1 *Title*

3

4	Authors' names and institutions
5	Masakazu Notsu ¹ , Mika Yamauchi ¹ , Masahiro Yamamoto ¹ , Kiyoko Nawata ^{1,2} , and
6	Toshitsugu Sugimoto ¹
7	1) Department of Internal Medicine 1, Shimane University Faculty of Medicine, Izumo,
8	Shimane, Japan
9	2) Health and Nutrition, The University of Shimane, Matsue, Shimane, Japan
10	
11	Abbreviated title: Primary aldosteronism and vertebral fracture
12	Key words: primary aldosteronism, vertebral fracture
13	
14	Number of words: abstract, 248 words; manuscript, 3156 words
15	Number of tables: 3
16	
17	Correspondence to
18	Masakazu Notsu, Department of Internal Medicine 1, Shimane University Faculty of

19 Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.

- 20 E-mail: mnotsu25@med.shimane-u.ac.jp
- 21 Tel +81-853-20-2183
- 22 Fax +81-853-23-8650

- 24 *Disclosure summary*: The authors have nothing to disclose.
- Note: This manuscript has not been published and is not under consideration for
 publication elsewhere.

27

- 28 **Précis**:
- 29 We found primary aldosteronism (PA) as a risk factor for prevalent vertebral fracture.
- Additionally, fracture severity was significantly higher in PA subjects than in age- and
 sex-matched controls.

32

34	Abstract	
34	Abstract	

36	Context
37	Some observational studies have revealed an association between excessive aldosterone
38	levels and reduced bone mineral density (BMD). However, whether patients with primary
39	aldosteronism (PA) are at higher risk of fracture than healthy individuals remains unclear.
40	Objective
41	This study aimed to clarify whether PA represents a risk factor for vertebral fracture.
42	Design and Patients
43	We enrolled 56 PA patients and 56 age- and sex-matched healthy individuals. Serum and
44	urinary biological parameters, BMD, and presence of vertebral fractures (VFs) were
45	evaluated in both groups. We compared parameters between PA and control subjects and
46	performed multiple logistic regression analyses after adjustments for variables.
47	Results
48	Patients with PA showed higher systolic blood pressure (SBP) and diastolic blood
49	pressure (DBP), higher hemoglobin (Hb)A1c and triglycerides, higher urinary calcium-
50	to-creatinine ratio (uCa/uCr), and lower high-density lipoprotein cholesterol (HDL-C)

51 than controls (p <0.05, each). Prevalence of VFs was significantly higher in PA subjects

52	(44.6%) than in controls (23.2%, p <0.05). PA patients showed severe fracture more
53	frequently than controls. Multivariate logistic regression analyses adjusted for age, sex,
54	and body mass index identified PA as being associated with the presence of VFs (odds
55	ratio, 3.13; 95% confidence interval, 1.30-7.51; p <0.05). This association remained
56	significant after further adjustment for SBP and DBP, HbA1c, triglycerides, and HDL-C,
57	but not after adjustment for uCa/uCr and BMD.
58	Conclusions
59	We identified PA as a risk factor for VF, independent of blood pressure, HbA1c, and lipid
60	profile. Fracture severity was significantly higher in PA subjects than in age- and sex-
61	matched controls.

63 Background

64

65	Osteoporotic fractures are an important problem affecting mortality, quality of life and
66	the medical economy. In recent years, emerging studies have suggested that these
67	fractures are associated with hypertension and cardiovascular disease (CVD). A
68	population-based case-control study identified hypertension as a risk factor for hip
69	fracture (1). A twin cohort study of about 32,000 patients reported that CVD was a risk
70	factor for hip fracture and that this relationship involved genetic factors (2). Furthermore,
71	the presence of at least one vertebral fracture (VF) as compared with no VF at baseline
72	was associated with a three-fold increase in the risk of cardiovascular events in
73	postmenopausal women (3). One factor that may explain the relationships among
74	fractures, hypertension, and CVD is activation of the renin-angiotensin-aldosterone
75	system (RAAS). Chronic stimulation of the RAAS is associated with hypertension and
76	CVD, and negatively affects bone metabolism due to the effect of angiotensin II (4,5).
77	However, whether aldosterone excess itself represents a risk factor for fracture remains
78	unknown.

