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A NOTE ON SOME WEAKLY MODULAR
SEMIMODULATED LATTICES

by

Shigeru FUJIWARA*

Introduction

D. Sachs [4] has introduced the notion of a modulated lattice which has
enough modular elements and given a characterization of partition lattices. In
the previous paper [1], we showed that in some non-atomic modulated lattices,
modular elements play a role instead of points.

In the present paper, we introduce the notion of a semimodulated lattice
(Definition (3. 7)) and give a characterization of some semimodulated Wilcox
lattice (Theorem (3. 10)). And moreover we show that some modulated lattice
L and M which is the set of all modular elements in L have analogous
properties (Theorem (4. 7)). By the above considerations, it seems that in
some non-modular semimodulated lattice L, M plays a role in the same way
as a Wilcox lattice L = /—S does in 4 and that we obtain a generalization

of modulated lattices.

§ 1. Preliminary statements,

In this section, we give some known definitions and lemmas which will be
used without explicit mention throughout of this paper.

DEFINITION (1.1). In a lattice L, (a, ) M means (¢c\/a)/\b = ¢\/(a/\b)
for every ¢<b and (a, b)) M* means (c/\a)\/ b =c/\(a\/b) for every c=>b.
A lattice L is called an M-symmetric lattice when (a, b)) M implies (b, @) M. And
a lattice L is called a weakly modular lattice when a /\ b # 0 implies (a, &) M.
Sometimes an M-symmetric lattice is called a semi-modular lattice. (Cf. [2],

[41)

DEFINITION (1. 2). Let L be a lattice with 0. When a covers &, we write
a>b. An element p& L is called an atom or a point when p>0. An
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2 . ON SOME SEMIMODULATED LATTICES

element a is called a modular element when (z,a)M for every x& L. The
elements 0, 1 and every points, if they exist, are modular elements. The set
of all modular elements of L is denoted by X,

LEMMA (1. 3. Let a, b and ¢ be elements of a lattice L. If (a, b)]W and
(@a/\b, o) M, then (a,b )\ ¢

Proor. Cf. [3] p. 2.

LEMMA (1.4). Let a and b be modular elements of a lattice L, then a /\ b is
a modular element of L.

Proor. Cf. [4] p. 326.

LEMMA (1.5). Let a be an element of a lattice L. Then (a, x)M for every
xE L if and only if (a, x)M* for every x & L.

Proor. Cf. [3] p. 1.

When a < b in a lattice L, then the interval {x & L;a<x<b} is denoted
by Lla, b].

LEMMA (1. 6). If L is an M-symmetric lattice, a & WM and b& L, then the
sublattices Lla /\ b, a]l and L[b, a /\ b] are isomorphic by the following mutually
inverse mappings: x—>x\/ b and y—>y /\ a.

Proor. Cf. [3] p. 2.

DEFINITION (1. 7). A lattice L is called a relatively complemented lattice
when a < 2 < b implies the existence y such that z\/y=0b, z/\y = a. Let
L be a lattice with 0, then L is called a left complemented lattice when a,
b& L implies the existence of &, such that a\/ b, =a\/ b, b Na= 0, h<bh
and (b, a)M. (Cf. [6] p. 453.) A

LEMMA (1. 8). A left complemented lattice is a relatively complemented M-
symmetric lattice.

PROOF, Cf. [6] p. 454 and [3] p. 12.

DEFINITION (1.9). Let {a;; 0& D} be an increasingly directed set of a
complete lattice L. When \/ (a; ; 0 € D) = a implies \V(as/N\Nb; 0 ED)=a/\
b, L' is called an upper continuous lattice.

LEMMA (1.10). Let {m;; 0 & D} be an increasingly directed set of modulm
elements of an M-symmetric upper continuous lattice L, then \/ (m;; 0 & D) = m
is a modular element.

PrOOF. Cf. [4] p. 332.
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8§ 2. Modular elements of some weakly modular lattices.

DEFINITION. (2.1). Let L be a lattice with partially ordered by a relation
a<<b and having the operations a \/ b, a /\ b. Let M be the set of all modular
elements of L. If WM is a lattice with partially ordered a<b, then it is a
lattice with operations alUb, a1 b such that aUb=a\/ b, aNb=a\/ ¢
And the dual of M is denoted by M.

LEMMA (2. 2). Let L be a lattice and W be the set of all modular elements
of L. If WM is a lattice and a, b & W implies (a, b)M* in .

