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Humans tend to avoid mental effort. Previous studies have demonstrated this tendency using various demand-selection tasks; partici-
pants generally avoid options associated with higher cognitive demand. However, it remains unclear whether humans avoid mental effort
adaptively in uncertain and nonstationary environments. If so, it also remains unclear what neural mechanisms underlie such learned
avoidance and whether they remain the same regardless of cognitive-demand types. We addressed these issues by developing novel
demand-selection tasks where associations between choice options and cognitive-demand levels change over time, with two variations
using mental arithmetic and spatial reasoning problems (males/females: 29:4 and 18:2). Most participants showed avoidance, and their
choices depended on the demand experienced on multiple preceding trials. We assumed that participants updated the expected cost of
mental effort through experience, and fitted their choices by reinforcement learning models, comparing several possibilities. Model-
based fMRI analyses revealed that activity in the dorsomedial and lateral frontal cortices was positively correlated with the trial-by-trial
expected cost for the chosen option commonly across the different types of cognitive demand. Analyses also revealed a trend of negative
correlation in the ventromedial prefrontal cortex. We further identified correlates of cost-prediction error at time of problem presenta-
tion or answering the problem, the latter of which partially overlapped with or were proximal to the correlates of expected cost at time of choice
cue in the dorsomedial frontal cortex. These results suggest that humans adaptively learn to avoid mental effort, having neural mechanisms to
represent expected cost and cost-prediction error, and the same mechanisms operate for various types of cognitive demand.
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In daily life, humans encounter various cognitive demands and tend to avoid high-demand options. However, it remains unclear
whether humans avoid mental effort adaptively under dynamically changing environments. If so, it also remains unclear what the
underlying neural mechanisms are and whether they operate regardless of cognitive-demand types. To address these issues, we
developed novel tasks where participants could learn to avoid high-demand options under uncertain and nonstationary environ-
ments. Through model-based fMRI analyses, we found regions whose activity was correlated with the expected mental effort cost,
or cost-prediction error, regardless of demand type. These regions overlap, or are adjacent with each other, in the dorsomedial
frontal cortex. This finding helps clarify the mechanisms for cognitive-demand avoidance, and provides empirical building blocks
for the emerging computational theory of mental effort. j
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Humans tend to avoid mental effort in various situations associ-  effortful reasoning (Tversky and Kahneman, 1974). Humans also
ated with many types of cognitive demand. When making com- discount reward values when mental effort is required (Botvinick
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et al., 2009; Massar et al., 2015; Chong et al., 2017), and expend
physical effort to reduce mental effort (Risko et al., 2014). More-
over, exertion of mental effort causes fatigue effects on subse-
quent choice behavior (Blain et al., 2016). To clarify the precise
nature of mental-effort avoidance in the absence of other factors
affecting decisions, such as reward or physical effort, previous
researchers developed the demand-selection task paradigm (Bot-
vinick, 2007). In this paradigm, participants freely choose one of
two cues associated with high and low cognitive demands. By
using several variations of the task, researchers have demon-
strated the generality of cognitive-demand avoidance, to the ex-
tent that potential confounders, such as the rate of errors or the
time on task, could not fully explain (Kool et al., 2010).

In daily life, the cognitive demands of choice options encoun-
tered are likely to change over time. Work using this demand-
selection task (Kool et al., 2010) has examined the condition
where participants needed to learn the association between novel
cues and stable demand levels in every task block, finding that
most participants consistently avoided higher-demand options.
However, it has yet to be experimentally demonstrated whether
humans adaptively learn to avoid higher cognitive demand through
experience in situations where demand levels are not stationary,
i.e., when the association between cues and demand levels fluc-
tuates and changes over time.

Moreover, if humans exhibit this kind of experience-based
adaptive learned avoidance of mental effort, exploring its neural
basis is of particular interest. A number of studies have identified
neural correlates of the level of imposed cognitive demand (Bot-
vinick et al., 2001; Duncan, 2010; Mansouri et al., 2017; Shenhav
et al., 2017) or anticipated cognitive demand (Sohn et al., 2007;
Krebs et al., 2012; Vassena et al., 2014), the avoidance rating of
experienced cognitive demand (McGuire and Botvinick, 2010), or
the mental effort-discounting of reward values (Botvinick et al.,
2009; Massar et al., 2015; Chong et al., 2017). However, the results of
these studies are not yet sufficient to understand the neural mecha-
nisms for adaptive learned avoidance of mental effort. Significantly,
the previous imaging studies did not examine brain activity during
learned avoidance based on trial-by-trial experience.

