

DEFINITION (3.8). When a weakly modular M-symmetric lattice L arises from a complemented modular lattice Λ in the manner describes the above theorem, L is called a *Wilcox* lattice. An element of S is called an *imagynary* element for L, and when S has a greatest element i it is called the *imagynary* unit for L. A non-zero element a of L is called a *regular* element when $a \wedge u = 0$ for all $u \in S$. (Cf. [3] pp. 12-14.)

LEMMA (3.9). Let $L \equiv A-S$ be a Wilcox lattice. Any regular element of L is modular and any modular element m of L with 0 < m < 1 is regular if L is semicomplemented.

PROOF. Cf. [3] p. 11.

THEOREM (3.10). Let $L \equiv A-S$ be a semicomplemented Wilcox lattice with imagynary unit i. L is semimodulated if and only if S is a set consisting of a point.

PROOF. Suppose $L \equiv A - S$ be a semimodulated lattice. Let a be a complement of $i \in S$, then $a \lor i = 1$, $a \land i = 0$ in A. Since i is the greatest element of S, $a \land u = 0$ for every $u \in S$ and hence a is a regular element. Then by (3.9) a is a modular element of L. Let b be a modular element of L such that $a \leq b < 1$. Then b is a regular element by (3.9). Hence $b \land i$

= 0. Let $\lambda \in \Lambda$ be a complement of a in $\Lambda[0, b]$, then $b = a \lor \lambda$, $a \land \lambda = 0$. Since L is a modular lattice, $\lambda \land a = 0$ and $(\lambda \lor a) \land i = 0$ implies $(a \lor i) \land \lambda = 0$. Since $a \lor i = 1$, $\lambda = 0$ and hence a = b. Thus $a \lt 1$ in \mathfrak{M} . By (3.3) $a \lt 1$ in L and hence $a \lt 1$ in Λ . Therefore $i \ge 0$ in Λ and hence i is a point of Λ . Sufficiency is evident.** (Cf. [4] p. 327.)

§4. Modulated lattices.

DEFINITION (4.1). Let L be a lattice with \mathfrak{M} . We introduce the following three conditions:

 (α^*) If $a \in \mathfrak{M}$, $b \in L$ (with $b \neq 1$ if 1 exists) and $a \leq b$, then there exists a non-zero $c \in \mathfrak{M}$ such that $b \wedge c = a$ and a < c.

 (γ^*) If $a, b \in \mathfrak{M}$, $c \in L$ and a < c < b, then there exists $c' \in \mathfrak{M}$ such that $c \lor c' = b$ and $c \land c' = a$.

 (δ^*) In a lattice L with 1, if $a \in \mathfrak{M}$, $b \in L$ and $a \leq b$, then there exists $c \in \mathfrak{M}$ such that $b \lor c = 1$ and $b \land c = a$.

REMARK (4. 2). If a lattice with 0 satisfies (α^*) , then it is semicomplemented and if a lattice with 0, 1 satisfies (δ^*) , then it is a complemented lattice. In the example in § 3, it is easy to show that if every intervalsublattice of Λ is irreducible, then L satisfies (α^*) and moreover if L has 1, then it satisfies (δ^*) . LEMMA (4. 3). (i) In any lattice with 1, $(\gamma^*) \Rightarrow (\alpha^*)$ and $(\gamma^*) \Leftrightarrow (\delta^*)$.

(ii) In an M symmetric upper continuous lattice, $(\alpha^*) \Rightarrow (\delta^*)$. And therefore the three conditions (α^*) , (γ^*) and (δ^*) are equivalent.

PROOF. (i) $(\gamma^*) \Rightarrow (\alpha^*)$ and $(\gamma^*) \Rightarrow (\delta^*)$ are evident since $1 \in \mathfrak{M}$. $(\delta^*) \Rightarrow (\gamma^*)$. It is similar to the proof of $(\delta) \Rightarrow (\gamma)$ in (3. 2). (ii) It is similar to the proof of (3. 6).

DEFINITION (4.4). An M-symmetric lattice L with 0 and 1 is called a *modulated* lattice when it satisfies (δ^*). (Cf. [4] p. 326.)

REMARK (4.5). A modulated lattice L is a complemented semimodulated lattice.

LEMMA (4.6). If L is a semimodulated lattice and \mathfrak{M} is a lattice, then the following conditions are equivalent.

(i) L is modulated.

(ii) $\overline{\mathfrak{M}}$ is relatively complemented.

(iii) \mathfrak{M} is left complemented.

