The Embedding of Generalized Inverse Semigroup Amalgams

Teruo Імаока

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1978)

Let $[\{S_1, S_2\}; U]$ be a [left, right] generalized inverse semigroup amalgam. In [4], the author has shown that the amalgam is embedded in a [left, right] generalized inverse semigroup if S_1 is isomorphic to S_2 . In this paper, we shall give a sufficient condition for the amalgam to be embedded in a [left, right] generalized inverse semigroup. Further, we shall consider the embedding of [left, right] normal band amalgams. The notation and terminologies are those of [1] and [5], unless otherwise stated.

Let \mathscr{A} be a class of algebras. We define that an \mathscr{A} -amalgam $[\{S_i: i \in I\}; U]$ consists of an algebra U in \mathscr{A} and a family of algebras $\{S_i \in \mathscr{A}: S_i \supset U, i \in I\}$. This definition is slightly different to Howie's [3]. An \mathscr{A} -amalgam $[\{S_i: i \in I\}; U]$ is said to be embedded in an algebra in \mathscr{A} if there exist an algebra T in \mathscr{A} and monomorphisms $\phi_i: S_i \rightarrow T, i \in I$, such that

- (i) $\phi_i | U = \phi_i | U$ for all $i, j \in I$,
- (ii) $S_i\phi_i \cap S_i\phi_j = U\phi_i$ for all $i, j \in I$ with $i \neq j$.

We now state an extension of [left, right] normal bands which we need later.

LEMMA 1. Let Δ be a subsemilattice of a semilattice Γ . Let $E \equiv \Sigma \{E_{\alpha} : \alpha \in \Delta\}$ be a [left, right] normal band. Then there exist a [left, right] normal band $B \equiv \Sigma \{B_{\alpha} : \alpha \in \Gamma\}$ and a monomorphism $\phi : E \to B$ such that $E_{\alpha}\phi \subset B_{\alpha}$ for all $\alpha \in \Delta$.

PROOF. Let *E* be a normal band. Since each E_{α} is a rectangular band, it is the direct product of a left zero semigroup L_{α} and a right zero semigroup $R_{\alpha}, \alpha \in \Delta$. We denote an element of E_{α} by $(l_{\alpha}, r_{\alpha}), l_{\alpha} \in L, r_{\alpha} \in R$. Let $F = \{(e_{\alpha}, f_{\alpha}) : \alpha \in \Gamma\}$ be a semilattice whose multiplication is defined by

$$(e_{\alpha}, f_{\alpha})(e_{\beta}, f_{\beta}) = (e_{\alpha\beta}, f_{\alpha\beta}) \quad \text{for all} \quad \alpha, \beta \in \Gamma.$$

Then $F' = \{(e_{\alpha}, f_{\alpha}) | \alpha \in \Delta\}$ is a subsemilattice of F. Let $E' = E \cup F'$ and its multiplication is defined as follows:

$$(x_{\alpha}, y_{\alpha})(z_{\beta}, w_{\beta}) = \begin{cases} (x_{\alpha}l_{\alpha\beta}, r_{\alpha\beta}w_{\beta}) & \text{if } (x_{\alpha}, y_{\alpha}), (z_{\beta}, w_{\beta}) \in E, \\ (x_{\alpha}l_{\alpha\beta}, f_{\alpha\beta}) & \text{if } (x_{\alpha}, y_{\alpha}) \in E, (z_{\beta}, w_{\beta}) = (e_{\beta}, f_{\beta}), \end{cases}$$

Teruo Імаока

$$\begin{pmatrix} (e_{\alpha\beta}, r_{\alpha\beta}w_{\beta}) & \text{if } (x_{\alpha}, y_{\alpha}) = (e_{\alpha}, f_{\alpha}), (z_{\beta}, w_{\beta}) \in E, \\ (e_{\alpha\beta}, f_{\alpha\beta}) & \text{if } (x_{\alpha}, y_{\alpha}) = (e_{\alpha}, f_{\alpha}), (z_{\beta}, w_{\beta}) = (e_{\beta}, f_{\beta}) \end{cases}$$

It is clear that E' is a normal band whose structure decomposition is $E' \equiv \Sigma \{E_{\alpha} \cup \{(e_{\alpha}, f_{\alpha})\}: \alpha \in \Delta\}$. Since $E' \cap F = F'$, it follows from [4] that there exists the free product B of E' and F amalgamating F' in the class of normal bands, and that the structure semilattice of B is Γ .