Furthermore, to clarify general neural mechanisms for mental-
effort avoidance (i.e., those which operate regardless of demand
type), it is necessary to test more than one type of cognitive demand.
The previous imaging studies on anticipation or avoidance of cog-
nitive demand tested only a single type of cognitive demand in each
study (Sohn et al., 2007; Botvinick et al., 2009; Krebs et al., 2012;
Vassena et al., 2014; Massar et al., 2015; Chong et al., 2017). There-
fore, it remains unclear whether the same neural mechanisms un-
derlie avoidance of various types of cognitive demand.

To address these questions, we formed two hypotheses. First,
we hypothesized that humans adaptively learn through experi-
ence to avoid an option that presently requires higher cognitive
demand in the situation where the demand level of options
changes over time. This learning process was assumed to be ap-
proximated by reinforcement-learning models in which the ex-
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pected cost of mental effort is updated according to prediction
error (PE). Second, we hypothesized that the expected cost esti-
mated from the model is represented in the same brain regions
regardless of the types of cognitive demands. To test these hypothe-
ses, we developed two tasks requiring different cognitive-demand
types where associations between choice options and cognitive-
demand levels change over time. We fitted participants’ choices us-
ing various models, conducted model comparisons, and explored
brain regions representing the expected mental effort cost and cost-
prediction error (CPE) through model-based fMRI analyses.

Materials and Methods

Participants

There were 33 participants (four females; mean age, 25.5 = 5.4 years) in
Experiment 1 and 20 participants (two females; mean age, 24.7 = 6.2
years) in Experiment 2. Six participants took part in both experiments.
We paid all participants equally with book store gift cards (worth ¥6000)
for their participation. No participants were taking any medicine or had
prior history of neuropsychiatric disorders. All participants were right-
handed and native Japanese speakers. Informed written consent was ob-
tained from all participants before the experiment. The present study was
approved by the ethics committee of the Graduate School of Medicine,
the University of Tokyo.

Behavioral tasks

We include a method summary for behavioral tasks and analyses in the
Results, and here we describe all the details. We conducted two experi-
ments. These had the same structure but used different types of problems
requiring different kinds of cognitive activity (Fig. 1). Specifically, we
used mental division (arithmetic) problems in Experiment 1 and mental
cube-folding (spatial reasoning) problems in Experiment 2. For both
experiments, we prepared problems with two levels of cognitive demand,
i.e., high-demand and low-demand problems.

In Experiment 1, we required participants to divide a five-digit num-
ber by 7 and report whether the remainder was small (=3) or large (=4)
via a button press with no time limitations. In low-demand problems, the
dividend (e.g., 35426) consisted of two consecutive two-digit numbers
that were multiples of 7 followed by a single one-digit number from 1 to
6. In contrast, the dividend of high-demand problems did not contain
any numbers that were multiples of 7 in mental calculation processes
(e.g., 48106). More specifically, the set of low-demand problems con-
sisted of seven patterns for the digits representing ten-thousands and
thousands (14, 21, 28, 35, 42, 49, 56, 63, 70), seven patterns for the digits
representing hundreds and tens (7, 14, 21, 28, 35, 42, 49, 56, 63), and six
patterns for the digits representing ones, and a combination of them was
pseudorandomly selected in each trial. Meanwhile, dividends in higher-
demand problems satisfying the above-mentioned rule were selected on
each trial by using a pseudorandom function. The five-digit numbers and the
answer choices were presented as gray characters on a black background.

In Experiment 2, we required participants to judge whether a concur-
rently presented 3D cube with three visible colored faces matched an
unfolded cube with all six faces and colors (purple, red, yellow, green, sky
blue, and deep blue), and report the answer via a button press with no
time limitations. The difference between low-demand and high-demand
problems was whether the three faces shown on the 3D cube were adja-
cent on the unfolded cube. There were in total 78 patterns (match, 39;
nonmatch, 39) for low-demand problems and 120 patterns (match, 60;
nonmatch, 60) for high-demand problems, and in each trial, one prob-
lem was pseudorandomly selected from these patterns with duplication
permitted. The set of high-demand problems used was selected from all
the possibilities so that the correct ratio was expected to be =0.8 based on
the results of pilot experiments. The 3D and unfolded cubes and the
answer choices (match, circle; nonmatch, cross) were presented on a
white background. The locations of the answer choices (circle and cross),
in either the left-bottom or right-bottom, were fixed for each participant
and counter-balanced across participants.