PROOF. (i) \Rightarrow (ii). This follows from (4.3)(i) and (γ^*). (ii) \Rightarrow (iii). Let $a, b \in \mathfrak{M}$,

^{**} This proof is indebted to Dr. S. Maeda for help.

then $a \vee b \ge b$ in L. Since L satisfies (δ) and \mathfrak{M} is relatively complemented, it is easy to show that there exists $b' \in \mathfrak{M}$ such that $(a \vee b) \vee b' = 1$ and $(a \vee b) \wedge b') = b$. Hence $b' \ge b$ and $a \cap b' = a \wedge b' = a \wedge (a \vee b) \wedge b' =$ $a \wedge b = a \cap b, a \cup b' \ge a \vee b' = a \vee b \vee b' = 1$. Hence $a \cup b' = a \vee b' = 1$ and hence $(a, b)M^*$ in \mathfrak{M} by (2. 2). Consequentry $\overline{\mathfrak{M}}$ is left complemented.

(iii) \Rightarrow (i). Since L is semimodulated, it is sufficient to show that if $a, b \in \mathfrak{M}$ and $a \leq b$, then there exists $c \in \mathfrak{M}$ such that $b \lor c = 1$ and $b \land c = a$. Assume that $\overline{\mathfrak{M}}$ is left complemented and $a, b \in \mathfrak{M}$ and $a \leq b$ in L. Since $\overline{\mathfrak{M}}$ is left complemented, there exists $c \in \mathfrak{M}$ such that $b \cap c = a, b \cup c = 1$ and $(b, c) \mathfrak{M}^*$ in \mathfrak{M} . By (3.4) $b \lor c = b \cup c = 1$ and $b \land c = b \cap c = a$.

THEOREM (4.7). Let L be a weakly modular modulated lattice. L is complete if and only if \mathfrak{M} is complete.

PROOF. (I) If L is complete, then so is \mathfrak{M} by (2.6). (II) Assume that \mathfrak{M} is complete. (i) Let $m_{\alpha} \in \mathfrak{M}$ for every $\alpha \in I$. It is easy to show that the meet $\cap (m_{\alpha}; \alpha \in I)$ in \mathfrak{M} is the meet $\wedge (m_{\alpha}; \alpha \in I)$ in L. (ii) Let $u_{\alpha} \in L - \mathfrak{M}$ for every $\alpha \in I$. When $\{u_{\alpha}\}$ has no lower bound except 0, we have $\wedge_{\alpha} u_{\alpha} = 0$ in L. When $\{u_{\alpha}\}$ has lower bound h with h > 0, we can take $m \in \mathfrak{M}$ such that $h \vee m = 1$ and $h \wedge m = 0$ in L since L is modulated. $u_{\alpha} \wedge m \in \mathfrak{M}$ for every $\alpha \in I$ by (2.4) and hence there exists a meet $b = \cap (u_{\alpha} \wedge m; \alpha \in I)$ in \mathfrak{M} . By (1.5) $(m, x)M^*$ for every $x \in L$ whence $(u_{\alpha} \wedge m) \vee h = u_{\alpha} \wedge (m \vee h) = u_{\alpha}$ and hence $u_{\alpha} \geq b \vee h$ for every $\alpha \in I$. Therefore $b \vee h$ is an lower bound of $\{u_{\alpha}\}$ in L. If \overline{h} is an arbitrary lower bound of $\{u_{\alpha}\}$ in L, then putting c = $(\overline{h} \vee h) \wedge m$, we have $c \in \mathfrak{M}$ and $c \leq u_{\alpha} \wedge m$ for every $\alpha \in I$, whence $b \geq c$. By (1.5) $(m, x)M^*$ for every $x \in L$ whence

 $b \lor h \ge c \lor h = ((\bar{h} \lor h) \land m)) \lor h = (\bar{h} \lor h) \land (m \lor h) = \bar{h} \lor h \ge \bar{h}$. Therefore $b \lor h$ is the meet $\land (u_{\alpha}; \alpha \in I)$ in L. (iii) By (i) and (ii), it is easy to show that any subset of L has its meet in L. Hence L is complete. (Cf. [3] p. 93.)

References

- [1] S. Fujiwara, A note on some modulated lattices, J. Fac. Educ., Tottori Univ. (Nat. Sci.), 21-2(1970), 111-116.
- M. D. Maclaren, Nearly modular orthocomplemented lattices, Trans. Amer. Math. Soc., 114 (1965), 401-416.
- [3] F. Maeda and S. Maeda, Theory of symmetric lattices, Berlin: Springer-Verlag, 1970.
- [4] D. Sachs, Partition and modulated lattices, Pacific J. Math., 11(1961), 325-345.
- [5] L. R. Wilcox, Modularity in the theory of lattices, Ann. of Math., 40(1939), 490-505.
- [6] ____, A note on complementation in lattices, Bull. Amer. Math. Soc., 48(1942), 453-458.