Now we give a sufficient condition for a [left, right] generalized inverse semigroup amalgam to be embedded in a [left, right] generalized inverse semigroup. Simplifying the proof, we consider the case of left generalized inverse semigroups. In the other cases, we can similarly obtain the analogous results.

Let Γ be an inverse semigroup whose basic semilattice is Δ , that is, $E(\Gamma) = \Delta$. Hereafter, we denote it by $\Gamma(\Delta)$. Let S_1 and S_2 be left generalized inverse semigroups with a common orthodox semigrup U. We can assume without loss of generality that $S_1 \cap S_2 = U$. By [6], there exist inverse semigroups $\Gamma_1(\Delta_1)$, $\Gamma_2(\Delta_2)$ and $\Xi(\Lambda)$ and left normal bands $L_i \equiv \Sigma \{L_i^{\alpha} : \alpha \in \Delta_i\}$, i=1, 2, and $U \equiv \Sigma \{U_{\alpha} : \alpha \in \Lambda\}$ such that $S_i = Q(L_i \otimes \Gamma_i; \Delta_i)$, i=1, 2, $U = Q(U \otimes \Xi; \Lambda)$, $L_1 \cap L_2 = V$, $\Gamma_1 \cap \Gamma_2 = \Xi$ and $\Delta_1 \cap \Delta_2 = \Lambda$.

It is well-known [2] that the inverse semigroup amalgam $[\{\Gamma_1, \Gamma_2\}; \Xi]$ is embedded in an inverse semigroup Γ , that is, there exist monomorphisms $\phi_i: \Gamma_i \to \Gamma$, i = 1, 2, such that $\phi_1 | \Xi = \phi_2 | \Xi$, $\Gamma_1 \phi_1 \cap \Gamma_2 \phi_2 = \Xi \phi_1$. Let Δ be the basic semilattice of Γ and let Σ be the subsemilattice of generated by $\Delta_1 \phi_1 \cup \Delta_2 \phi_2$.

THEOREM 2. We use the notations above. Let Ω be a subsemilattice of Δ containing Σ . Assume that the amalgam $[\{L_1, L_2\}; V]$ is embedded in a left normal band $B \equiv \Sigma\{B_{\alpha}; \alpha \in \Omega\}$, that is, there exist monomorphisms $\psi_i: L_i \rightarrow B$, i=1, 2, satisfying $\psi_1|V = \psi_2|V$ and $L_1\psi_1 \cap L_2\psi_2 = V\psi_1$. Under each $\psi_i, L_i^{\alpha}\psi_i$ is contained in some B_{β} . Let $\lambda_i; \Delta_i \rightarrow \Omega$ be a mapping such that $\alpha\lambda_i = \beta$. If $\lambda_i = \phi_i|\Delta_i, i=1, 2$, the amalgam $[\{S_1, S_2\}; U]$ is embedded in a left generalized inverse semigroup.

PROOF. It follows from Lemma 1 that there exist a left normal band $N \equiv \Sigma\{N_{\alpha}: \alpha \in \Delta\}$ and a monomorphism $\rho: B \to N$ such that $B_{\alpha}\rho \subset N_{\alpha}$ for all $\alpha \in \Omega$. Let T be the left quasi-direct product $Q(N \otimes \Gamma; \Delta)$, and define mappings $\mu_i: S_i \to T, i=1, 2$, as follows:

$$(a_i, \alpha_i)\mu_i = (a_i\psi_i\rho, \alpha_i\phi_i)$$
 for all $(a_i, \alpha_i) \in S_i$.

Let $\gamma = \alpha_i \alpha_i^{-1}$. Then $a_i \psi_i \rho \in L_i^{\gamma} \psi_i \rho \subset L_i^{\gamma\lambda_i} \rho \subset N_{\gamma\lambda_i} = N_{\gamma\phi_i} = N_{\alpha_i\phi_i(\alpha_i\phi_i)} - 1$, and we have $(a_i, \alpha_i)\psi_i \in T$. Since ρ, ψ_i and ϕ_i are all monomorphisms, we can easily show that each μ_i is a monomorphism, i = 1, 2. Since $\psi_1 \rho | V = \psi_2 \rho | V$ and $\phi_1 | \Xi = \phi_2 | \Xi$, it is clear that $\mu_1 | U = \mu_2 | U$. Let (a, α) and (b, β) be elements of S_1 and S_2 , respectively, such that $(a, \alpha)\mu_1 = (b, \beta)\mu_2$. It follows from the definition of the μ_i that $a\psi_1\rho = b\psi_2\rho$ and $\alpha\phi_1 = \beta\phi_2$. Since ρ is a monomorphism, we have $a\psi_1 = b\psi_2$. By the definitions of

the ψ_i and the ϕ_i , we have $a = b \in V$ and $\alpha = \beta \in \Xi$. Then $S_1\mu_1 \cap S_2\mu_2 = U\mu_1$. Therefore, the amalgam [$\{S_1, S_2\}$; U] is embedded in T, and hence we have the theorem.