In both Experiments 1 and 2, at the start of each trial, two arrow cues
appeared, one on the left and the other on the right of the screen (via the
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Figure 1.  Behavioral paradigm. 4, Participants chose an arrow cue at the start of each trial.
After the choice, a problem was presented. In Experiment 1 (Exp. 1), the problem was mental
arithmetic: to divide a five-digit number by 7 and report whether the remainder was small or
large. In Experiment 2 (Exp. 2), the problem was spatial reasoning: to judge whether a 3D cube
matched an unfolded cube. In both experiments, there were high-demand problems and low-
demand problems, whose presentation rates were associated with the arrow cues and varied
over time. B, An example of the presentation rates of low-demand problems (moving average
of latest 5 trials) associated with the left arrow-cue (light gray) and the right arrow-cue (dark

gray).

overhead mirror). Participants were asked to choose one of them, with-
out time restriction, to specify whether to solve the “left-arrow” problem
or the “right-arrow” problem on that trial (without seeing the problem
itself). Three seconds after participants chose one of the arrow cues, the
chosen problem was presented in the center of the screen. Participants
were asked to answer the problem (no time limitation), and when a
choice was made by a button press, an intertrial interval started, followed
by the next trial. The intertrial intervals were jittered: 2.5, 4, or 5.5 s. We
asked participants to answer problems as fast and accurately as possible,
giving weight to the accuracy. We further instructed the participants that
if they felt unsure about their answer, they were asked to redo the mental
calculation or cube-folding until they were sure. We did not provide
correct/incorrect feedback to participants so as to minimize the possible
effects of mistakes on the way participants made decisions.

The probability that a high-demand or low-demand problem ap-
peared depended on whether participants chose the left-arrow cue or the
right-arrow cue at the start of each trial, and the probabilistic associations

J. Neurosci., March 7, 2018 - 38(10):2631-2651 * 2633

between each of the cues and high-demand and low-demand problems
changed over trials (Fig. 1B). Specifically, when programming the task,
we divided the entire 180 trials into six blocks. In the first, third, and fifth
blocks, the left and right arrow-cues were associated with low-demand
problems in 80 and 20% of trials within each block, respectively. In the
remaining (i.e., second, fourth, and sixth) blocks, the cue—demand asso-
ciations were reversed, i.e., the left and right arrow-cues were associated
with low-demand problems in 20 and 80% of trials within each block,
respectively. The length (number of trials) of the first, third, and fifth
block was 20, 30, or 40 trials; their order was pseudorandomized for each
participant. The same was applied to the length of the second, fourth, and
sixth block. Notably, participants were not informed of when the task
entered a new block, or even of the existence of these different blocks.

In both Experiments 1 and 2, the low-demand and high-demand
problems had very similar visual properties and the same task rule, so the
differences between them were limited to the level of cognitive demand.
We instructed the participants that there were two types of problems and
the probabilities that the two types appeared varied across trials individ-
ually in the left-arrow problems and the right-arrow problems. As de-
scribed above, the ratios of low-demand and high-demand problems in
the left-arrow and right-arrow problems in each block were symmetric,
i.e., either 80 and 20% or 20 and 80%. However, the moving average rates
of the problem types were not generally symmetric, as shown in Figure
1B, and so we expected that the participants felt that the left and right
probabilities of the two types varied individually as instructed. In the
initial instruction about the two problem types, we did not explain that
the difference between the two types was in the level of cognitive de-
mands (but see below for our communications with participants during
instruction and practice sessions).

Before scanning, participants received instructions and practiced the
tasks for 5-20 trials in Experiment 1 and 30-60 trials in Experiment 2 to
get acclimated to the tasks and recognize that there were two types of
problems. During the practice session(s), we continued to give oral in-
structions to and accept questions from participants. After the practice
session(s), we asked the participants to explain what they thought was the
difference between the two types. When participants’ reports reflected
the actual difference in the problem content or when they said that they
thought the difference was in the level of difficulty or largely similar
things, we told them that we could not say the answer was correct or not.
When the difference that participants reported was wildly incorrect, we
told them that the answer was wrong and let them practice more, and
when the participants subsequently reported things closer to reality, we
(sometimes) said that the answer was not largely incorrect. Notably, to
ensure that participants made their choices freely and without bias from
us, we never told participants to avoid high-demand problems. Also, we
instructed participants that their choices did not affect how fast they
could finish the experiments so as to minimize the possible effects of this
factor on participants’ decision making.