PROOF. Suppose a,6 =M and a\/ b E M, then alUb=a\/ b. Let c=b
and ¢cEM, then cN@Ub)=cAN@\VVbd)=cNa\Vb<Z(cMNalUb The
reverse inequality is obvious, and so ¢ (aUb) = (c(1a) Ub. Hence (a, b) M*
in M,

DEFINITION (2.3). Let L be a lattice with 0. L is called semicomplemented
when for any element a &L (with a # 1 if 1 exists) there exists a non-zero
element 6 & L such that a /\ & = 0. (Cf. [3] p. 20.)

LEMMA (2.4). Let L be a weakly modular semicomplemented M-symmetric
lattice. Then aEM and a + 1 imply L0, a] C WL,

PROOF. Let a&M and a # 1. Since L is semicomplemented, there exists
a non-zero element 6 & L such that a /A b = 0. Since L is M-symmetric, the
intervals L[0, a] and L[b,a \/ b] are isomorphic by (1. 6). ‘Since b %0 and L
is weakly modular, L[b, a \/ 8] is a modular lattice and hence L[0,a] is a
modular lattice. Let a, &L[0, a] and x &L, then (x,a)M and (x /\ a, &) M in
L. By (1.3) (x,a /\ ai)M and hence (x, a,)M. .

REMARK (2. 95). By (2.4)in a weakly modular semicomplemented M-symmetric
lattice, modular elements are modular in the sense of [2].

THEOREM (2.6). Let L be a semicomplemeﬁted M-symmetric lattice. If L
is a weakly modular complete lattice, then I is a weakly modular complete
lattice.

PROOF. We shall first show that if a,&I for every o &I, then the meet
a= /\(a,; a€1I) in L belongs to Wi, This is evident when I is empty or when
a, =1 for every a &I When a,>x 1 for some a& ]I it follows from (2. 4)
that a = /A (a.,; a EI) belongs to M. Hence @ is the meet N (a,; a E 1) in
M and hence M is complete and so is M. Next we shall show that M is
weakly modular. Let 2,6 M and aNbdx0in P If a\/b&EM, then by
2.4) a\/ b =2 <1 implies ¢ M. Hence alUb =1 in M and hence a1
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=0 in M. This contradicts a & 0. Hence by a\/bE M and (2.2),
(a, 5)M* in M and hence (a, b)M in M.

§ 3. Weakly modular semimodulated lattices.

DEFINITION (3.1). Let L be a lattice and M be the set of all modular

elements of L. We introduce the following four conditions on L.

(@) fa&EM b= L—M and a < b, then there exists a non-zero ¢ & M
such that 8 N\ c¢=a and a <c<b.

B I a,bEM, c & L—IM and a <c¢ < b, then there exists ¢/ &M such
that ¢ A\ ¢’ =a and a << <b.

(y) I a,6EM, cE L—M and a < ¢ < b, then there exists ¢/ E M such
that ¢\/ ¢’ = b and ¢ A\ ¢’ = a.

(0) In a lattice L with 1, if a & W, b6 & L—T and a < b, then there exists
c &M such that b\/c=1 and » A\ ¢ = a.

ExaMPLE. Let A be a relatively complemented modular lattice with 0

and the operations \/, /\, of length =3 which contains a point p. We define

L= A—{p}.

If L is partially ordered in the natural manner, then L is a weakly modular
M-symmetric lattice with operations U, () which satisfies the following

conditions :

alb=a\/b,
aNb=0if a/\Nb=p».

And for a,bE L
(a, )M in L if and only if a=1 or a 3 p.
It is easy to show that
(1) L satisfies (@) and if L has no unit 1, then (@) and (y) are trivial propo-
sitions, and
(2) If L has unit 1, then it satisfies (5). (Cf. [4] p. 327.)
LEMMA (3. 2). () In any lattice, (Y)=>(G). (i) In any lattice with 1, (5)=(a)

and (7)< (0).
Proor. (i) It is evident. (ii) Let L be a lattice with 1. Since 1& IR,
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(3)=>{a) and (y)=>(0) are evident. (0)=>(y). Let a, bEM, c E L—M and a <
¢ <b. By (0) there exists ¢/ E MM such that ¢c A\ ¢’ =a and ¢\/ ¢ = 1. Let
d=c¢ N\b, then d=M by (1.4) and c ANd=c A\’ Nb)=(CcANc)/\Nb=
a/Nb=a, c\/d=c\/ N =c\/HN\Nb=1/ANb=5b

LEMMA (3. 3). Let L be a lattice with (B) and a, b& M. Then a < b in M
if and only if a<b in L.
" PROOF. Let a, 0&EM, Assume a<:b in M and there exists x& L—W
such that a <2 <b. By ([3) there exists 2’ & M such that a < 2’< b which
contradicts the hypothesis. Conversely if a <5 in L, then a<b in M by
M C L.