Primary aldosteronism (PA) is the most common cause of secondary hypertension and
is found in 6.0-9.5% of hypertensive patients (6-8). PA is associated with high mortality

81	and is known to cause damage to various organs (9). Milliez et al. reported that patients
82	with PA have higher a prevalence of cardiovascular and cerebrovascular diseases (10).
83	Such reports have shown that PA is an important factor associated with atherosclerotic
84	disease, beyond its effects on intravascular volume and blood pressure (BP) (11).
85	On the other hand, aldosterone increases renal calcium excretion in the renal distal
86	tubules by decreasing tubular reabsorption of sodium and calcium. Previous reports have
87	shown that aldosterone excess induces urinary excretion of calcium, leading to bone
88	mineral density (BMD) loss and high levels of parathyroid hormone (PTH), and patients
89	with PA are at higher risk of osteopenia and osteoporosis than patients with essential
90	hypertension (12,13). A recent study reported that VF tended to become more prevalent
91	in PA than in non-PA (14). However, whether patients with PA are at higher risk for
92	fracture than healthy individuals remains unclear.
93	
94	Subjects and methods
95	Subjects
96	We enrolled 56 consecutive patients (mean age, 59 ± 11 years; men, 44.7%) who were
97	diagnosed with PA at our institution between January 2006 and October 2014. The control

98 group comprised a stratified random sampling of 56 age- and sex-matched healthy

99	individuals who underwent health screening for osteoporosis at a community health
100	center. No participants had taken drugs known to influence bone and calcium metabolism
101	such as vitamin D, bisphosphonates, or glucocorticoids. This study was approved by the
102	ethics review board of Shimane University Faculty of Medicine and complied with the
103	Helsinki Declaration. All subjects agreed to participate in the study and provided written
104	informed consent prior to enrollment.
105	Patients were screened for PA using the plasma aldosterone concentration (PAC)
106	(pg/mL) to plasma renin activity (PRA) (ng/mL/h) ratio (aldosterone-to-renin ratio: ARR)
107	(pg/mL per ng mL ^{-1} h ^{-1}), with 200 as the cutoff value after withdrawal of interfering
108	medications, such as angiotensin I-converting enzyme inhibitors and angiotensin II type-
109	1 receptor blockers. Diagnosis of PA was confirmed with intravenous (IV) saline loading,
110	captopril challenge test, and furosemide upright test. The diagnosis of PA was confirmed
111	if one of the following conditions was satisfied: (1) lack of PAC suppression (60 pg/mL)
112	after intravenous (IV) saline loading (2 L of 0.9% saline infused over 4 h); (2) persistence
113	of ARR >200 at 90 min after administration of 50 mg captopril orally; (3) lack of PRA
114	(2.0 ng/mL/h) after 40 mg of IV furosemide, in a standing position (15).
115	Bilateral adrenal venous sampling (AVS) was performed in 34 of the 56 PA patients,
116	and 16 of these patients were diagnosed with a unilateral aldosterone-producing adenoma

(APA) and underwent surgery. Among these patients, with the exception of two patients thought to have bilateral involvement, antihypertensive drugs could be discontinued or reduced, and the ARR decreased to <200. Twelve patients had idiopathic hyperaldosteronism (IHA), and in six patients, the cause was undetermined. The remaining 22 patients included patients who were elderly, could not tolerate surgery, did not want surgery, or whose blood pressure improved with drug therapy.