In the scanner, in both Experiments 1 and 2, there were in total 180
trials, which were divided into four sessions, each consisting of 45 trials
(note that these sessions were different from the abovementioned six
blocks). In each session, when a participant completed (chose an arrow
cue and answered the problem) up to the 10th, 20th, 30th, and 45th (i.e.,
thelast) trial in the session in <160, 320, 480, and 750 (in Exp. 1) or 900 (in
Exp. 2) s, respectively, a rest period was imposed until 160, 320, 480, and 750
(in Exp. 1) or 900 (in Exp. 2) s had passed so as to make the progression of
trials as independent as possible from participants’ choices. We instructed
participants that the left and right probabilities of each type of problems
would change continuously across sessions.

Image acquisition

We used a Siemens 3T Trio scanner (Brain Science Institute, Tamagawa
University). When scanned, participants wore a head strap with memory
foam to reduce their head movements. Participants viewed the experi-
mental stimuli via a mirror reflecting the projector screen. Functional
images were acquired in an ascending order and by using T2-weighted
echo planar imaging sequence [repetition time (TR) = 2500 ms; echo
time (TE) = 25 ms; field of view (FOV): 192 X 192 mm; in-plane reso-
lution: 3 X 3 mm; acquisition matrix, 64 X 64; 42 slices with a slice
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Effects of the experienced demand at two trials before on the current choice. The paired bars indicate the across-participants average proportions that the current (k-th) choice was the

same as the choice at two trials before [(k— 2)-th] when the experienced demand at the (k — 2)-th trial was high (left bar) or low (right bar), for each case sorted by the choice at the (k — 1)-th
trial [same as (a, b) or opposite (¢, d) from the (k — 2)-th choice] and the experienced demand at the (k — 1)-th trial [high (a, c) or low (b, d)]in Exp. 1 (n = 24; A) or Exp.2 (n = 17; B). The average
was taken across the participants who were judged as demand-avoiding based on the effects of the experienced demand at the previous trial (see Results). The error bars indicate the mean = SEM.
The dots connected by lines indicate the data of individual participants who had paired data, while the crossesindicate the data of individual participants who lacked one of the paired data; both types
of participants were included in the calculation of the average indicated by the bar heights. The paired data, represented by the dots, were compared by paired ¢ test, and the cases indicated by
asterisk were significant (p << 0.05): Aa, p = 0.01,d = 0.73, 153y = 2.89; Ab, p = 0.02,d = 0.46, t 53, = 2.59; Ba, p < 0.01,d = 1.27, t;) = 4.89; B¢, p = 0.01,d = 1.13, 1) = 2.98.

thickness of 3.0 mm with no interslice gap]. In Experiment 1, =305
volumes were acquired, but just 305 were used for fMRI analysis in each
of the four sessions for each participant. In Experiment 2, =365 volumes
were acquired, but just 365 volumes were used for fMRI analysis in each
of the four sessions for each participant. The first five scans in each
session were discarded to allow for steady-state magnetization. We ac-
quired high-resolution T1-weighted images using a MPRAGE sequence
for all participants (TR = 2000 ms; TE = 1.98 ms; in-plane resolution,
1 X 1 mmy; slice thickness, 1 mm).