THEOREM (3. 4). Let L be a lattice with (3) and I be a lattice, then (a, b) M*
in WM if and only if a\/ b= I,

PROOF. Suppose a, b&M and (@, &)M* in M. If a\/ b M, then 6 <a
\/b<alUbin L. By (B), there exists ¢ & W such that (a\/b) ANc=10, b

c<alUb. ThencNa=cNa=c/N\NGBVa)ANa=c/N\NbGN a)\Na=>b/\a,
whence (cMNa) Ub= b Aa)\/b =b<c=c(@Ub). Therefore (a, b)M*
(M* being the negation of the relation M*). This contradicts (a, b6)M* in M,
Sufficiency follows from (2. 2).

COROLLARY (3.5). If L is a lattice with (B) and M is a lattice, then the
following propositions hold.

(1) M is an M-symmetric lattice.

(ii) M is weakly modular if and only if a, bE M and a A\ b M imply a

b=0 in M,

THEOREM (3. 6). Let L be a weakly modular semicomplemented M-symmetric
lattice. If L is an upper continuous lattice, then (o), (), () and (O) are
equivalent.

PROOF. Let a EM, 6 & L—IN and a < b. Define S={cEM; a<c and
b/N\c=a}. By(a) S ¢. Let X be a chain of §, then ¢/ =V (x;2E X) is
modular by (1. 10) and a <¢’. Since L is upper continuous and the set {x /\
b; x& X} is an increasingly directed set, \/ (x /\ &; x & X) = ¢’ /\ b. Therefore
¢ /\b=a since x /\ b =a for every x © X and hence ¢/ & S. According to
Zorn’s lemma there exists a maximal element ¢ © S. If ¢o\/ b =% 1, then ¢, <
o\ b6<1 By (2.4 b\/c, & L—TM and by (a) there exists ¢; & M such that
OGNV e/ Na=c¢ and &<ec. Then bANa=bAN 0NV c)Na=b/N\c=a
and hence ¢, &S which contradicts the definition of ¢, Therefore we have
b\/ ¢ =1 and hence (o) = (0). Consequently by (3.2) and (@)=>(), in a
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weakly modular semicomplemented M-symmetric lattice, all four conditions (c),
(8), (y) and (0) are equivalent, if it is an upper continuous lattice.

DEFINITION (3. 7). Let L be an M-symmetric lattice with 1 and M. L is
called a semimodulated lattice when it satisfies (). (Cf. [1] p. 112.)

THEOREM Let A be a complemented modular lattice having the lattice operations
a\/ bya/\b. Let S be a fized subset of A—{0,1} with the following two
properties : ‘

D acESand 0<b<a imply b = S.

(2) a,b € S implies a\/ b E S.

If in the set L = A—S we give the same order as A, then L is a weakly
modular - M-symmetric lattice where the lattice operations a\Jb and a(\b satisfy
the following conditions :

B alUb=a\/b
aNb=a/Nbif aNbEL
aNb=0ifa/NbES.

Moreover for a, be L ’

(4) (a, )M if and only if a /\b < L.

() a<b in L if and only if a<<b in A

ProoF. Cf. [5] pp. 497-498. ,

DEFINITION (3.8). When a weakly modular M-symmetric lattice L arises
from a complemented modular lattice £ in the manner describes the above
theorem, L is called a Wilcox lattice. An element of S is called an imagynary
element for L, and when S has a greatest element 7 it is called the imagynary
unit for L. A non-zero element a of L is called a regilar element when
a/Nu=0 for all u € S. (Cf. [3] pp. 12-14.)

LEMMA (3.9). Let L = A—S be a Wilcox lattice. Any regular element of
L is modular and any modular element m of L with 0 <m <1 is regular if
L is semicomplemented.

Proor. Cf. [3] p. 11 :

- “THEOREM (3.10). Let L = A—S be a semicomplemented Wilcox lattice with
imagynary unit i. L is semimodulated if and only if S is a set consisting of a
point. : ' v

PROOF. Suppose L = A4—S be a semimodulated lattice. Let a be a compl-
ement of iE S, then a\/i=1, a/\i=0 in A Since 7 is the greatest
element of S, a A\ u =0 for every # & S and hence a is a regular element.
Then by (3.9) @ is a modular element of L. Let & be a modular element of
L such that a <5< 1. Then b is a regular element by (3.9). Hence & /\ ¢
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= 0. Let A & A be a complement of ain A[0,8], thenb=a\/ 2, a/\1=0.
Smce L is a modular Iattlce, AANa=0and (A\/a)/\i=0 implies (a\/ i)
ANA= 0. Slnce a\i= 1 A =0 and hence a=b. Thus a <1 in M. By
(3.3) a<¢ 1 in L and hence a< 1 in A. Therefore i >0 in‘A and hence i
is a point of A. Sufficiency is evident. ** (Cf. [4] p. 327.)