123

124 Biochemical measurements

125 After overnight fasting, blood and urine samples were collected. Hemoglobin (Hb)A1c (National Glycohemoglobin Standardization Program) was determined by high-126 performance liquid chromatography. Serum concentrations of albumin (Alb), creatinine 127 128 (Cr), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), intact PTH, urine type I collagen 129 130 cross-linked N-telopeptide (NTX, as a marker of bone resorption), urinary calcium-tocreatinine ratio (uCa/uCr), and percent tubular reabsorption of phosphate (%TRP) were 131 evaluated in both groups by automated techniques at the central laboratory of our hospital. 132 133 Urinary examinations were measured in 42 subjects with PA and in 56 healthy control subjects. Estimated glomerular filtration rate (eGFR) was calculated using the equation 134

135	proposed by the Modification of Diet in Renal Disease Study with modified coefficients
136	for the Japanese population. Samples for PAC and PRA were collected from patients early
137	in the morning after fasting and while resting in a recumbent position. PAC and PRA were
138	measured with RIA (SPAC-S Aldosterone Kit, TFB Inc., Tokyo, Japan; and Renin-RIA
139	Renin kit "FR", TFB Inc, respectively) (16). PRA was measured through the generation
140	of angiotensin I.

142 **BMD** measurements

143 BMD at the lumbar spine (L) and femoral neck (FN) were measured by dual-energy X-ray absorptiometry using the QDR-4500 system (Hologic, Waltham, MA). BMD was 144 automatically calculated from the bone mineral content (in grams) and bone area (in 145 146 square centimeters) and expressed as an absolute value in grams per square centimeter. Coefficients of variation (CVs) of measurement for BMD at L and FN were 0.9% and 147 148 1.7%, respectively. The Z-score is the number of standard deviations (SDs) by which a given measurement differs from the mean for a sex-, age-, and race-matched reference 149 population. The T-score is the number of SDs by which a given measurement differs from 150 151 the mean for a normal young adult reference population.

152

153 *Radiography*

154 Lateral X-rays of the thoracic and lumbar spine were taken in the same week as serum collection in all subjects. Anterior, central, and posterior heights of each of the 13 155 156 vertebral bodies from Th4-L4 were measured. VF was diagnosed if at least one of the three height measurements along the length of the same vertebra was decreased by >20%157 158 compared to the height of the nearest uncompressed vertebral body (17). We defined vertebral fractures as grades 1-3 according to the classification by Genant et al. (17). 159 Grade 1 corresponds to a 20-25% reduction in at least one height (anterior, middle, or 160 161 posterior) along the length of the same vertebra compared to the height of the nearest 162 uncompressed vertebral body. Grade 2 corresponds to a 25-40% reduction in any height, 163 and grade 3 corresponds to a more than 40% reduction in any height. We defined severe 164 fracture as grade 2 or 3 VF. VFs were diagnosed by two investigators who were blinded to each other's readings and also blinded to PA group and control group status. Fractures 165 were assessed at the same time, and if there was disagreement between the two 166 167 investigators, the findings were assessed by three investigators. No subjects had any history of serious trauma. 168

All data are expressed as mean ± SD for each index. Significant differences between
 groups were determined using the chi-square and unpaired t-tests. Multiple logistic

171	regression analyses were performed after adjustments for the variables shown in the tables.
172	Statistical analyses were performed using SPSS software (ver. 19. IBM Corporation,
173	Tokyo, Japan). Values of p <0.05 were considered statistically significant.
174	
175	Results
176	Baseline characteristics of subjects
177	Baseline characteristics of subjects are shown in Table 1. Each group contained 56
178	subjects. PA patients showed higher systolic BP (SBP) and diastolic BP (DBP), higher
179	HbA1c and TG and lower HDL-C than controls (p <0.05, each). Patients with PA showed
180	a higher uCa/uCr than control subjects. Values for Cr, intact PTH, %TRP, u-NTX, L- and
181	FN-BMD did not significantly differ between the groups.
182	
183	Prevalence of vertebral fracture
184	VFs were found in 25 subjects with PA and in 13 controls. The prevalence of VF was
185	significantly higher in PA subjects (44.6%) than in controls (23.2%, p <0.05). In the PA
186	group, one patient had a vertebral fracture that had already been diagnosed (clinical VF),
187	and 24 patients had vertebral fractures not previously diagnosed (morphometric fractures).
188	All fractures in the control group were morphometric fractures that had not previously