Let N_1 and N_2 be [left, right] normal bands with a common [left, right] normal band V. Let Δ_1 , Δ_2 and Λ be the structure semilattices of N_1 , N_2 and V, respectively. Let Ω be a semilattice in which the amalgam [$\{\Delta_1, \Delta_2\}$; Λ] is embedded. However, there does not always exist a [lift, right] normal band B in which the amalgam [$\{N_1, N_2\}$; V] is embedded and whose structure semilattice is Ω . For example, let $N_1 = \{u, v, a\}, N_2 = \{u, v, b, c\}$ and $U = \{u, v\}$ be left normal bands whose multiplications are defined as follows:

	u	v	a	. ·		u	v	b	с
и	u	u	a		u	и	u	b	b
v	v	v	a		v	v	v	С	С
а	a	а	а		b	b	b	b	b
					с	с	с	С	с

Let $\Delta_1 = \{\delta, \alpha; \delta > \alpha\}$, $\Delta_2 = \{\delta, \beta; \delta > \beta\}$ and $\Lambda = \{\delta\}$. Then $N_1 \equiv \Sigma\{N_\mu; \mu \in \Delta_1\}$, $N_2 \equiv \Sigma\{N_\mu; \mu \in \Delta_2\}$ and $V = \{N_\delta\}$ where $N_\delta = \{u, v\}$, $N_\alpha = \{a\}$ and $N_\beta = \{b, c\}$. It is obvious that the amalgam $[\{\Delta_1, \Delta_2\}; \Lambda]$ is embedded in $\Omega = \{\delta, \alpha, \beta; \delta > \alpha > \beta\}$. Assume that the amalgam $[\{N_1, N_2\}; V]$ is embedded in a left normal band $B \equiv \Sigma\{B_\mu; \mu \in \Omega\}$. It follows from [6] that there exists an element f in B_β such that ax = f for all x in B_β . Then

$$b = ub = (ub)a = uab = ab = f$$
.

Similarly, we have c = f, and hence b = c, contradiction.

In [4], we have seen that the amalgam [$\{N_1, N_2\}$; V] is embedded in a [left, right] normal band whose structure semilattice is the free product of Δ_1 and Δ_2 amalgamating Λ in the class of semilattices. Then we have the following corollary of Theorem 2.

COROLLARY 3. Let S_1 and S_2 be [left, right] generalized inverse semigroups with a common orthodox subsemigroup U. Let $\Gamma_1(\Lambda_1)$, $\Gamma_2(\Lambda_2)$ and $\Xi(\Lambda)$ be the structure inverse semigroups of S_1 , S_2 and U, respectively. Let $\Gamma[\Lambda]$ together with monomorphisms $\phi_i: \Gamma_i \to \Gamma[\psi_i: \Lambda_i \to \Lambda]$, i=1, 2, be the free product of $\Gamma_1[\Lambda_1]$ and $\Gamma_2[\Lambda_2]$ amalgamating $\Xi[\Lambda]$ in the class of inverse semigroups [semilattices]. If there exists a monomorphism $\mu: \Lambda \to \Gamma$ such that $\psi_i \mu = \phi_i | \Lambda_i$, i=1, 2, then the amalgam [$\{S_1, S_2\}$, U] is embedded in a [left, right] generalized inverse semigroup.

Teruo Імаока

References

- Clifford, A. H. and G. B. Preston, The algebraic theory of semigroups, Math. Surveys, No. 7, Amer. Math. Soc., Providence, R. I., Vol. I (1961), Vol. II (1967).
- [2] Hall, T. E., Free products with amalgamation of inverse semigroups, J. Algebra 34 (1975), 375-385.
- [3] Howie, J. M., Introduction to semigroup theory, Academic Press Inc., New York, 1976.
- [4] Imaoka, T., Free products with amalgamation of bands, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci. 10 (1976), 7–17.
- [5] ———, Free products with amalgamation of semigroups, Doctoral Dissertation, Monash University, 1978.
- [6] Yamada, M., Introduction to semigroups (in Japanese), Maki Shyoten, Tokyo, Japan, 1976.