§4. Modulated llattices;

DEFINITION (4. 1)." Let L be a lattice with ¥. We introduce the following
three conditions :

(@ acEMbEL (Wlth bx1if 1 exists)and a < b then there exists a
non-zero ¢ & M such that 6 /\c=a and a <ec.

(Y If a,6 EM, c &L and a <c<b, then there exists ¢/ & M such that
c\/¢’=band ¢\ =a.

(0%).In a lattice L with 1, if a €M, 6 E L and a < b, then there exists
¢ €M such that b\ c=1and b \c=a. _

REMARK (4. 2). If a lattice with O satisfies (@*), then it is semicomplemented
and if a lattice Wlth 0, 1 satisfies (0*), then it is a comp]emented lattice. ‘In
the example in §3, it is easy to show that if every intervalsublattice of / is
irreducible, then L satisfies \a*) and moreover if L has 1, then it satisfies (0%).

LEMMA (4 3. @) In any latttce with 1, (¥ = (a*) and (y¥) & (0%).

(ii) In an M. symmetric upper continuous lattice, (a*)=> (0%).- And therefore
the three conditions (@*), (7*) and (0%) are equivalent. ' ‘_

PrOOF. (i) (y*)=(a*) and (y*)=(0*) are evident since 1 & M. (“*):>(b7’*).
It is similar to the proof of (0)=>(y) in (3. 2). (ii) It is similar to the proof
of (3.6). - | ‘ : , ,

DEFINITION (4.4). An M-symmetric lattice L with 0 and 1 is called a
modulated lattice when it satisfies (0%). (Cf. [4] p. 326.)

REMARK (4.5). A modulated lattice L is a complemented semimodulated
lattice.

LEMMA 4.6). If L is a semimodulated lattice and W is a lattice, then the
Jollowing conditions are equivalent.

(1) L is modulated.

(i) M is relatively complemented.

(i) M is left complemented. :

Proor. (i)=(ii). This follows from (4. 3)(i) and (y*). (ii)=>(iii". Let a, & &M,

# This proof is indebted to Dr. S. Maeda. for help.
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then a\/ b =0 in L. Since L satisfies (0) and M is relatively complemented,
it is easy to show that there exists & & M such that (a\/b)\/ % =1 and
@V b)/N\b)=0b. Hence ¥’ =b and a NV =a ANV =a NaV BN =
aNb=aNbaUbl =a\/ b =a\/b\/b =1 Hence aUb =a\/b =1
and hence (a, 5)M* in M by (2. 2). Consequentry I is left complemented.

(iii) = (). Since L is semimodulated, it is sufficient to show that if a, b &
I and a < b, then there exists ¢ © M such that 5\/¢c=1 and b Ac=a.
Assume that M is left complemented and @, &M and @ < b in L. Since M
is left complemented, there exists ¢ & MM such that b(Nc¢=4q, bUc=1 and
(B, o)M* in M. By 3.4) b6\/c=bUc=1and bAc=>bNc = a.

THEOREM (4. 7). Let L be a weakly modular modulated lattice. L is complete
if and only if W is complete.

ProoF. (I) If L is complete, then so is M by (2. 6). (II) Assume that M
is complete. (i) Let m, & MM for every o E L. It is easy to show that the meet
N(m,; a & I) in M is the meet /\ (m,; &« EI) in L. (ii) Let u, & L—M for
every o & I. When {«,} has no lower bound except 0, we have A.u#, =0 in
L. When {«,} has lower bound 2 with 2 >0, we can take m = 9 such that
A\/m=1and A /\m =0 in L since L is modulated. u, /\ m & M for every
a & I by (2.4) and hence there exists a meet b = () (u, Am;a & I)in M,
By (1.5) (m, x)M* for every x & L whence (u, A m)\/ h = u, /\ (m\/ h) = u,
and hence u, = b\/h for every o & 1. Therefore 56\/ h is an lower bound
of {u,} in L. If & is an arbitrary lower bound of {#)} in L, then putting ¢ =
(A \/ k) /\ m, we have ¢ © M and ¢ < u, /\ m for every a & I, whence b =>c.
By (1. 5) (m, x)M* for every x & L whence

bNVR= c\Vh=(R\/B)A\Nm)\/ b= (E\/B)\m\/ k) =h\/ h=h. The-
refore b\/ k is the meet /\ (u,; &« EI) in L. (i) By (i) and (ii), it is easy to
show that any subset of L has its meet in L. Hence L is complete. (Cf. [3]
p. 93.)
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