Experimental design and statistical analysis

Behavioral analysis. In both experiments, one participant was excluded
from analysis due to low correct rates (<80% for both types). We first
tested whether each participant chose the opposite option (left or right)
after solving a high-demand problem more frequently than after solving
alow-demand problem. Specifically, we conducted a x? test on the con-
tingency table consisting of the problem types (high or low demand) of
the previous trials and the choices (same or opposite) of the current trials
for each participant, and judged that s/he avoided high-demand prob-
lems if the frequency was significantly different (p < 0.01) and the ad-
justed standardized residuals were negative in the high X same and low X
opposite cells of the contingency table. We next analyzed the effect of the
demand experienced two trials prior (i.e., the trial before the previous
trial) on the choice at the current trial for participants who showed
avoidance of high-demand problems (judged through the x? test as de-
scribed above). Specifically, we compared the proportion that the k-th
choice was the same as the (k — 2)-th choice (k = 3,4, ..., 180) between
the cases where the experienced demand at the (k — 2)-th trial was high
or low by using a paired t test as a planned comparison, for each case
sorted by the (k — 1)-th choice (same as or opposite from the (k —2)-th)
and the (k — 1)-th experienced demand (high or low). We sorted the data
by the (k — 1)-th choice and demand because otherwise spurious depen-
dence could appear, i.e., the rate that the k-th choice was the same as the
(k — 2)-th choice could differ depending on the (k — 2)-th demand even
if choice was made depending solely on the choice and demand on the
previous trial. It was generally rare that participants chose the opposite
side after experiencing low demand, and there were participants who did
not have data for the cases that included such a pattern (Fig. 2, crosses).
Those unpaired data were omitted from the ¢ test. As a measure of the
effect size, we reported Cohen’s d calculated as follows:

A
Vst +59)/2

where w,, w, and s,, s, are the means and sample SDs of each set of the
paired data, respectively. The SEM was calculated by dividing the SD
[defined with 1/ \/; (Figs. 2, 8) or 1/y/n — 1 (otherwise)] by \/;, where
n was the number of data included.

Model fitting, comparisons, simulations, and analyses of simulated
behavioral data. We fitted the choices of the participants judged to have
avoided high-demand problems in the x? test using PE-based models
(O’Doherty et al., 2007; Daw, 2011). We assumed that participants re-
tained the expected cost (ExpectedCost) of mental effort for the left-arrow
and right-arrow problems [ExpectedCost;,;(k) and ExpectedCost,,,,(k) (k =
1,2,...,180: trials)]. Ateach trial k, either the left or right arrow was assumed
to be chosen with the probabilities P,.q (k) and P, (k), respectively, depend-
ing on the expected cost, expressed as follows:

Pleft(k) =

exp(—pB + ExpectedCost;;,(k))
exp(—pB - ExpectedCosty,;(k)) + exp(—B - ExpectedCost,;q,(k))’

Pright(k) =

exp(—pB + ExpectedCost, g, (k)
exp(—pB - Expected COStlgft(k)) + exp(—pB - Expect@dCOStright(k))

=1- Plaft(k))

where B was a free parameter called the inverse temperature. If B was
positive, the option with lower ExpectedCost was more frequently chosen,
and the size of 3 represented the degree of exploitation over exploration.
After solving a problem, the CPE was assumed to be calculated as follows:
CPE(k) = ActualCost(k) — ExpectedCosty,,;..(k), where ActualCost(k)
was the actual cost of the solved problem, and Choice(k) was Left or Right
depending on which was chosen. As ActualCost, we considered five cases:
(1) time spent solving the problem (solve time; in seconds) in individual
trials [PE-Solve-Time (ST) model]; (2) demand level of the problem;
more specifically, 1 and 0 for high-demand and low-demand problems,
respectively [PE-High-Low (HL) model]; (3) incorrect solving; more



Nagase et al. @ Neural Mechanisms for Mental Effort Avoidance

specifically, 1 and 0 for incorrect and correct solving, respectively (PE-
Incorrect-Correct (IC) model; (4) sum of (1) and (3), with a weighting
parameter for (3) (Wj,correc)> 1-€.» SOlve-time + Wy oo * InCOrTECt-
solving (PE-ST-IC model); and (5) sum of (2) and (3), with a weighting
parameter for (3) (W;,correct)> 1-€., demand-level + wy ..., incorrect-
solving (PE-HL-IC model).

ExpectedCost for the chosen option was then assumed to be updated as
follows: ExpectedCosty,p;coy(k + 1) = ExpectedCosty,picoy(k) + a *
CPE(k), where a was a free parameter representing the learning rate.
ExpectedCost for the unchosen option was assumed to be unchanged.
ExpectedCost for the option chosen at the first trial [ExpectedCost ,,.,,(1)] was
assumed as follows, depending on the five cases for ActualCost: (i) the
mean solve time across all the trials in case (1) above (i.e., for the PE-ST
model); (ii) 0.5 in case (2) (for the PE-HL model); (iii) the mean incor-
rect rate in case (3) (for the PE-IC model); (iv) sum of (i) and (iii) with
the weighting parameter for (iii) in case (4) (for the PE-ST-IC model);
and (v) sum of (ii) and (iii) with the weighting parameter for (iii) in case
(5) (for the PE-HL-IC model).