189	been diagnosed. In the PA group, the site of VF was 1h4 in two, 1h/ in five, 1h8 in two,
190	Th9 in two, Th10 in two, Th11 in five, Th12 in four, L1 in twelve, L2 in four, and L4 in
191	one patient. In the control group, the site of VF was Th9 in one, Th10 in one, Th11 in two,
192	Th12 in six, L1 in three, L2 in three, L3 in one, and L4 in one patient. Fractures at the
193	thoracolumbar junction were common in both groups. Furthermore, 13 patients with PA
194	and two controls had grade 2 or 3 VFs. PA patients showed severe fracture more
195	frequently than controls (23.2% vs. 3.6%, p <0.01).
196	The VF rate was examined according to PA subtype (APA and IHA) in a small number
197	of patients. Eight of 14 (57%) APA patients had VFs, and five of 12 (42%) of IHA patients
198	had VFs. The VF rate did not significantly differ between these two subgroups.

• .

CIT

T1 4 ·

m - ·

T1 0 '

199

200 Prevalence of non-vertebral fracture

1 T /1

D 4

1.

100

201 Non-VFs were present at the following sites in the PA group and control group. In the PA 202 group, these included one patient each with a forearm, humerus, and wrist fracture and two 203 patients with ankle fractures (total of five). In the control group, these included one patient 204 each with a femoral neck, wrist, and rib fracture and two patients with ankle fractures (total 205 of five). The non-VF rate did not differ between the two groups.

206

207 Associations of PAC, PRA, and ARR with various parameters

208	We analyzed simple correlations between PAC and various parameters, including BMD
209	and bone turnover markers, in patients with PA. PAC showed significant positive
210	correlations with DBP and uCa/uCr, and significant negative correlations with lumbar Z-
211	and T-scores. On the other hand, PRA and ARR did not correlate with any of the
212	parameters examined (data not shown).
213	
214	Comparison of various parameters between subjects with and without VF in
215	patients with PA
216	We compared demographic and biochemical parameters between PA subjects with and
217	without VF (Table 2). Patients with VF tended to be older than patients without VF. Other
218	parameters, such as duration of hypertension, BMD, urinary NTX, intact PTH, PAC, PRA,
219	and ARR, were not significantly different between PA subjects with and without VF.
220	Femoral neck T- and Z-scores of patients with grade 2 or 3 VFs were significantly lower
221	than in patients without VF.
222	
223	Association between PA and presence of VF

224 Multivariate logistic regression analyses adjusted for age, sex, and body mass index

225	(BMI) identified PA as a factor associated with the presence of VF (odds ratio, 3.13; 95%)
226	confidence interval, 1.30-7.51; p <0.05). This association remained significant after
227	further adjustment for SBP, DBP, HbA1c, TG, and HDL-C, but not after adjustment for
228	uCa/uCr (p=0.062), L- and FN-BMD (p=0.173 and p=0.103, respectively) (Table 3).
229	

230 Discussion

231 This study revealed that fracture risk was increased in patients with PA. Furthermore, 232 severity of fractures seemed higher in subjects with PA because the ratio of subjects with 233 grade 2 or 3 VF was significantly higher in PA patients than in controls. The VF rate in the control group in our study was high. Ethnic differences in the incidence of VF exist, 234 namely compared with Western populations, Japanese people have a higher incidence of 235 236 VF (18). The VF rate in our control group, however, was slightly higher than fracture rates previously reported in Japanese people (19). One possible reason for this higher VF 237 238 rate is that our control group included subjects being screened for osteoporosis. However, the VF rate in the PA group was still significantly higher than in the control group. Our 239 240 results are consistent with previous studies reporting that VFs tended to be more prevalent, 241 and the prevalence of osteoporosis was higher in patients with PA than in those without PA (14). This is the first report to find that the prevalence of VF and fracture severity were 242