ExpectedCost for the unchosen option at the first trial [Expected-
Cost,enosen(1)] was assumed to be either a free parameter or equal to
ExpectedCost o,,.,,(1) (i.e., we examined both cases for each of the five
cases for ActualCost): in total 5 X 2 = 10 models). Because the practice
session(s) was rather short and we continued to give oral instructions to
and accept questions from participants during the practice session(s), we
considered it inappropriate to use performance measures during the
practice session(s) for the initial values, and therefore we instead set the
initial values as above.

In addition to these cost-based PE models, we also considered a PE
model assuming that rest time in the scanner was a reward (ActualRe-
ward) for participants and they made choices based on the expectation of
this reward (ExpectedReward) and updated ExpectedReward by reward
PE (RPE; i.e., participants may have tried to choose low-demand prob-
lems so as to maximize “inactive time”). In this model, referred to as the
PE-Rest model, ActualCost, ExpectedCost, and CPE were replaced with
ActualReward, ExpectedReward, and RPE, respectively, and also B was
replaced with — . ActualReward was assumed to be the rest time (in
seconds) from problem answer in the k-th trial to arrow presentation
in the k + 1-th trial or to the end of session when the k-th trial was the last trial in
the session. ExpectedReward,,,, (1) and ExpectedReward,,,, ;,...(1) were as-
sumed to be 4 s, given that the intertrial interval was 2.5, 4, or 5.5 s. We
further considered a model combining this PE-Rest model and the best of
the 10 cost-based PE models (which was the PE-HL model with Expect-
edCost . nosen(1) = ExpectedCostp,.,(1): see Results). In this model,
referred to as the PE-HL-Rest model, ExpectedCost and ExpectedReward
were assumed to be updated with individual learning rates (o, and
O evara)> and choice was made based on the expected value that com-
bined the expected cost and reward in a softmax manner with an inverse
temperature B. The expected value was expressed as follows: Expected-
Valuey (k) = W,oara * ExpectedReward (k) — ExpectedCosty(k), where X
was Left or Right and w,,,,q Was a free weighting parameter. The values
of ExpectedReward and ExpectedCost at the first trial were assumed to be
the same as those in the PE-Rest model and the PE-HL model with
ExpectedCost,,, j0sen(1) = ExpectedCost oo (1).

In addition to the PE models, we also examined probabilistic Win-
Stay-Lose-Shift (pWSLS) models, in which Win or Lose was followed by
a selection of the same or different option, respectively, with exceptions
with probability p that was a free parameter. We further examined full
probabilistic-selection (PS) models, in which Win or Lose was followed
by a selection of the same option with probabilities a and b, respectively,
which were free parameters. For either type of model, Win and Lose were
defined in two ways: (1) experiences of low-demand and high-demand
problems, respectively (pWSLS-HL model and PS-HL model), or (2) solving
correctly and incorrectly, respectively (pWSLS-IC model and PS-IC model).

For each of these models, we explored a set of free parameters that
maximized the log-likelihood, expressed as follows:

logL = log{Hk:1:180 Pchoice(k)(k)}

for each participant by using an optimization function (fminsearch) of
the Matlab Optimization Toolbox and also a grid approach [more spe-
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cifically, we conducted both exploration, using fminsearch assuming a
set of initial parameters, and direct calculation of logL at various param-
eter values (grid points), and combined the results: see the codes for the
analysis that is planned to be uploaded to a public database after publi-
cation]. For the pWSLS and PS models, Py ;..(1) was assumed to be 0.5.
To compare the goodness of fit of each model while taking into account
the penalty for a larger number of parameters, we calculated the Bayesian
information criterion (BIC) as follows: BIC = —2 logL + glog(180),
where g was the number of free parameters.