243	significantly higher in PA subjects than in age- and sex-matched controls. Moreover, our
244	study revealed that PAC, PRA, and ARR showed no significant differences between PA
245	subjects with and without VF. Between the PA subtypes of APA and IHA, aldosterone
246	production is higher in APA than in IHA. Although provided only as reference data
247	because of the small number of patients in our study, comparison of the VF rate between
248	the APA and IHA subgroups showed no significant differences. These results suggest that
249	the degree of aldosterone production is not associated with fracture risk.
250	Previous reports about the RAAS and bone metabolism have shown that angiotensin II
251	excess accelerates osteoporosis by activating osteoclasts via the receptor activator of NF-
252	κB (RANK)-RANK Ligand (RANKL) pathway (4,5). However, under conditions where
253	PAC levels are chronically elevated with concomitant suppression of angiotensin II and
254	renin, bone fragility in patients with PA could not be explained by the effect of angiotensin
255	II. Bone fragility in patients with PA may be induced by aldosterone itself. No reports
256	have clarified the direct effects of aldosterone on bone. Several reports have shown that
257	mineralocorticoid receptors (MRs) are observed in human osteoblasts, osteocytes, and
258	osteoclasts (20,21). Treatment with eplerenone, a specific blocker of MR, ameliorated the
259	decreased bone volume and cortical bone thinning caused by prednisolone in vivo (21).
260	However, the direct effects of aldosterone on bone are poorly understood.

261	On the other hand, Chhokar et al. reported that continuous administration of
262	aldosterone to rats induced persistent rises in urinary calcium and elevations in PTH with
263	a concomitant decrease of BMD and bone strength (22). An aldosterone infusion study in
264	humans showed that aldosterone affects the parathyroid glands indirectly by reducing
265	serum calcium levels (23). Actually, patients with PA showed higher levels of urinary
266	calcium as well as lower serum calcium and BMD than patients with essential
267	hypertension (12,13). These results indicate that aldosterone excess increases fracture risk
268	via urinary calcium excess through the effects of aldosterone on the distal tubule. In our
269	study, plasma aldosterone concentration correlated positively with uCa/uCr, and the
270	prevalence of VFs was significantly higher in PA subjects than in controls. This
271	association became non-significant after additional adjustment for uCa/uCr. These
272	findings suggest that aldosterone excess markedly affects calcium excretion and this
273	effect is partly associated with an increased risk of VF.

Whether aldosterone affects PTH secretion directly via the parathyroid gland or not remains unclear. An in vitro study found the presence of MR mRNA and protein in normal and adenomatous human parathyroid tissues (23,24). A recent study of 3105 individuals from the general population revealed higher serum PTH concentrations in subjects with a higher ARR than in subjects with a lower ARR (25). These findings suggest that

279	aldosterone excess is associated with PTH elevation. Previous reports have presumed that
280	higher urinary calcium excretion and secondary increases in PTH induce bone loss
281	(12,13). However, in this study, there were no significant differences in PTH levels
282	between PA and control subjects. Moreover, PTH was not identified as a factor associated
283	with VF (data not shown). Our results suggest that secondary elevations of PTH are
284	unrelated to vertebral fragility in patients with PA. PTH excess mainly causes fragility of
285	cortical bone. The absence of a difference in PTH is probably because our study focused
286	on the vertebra, which are predominantly cancellous bone.

..

ъ

. 1

.

1 1

287 This study showed that comparison of subjects with PA and controls revealed no 288 significant differences in BMD values. Moreover, there were no differences in BMD at any site between PA subjects with and without VFs. Our results suggest that PA may cause 289 bone fragility attributed to the deterioration of bone quality. The rate of non-VFs in 290 predominantly cortical bone sites did not differ between the PA group and control group 291 in our study. The deterioration of bone quality in PA may involve deterioration in the 292 microstructure of cancellous bone. 293

Hypertension is reportedly associated with bone loss (26). In this study, logistic 294 295 regression analyses showed an association between PA and VF, and this association was still significant after additional adjustment for SBP and DBP. This suggests that patients 296

297 with PA have a higher risk of VF, independent of BP.

Plasma aldosterone concentrations do not always reflect the severity of PA. On the 298 other hand, longer disease duration is more likely associated with organ damage. 299 300 Therefore, the duration of hypertension, which probably reflects the duration of PA, was compared with regard to VFs. However, hypertension duration did not differ between 301 302 patients with and without VFs in our study. The possible reason for the absence of a difference may be because the history of hypertension duration given by patients did not 303 reflect the true duration of their hypertension. Alternatively, a genome-wide association 304 305 study searching for new genes involved in osteoporosis reported genes associated with the aldosterone signaling pathway (27). Therefore, the influence of excessive aldosterone 306 307 may vary genetically in individuals and may play a role in this process. 308 One of the complications of PA is impaired glucose tolerance. A meta-analysis has shown diabetes mellitus as a risk factor for fracture (28), and we also reported that patients 309 310 with type 2 diabetes have a higher risk of VF than those without diabetes (29). In the 311 present study, HbA1c was higher in PA subjects than in controls, but PA was still a risk factor for VF after adjustment for HbA1c. Actually, the mean HbA1c in PA subjects was 312 313 6.4% in this study, which is somewhat lower than that of diabetes patients who had a

higher risk of fracture (30). Therefore, it seems unlikely that bone fragility is caused by

315 dysregulated glucose metabolism.

Some PA patients have renal dysfunction. Chronic kidney disease is also a risk factor 316 for VF (31). In the present study, renal function did not differ between subjects with and 317 318 without PA, and PA represented a risk factor for VF after adjustment for renal function. Several limitations of this study must be clarified. First, we diagnosed PA by 319 320 suppression or stimulation tests without histopathological diagnoses after surgery. The 321 diagnosis of PA in this study was based on biochemical studies. Currently available 322 histopathological methods are insufficient to conclusively establish a diagnosis of PA. 323 Second, the sample size in this study was small, and all subjects were Japanese. Third, 324 we did not evaluate concentrations of serum 25-hydroxy-vitamin D. PA patients have been reported to have a higher prevalence of vitamin D deficiency (13). Finally, the 325 326 conclusions of this study are weakened by the cross-sectional design. A longitudinal study is necessary to clarify the causal direction of these. 327 328 In conclusion, we identified PA as a risk factor for prevalent VF independent of blood pressure. Additionally, fracture severity was significantly higher in PA subjects than in 329

331

330

332 Acknowledgments: None.

age- and sex-matched controls.