Using the best-BIC PE model [PE-HL model with Expected-
Cost,,,cnosen(1) = ExpectedCost ., (1); see Results], pWSLS-HL model,
and PS-HL model, we performed simulations of task execution (180
trials) with the best-fit parameters for each individual demand-avoiding
participant in each experiment. Specifically, for each demand-avoiding
participant (judged based on the effects of the experienced demand at the
previous trial through the above-mentioned y? test) in each experiment,
we extracted the best-fit parameters for each of the three models. Then,
using these parameters and the actual sequences of low-demand and
high-demand problems for the left-arrow and right-arrow cues used in
the experiments, we generated 180 (number of trials) choices 100 times
(i.e., performed 100 simulation runs) by using different sets of pseudo-
random numbers in Matlab. We then analyzed the effect of the demand
experienced two trials prior on the choice at the current trial in the
pooled simulated choices for each participant. Specifically, we calculated
the proportion that the k-th choice was the same as the (k — 2)-th choice
when the (k — 2)-th demand was high or low, for each case sorted by the
choice and demand on the (k — 1)-th trial, in the pooled simulated choices
[178 (the initial two trials were omitted from the total 180 trials) X 100 =
17,800 simulated choices] corresponding to each participant.

Functional imaging analysis. We used SPM8 (http://www.fil.ion.ucl.ac.
uk/spm/) for fMRI data processing and analysis. We realigned the vol-
umes to the first images using a six-parameter rigid-body transforma-
tion. We corrected timing differences for each slice and normalized
individual images. We applied a Gaussian kernel with a full-width at
half-maximum of 8 mm for spatial smoothing. After excluding six par-
ticipants from Experiment 1 and three participants from Experiment 2
with >3 mm head movements from those who met the performance
criterion and showed avoidance of high-demand problems (see Results),
we conducted general linear model (GLM) analysis of BOLD data (Exp. 1,
n = 21; Exp. 2, n = 15). As pointed out by Mumford et al. (2015), when
multiple parametric modulations exist for the regressor at the same time,
SPM8 performs orthogonalization by default. We turned off this default
operation by commenting out line 228 of spm_get_ons.m and lines 277-279
of spm_fMRI_design.m, which call spm_orth.m, in reference to http://
imaging.mrc-cbu.cam.ac.uk/imaging/ParametricModulations (but the
line numbers that were commented out differed from those described on
this website). All individual and group analyses in each experiment were
done at the whole-brain level.

At the individual level, we examined the following three GLMs (Fig. 3)
designed to explore the correlates of ExpectedCost for the chosen option
(referred to as ExpectedCost y,,..,,) and the CPE, adjusted for the response
time for choosing an arrow (referred to as RT,,,,..), actual demand level
of the problem (referred to as problem-demand), and solve time. These
GLMs included the regressors at arrow-cue presentation with parametric
modulations by ExpectedCost ., (derived from the best-BIC PE mod-
el; see Results) and RT,,,;..» regressors with the duration from problem
presentation to answer with parametric modulations by problem-
demand (0 and 1 for low-demand and high-demand problems, respec-
tively) and solve time, regressor with parametric modulation by CPE at
the time of problem presentation (GLM1), midpoint between problem
presentation and answer (GLM2), or time of answer (GLM3), and re-
gressors for motor response (at both arrow choice and answer in GLM1
and GLM2 and only at arrow choice in GLM3) and head movements. We
also considered variants of GLM1, which are described in Results. For
each of these GLMs, we convolved each regressor with the SPM8’s ca-
nonical hemodynamic response function and performed one-sample ¢
tests for individual maps for the regressor(s) of interest across 21 and 15
participants in Experiments 1 and 2, respectively. We calculated the vari-
ance inflation factor (VIF) using the Canlab Matlab toolboxes (https://
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Figure 3.

GLMs and regressors used in the fMRI analyses. We explored the correlates of the expected cost of mental effort for the chosen option (ExpectedCost ,,,,) and the (PE estimated in the

model by using three GLMs (GLM1-GLM3), which assumed three different possibilities regarding the time of CPE generation/representation. Each of these GLMs included the regressors at arrow-cue
presentation with nonorthogonized parametric modulations by Expected(ost s, and RT .. Tegressors starting at problem presentation and having the duration of solve-time with nonor-
thogonized parametric modulations by demand level (1 and 0 for high-demand and low-demand problems, respectively) and solve time, regressors for motor response at both arrow choice and
answer (GLM1 and GLM2) or at arrow choice (GLM3), regressors for head movements (not illustrated here), and regressor at problem presentation (GLM1), midpoint between problem presentation

and answer (GLM2), or answer (GLM3) with parametric modulation by CPE.

github.com/canlab/CanlabCore) and judged whether collinearity of the
regressor of interest was at a tolerable level considering that 5 or 10 is
typically used as a cutoff value of VIF for the collinearity issue (Mumford
etal., 2015).