References

334	1.	Sennerby U, Farahmand B, Ahlbom A, Ljunghall S, Michaelsson K. Cardiovascular
335		diseases and future risk of hip fracture in women. Osteoporos Int 2007; 18:1355-1362
336	2.	Sennerby U, Melhus H, Gedeborg R, Byberg L, Garmo H, Ahlbom A, Pedersen NL,
337		Michaelsson K. Cardiovascular diseases and risk of hip fracture. JAMA 2009;
338		302:1666-1673
339	3.	Tanko LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR.
340		Relationship between osteoporosis and cardiovascular disease in postmenopausal
341		women. J Bone Miner Res 2005; 20:1912-1920
342	4.	Asaba Y, Ito M, Fumoto T, Watanabe K, Fukuhara R, Takeshita S, Nimura Y, Ishida
343		J, Fukamizu A, Ikeda K. Activation of renin-angiotensin system induces osteoporosis
344		independently of hypertension. J Bone Miner Res 2009; 24:241-250
345	5.	Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, Tomita T,
346		Yoshikawa H, Ogihara T, Morishita R. Angiotensin II accelerates osteoporosis by
347		activating osteoclasts. FASEB J 2008; 22:2465-2475
348	6.	Gordon RD, Ziesak MD, Tunny TJ, Stowasser M, Klemm SA. Evidence that primary
349		aldosteronism may not be uncommon: 12% incidence among antihypertensive drug
350		trial volunteers. Clin Exp Pharmacol Physiol 1993; 20:296-298
351	7.	Fardella CE, Mosso L, Gomez-Sanchez C, Cortes P, Soto J, Gomez L, Pinto M, Huete
352		A, Oestreicher E, Foradori A, Montero J. Primary hyperaldosteronism in essential
353		hypertensives: prevalence, biochemical profile, and molecular biology. J Clin
354		Endocrinol Metab 2000; 85:1863-1867
355	8.	Omura M, Saito J, Yamaguchi K, Kakuta Y, Nishikawa T. Prospective study on the
356		prevalence of secondary hypertension among hypertensive patients visiting a general
357		outpatient clinic in Japan. Hypertens Res 2004; 27:193-202
358	9.	Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, Rabbia F, Federspil
359		G, Mulatero P. Prevalence and characteristics of the metabolic syndrome in primary
360		aldosteronism. J Clin Endocrinol Metab 2006; 91:454-459
361	10.	Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an
362		increased rate of cardiov ascular events in patients with primary aldosteronism. J Am
363		Coll Cardiol 2005; 45:1243-1248
364	11.	Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and
365		fibrosis. Nat Rev Nephrol 2013; 9:459-469
366	12.	Ceccoli L, Ronconi V, Giovannini L, Marcheggiani M, Turchi F, Boscaro M, Giacchetti
367		G. Bone health and aldosterone excess. Osteoporos Int 2013; 24:2801-2807

368 13. Petramala L, Zinnamosca L, Settevendemmie A, Marinelli C, Nardi M, Concistre A, 369 Corpaci F, Tonnarini G, De Toma G, Letizia C. Bone and mineral metabolism in 370 patients with primary aldosteronism. Int J Endocrinol 2014; 2014:836529 371 14. Salcuni AS, Palmieri S, Carnevale V, Morelli V, Battista C, Guarnieri V, Guglielmi G, 372 Desina G, Eller-Vainicher C, Beck-Peccoz P, Scillitani A, Chiodini I. Bone 373 involvement in aldosteronism. J Bone Miner Res 2012; 27:2217-2222 374 Monticone S, Satoh F, Viola A, Fischer E, Vonend O, Bernini G, Lucatello B, Quinkler 15. 375 M, Ronconi V, Morimoto R, Kudo M, Degenhart C, Gao X, Carrara D, Willenberg HS, Rossato D, Mengozzi G, Riester A, Paci E, Iwakura Y, Burrello J, Maccario M, 376 377 Giacchetti G, Veglio F, Ito S, Reincke M, Mulatero P. Aldosterone suppression on 378 contralateral adrenal during adrenal vein sampling does not predict blood pressure 379 response after adrenalectomy. J Clin Endocrinol Metab 2014; 99:4158-4166 380 Daimon M, Kamba A, Murakami H, Takahashi K, Otaka H, Makita K, Yanagimachi 16. 381 M, Terui K, Kageyama K, Nigawara T, Sawada K, Takahashi I, Nakaji S. Association 382 Between Pituitary-Adrenal Axis Dominance Over the Renin-Angiotensin-383 Aldosterone System and Hypertension. J Clin Endocrinol Metab 2016; 101:889-897 384 17. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a 385 semiquantitative technique. J Bone Miner Res 1993; 8:1137-1148 386 Yoshimura M, Nagahara A, Ohtaka K, Shimada Y, Asaoka D, Kurosawa A, Osada T, 18. 387 Kawabe M, Hojo M, Yoshizawa T, Watanabe S. Presence of vertebral fractures is 388 highly associated with hiatal hernia and reflux esophagitis in Japanese elderly 389 people. Intern Med 2008; 47:1451-1455 390 19. Yoshimura N, Kinoshita H, Takijiri T, Oka H, Muraki S, Mabuchi A, Kawaguchi H, 391 Nakamura K, Nakamura T. Association between height loss and bone loss, 392 cumulative incidence of vertebral fractures and future quality of life: the Miyama 393 study. Osteoporos Int 2008; 19:21-28 20. 394 Beavan S, Horner A, Bord S, Ireland D, Compston J. Colocalization of glucocorticoid 395 and mineralocorticoid receptors in human bone. J Bone Miner Res 2001; 16:1496-396 1504397 21. Fumoto T, Ishii KA, Ito M, Berger S, Schutz G, Ikeda K. Mineralocorticoid receptor 398 function in bone metabolism and its role in glucocorticoid-induced osteopenia. 399 Biochem Biophys Res Commun 2014; 447:407-412 400 22. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, Smith RA, 401 Gerling IC, Weber KT. Hyperparathyroidism and the calcium paradox of 402 aldosteronism. Circulation 2005; 111:871-878 403 23. Brown JM, Williams JS, Luther JM, Garg R, Garza AE, Pojoga LH, Ruan DT,

- Williams GH, Adler GK, Vaidya A. Human interventions to characterize novel
 relationships between the renin-angiotensin-aldosterone system and parathyroid
 hormone. Hypertension 2014; 63:273-280
- 407 24. Maniero C, Fassina A, Guzzardo V, Lenzini L, Amadori G, Pelizzo MR, Gomez408 Sanchez C, Rossi GP. Primary hyperparathyroidism with concurrent primary
 409 aldosteronism. Hypertension 2011; 58:341-346
- 410 25. Fischer E, Hannemann A, Rettig R, Lieb W, Nauck M, Pallauf A, Bidlingmaier M,
 411 Beuschlein F, Wallaschofski H, Reincke M. A high aldosterone to renin ratio is
 412 associated with high serum parathyroid hormone concentrations in the general
 413 population. J Clin Endocrinol Metab 2014; 99:965-971
- 414 26. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone415 mineral loss in elderly white women: a prospective study. Study of Osteoporotic
 416 Fractures Research Group. Lancet 1999; 354:971-975
- 417 27. Gupta M, Cheung CL, Hsu YH, Demissie S, Cupples LA, Kiel DP, Karasik D.
 418 Identification of homogeneous genetic architecture of multiple genetically correlated
 419 traits by block clustering of genome-wide associations. J Bone Miner Res 2011;
 420 26:1261-1271
- 421 28. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients
 422 with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int 2007; 18:427-444
- 423 29. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have
 424 an increased risk of vertebral fractures independent of BMD or diabetic complications.
 425 J Bone Miner Res 2009; 24:702-709
- 426 30. Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada 427 K, Stolk L, Oei EH, van Meurs JB, Janssen JA, Hofman A, van Leeuwen JP, 428 Witteman JC, Pols HA, Uitterlinden AG, Klaver CC, Franco OH, Rivadeneira F. High 429 bone mineral density and fracture risk in type 2 diabetes as skeletal complications of 430 inadequate glucose control: the Rotterdam Study. Diabetes Care 2013; 36:1619-1628 431 31. Naylor KL, McArthur E, Leslie WD, Fraser LA, Jamal SA, Cadarette SM, Pouget JG, 432 Lok CE, Hodsman AB, Adachi JD, Garg AX. The three-year incidence of fracture in
- 433 chronic kidney disease. Kidney Int 2014; 86:810-818
- 434