At the group level, we reported correlates detected by GLM1-GLM3 in
each experiment with a threshold of cluster-level familywise error (FWE)
corrected p < 0.05 and voxel-level uncorrected p < 0.001 for the cases
where at least one cluster was found with this threshold, or more specif-
ically, for the positive correlates of ExpectedCost ., in GLM1-GLM3 in
both experiments, negative correlates of ExpectedCost .., in GLM1—
GLM3 in Experiment 1, positive correlates of CPE in GLM1-GLM3 in
both experiments, and negative correlates of CPE in GLM1 and GLM3 in
Experiment 2. For the other cases where results for individual experi-
ments were reported, or more specifically, for the negative correlates of
ExpectedCost .., in GLM1-GLM3 in Experiment 2 and negative
correlates of CPE in GLM1-GLM3 in Experiment 1 and in GLM2 in
Experiment 2, we reported correlates with a threshold of voxel-level un-
corrected p < 0.001 with voxel-size of =5 if we found any.

To detect common regions in the correlates found in Experiments 1
and 2, we conducted conjunction analyses, to which we applied a binary
mask. We used two masks with different thresholds: the strict mask and
the relaxed mask. The strict mask consisted of common voxels between

the results of Experiments 1 and 2 with the threshold of cluster-level FWE
corrected p < 0.05 and voxel-level uncorrected p < 0.001. The relaxed
mask consisted of common voxels with the threshold of voxel-level un-
corrected p < 0.01 (which mask was used for which analyses is described
in Results and tables; the relaxed mask was used when no cluster was
detected with the threshold of the strict mask in either experiment or no
cluster was detected as a result of conjunction analysis with the strict
mask). We then reported correlates detected in the masked conjunction
analyses with a threshold of cluster-level uncorrected p < 0.05 and voxel-
level uncorrected p < 0.001.

Results

Behavioral tasks and analyses

We conducted two experiments. These had the same task struc-
ture but used different types of problems that imposed different
kinds of cognitive demand (Fig. 1A). In Experiment 1, we used
mental arithmetic problems. We asked participants to divide
a five-digit number by 7 and report whether the remainder was
small (=3) or large (=4). In Experiment 2, we used spatial reason-
ing (mental cube-folding) problems. We asked participants to judge
whether a 3D cube with three visible colored faces matched a con-
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BIC scores of the models fitted to the choices of demand-avoiding participants. A, The bars indicate the mean == SEM of BIC scores for 10 variants of PE models in Experiments 1 (Exp.

1) and 2 (Exp. 2). The horizontal axis indicates the 10 PE models: five assumptions on ActualCost [Solve-Time (ST), High-Low (HL), Incorrect-Correct (IC), ST-IC, and HL-IC: see the Results for

details] X 2 assumptions on ExpectedCost,,, pysen

1) [free parameter (light-gray bars) or equal to ExpectedCost ,,,(1) (dark-gray bars)]. The black dots connected with the lines indicate individual

demand-avoiding participants. B, Results for the additionally considered PE models that regarded the rest time in the scanner as reward for participants. €, Results for pWSLS models and PS models.

currently presented unfolded cube or not. For both experiments, we
prepared two sets of problems that required different levels of
cognitive demand, i.e., low-demand problems and high-demand
problems. In Experiment 1, the dividend in low-demand prob-
lems (e.g., 35426) consisted of two consecutive two-digit num-
bers that were multiples of 7 followed by a single one-digit
number from 1 to 6. Meanwhile, the dividend in high-demand
problems (e.g., 48106) did not contain any numbers that were
multiples of 7. In Experiment 2, the difference between low-
demand and high-demand problems was whether the three faces
shown on the 3D cube were neighboring on the unfolded cube. In
both experiments, the probability that a high-demand or low-
demand problem appeared at each trial depended on a cue that
participants chose at the start of the trial: there were two cues, the
left and right arrows, and the probabilistic associations between
each of the cues and high-demand and low-demand problems
changed across trials, such as shown in Figure 1B. After partici-
pants chose a cue, a problem, either high or low demand, was
presented, and they were asked to answer it. There was no time
limit for response.

There were 33 participants (four females; mean age, 25.5 = 5.4
years) in Experiment 1 and 20 participants (two females; mean
age, 24.7 = 6.2 years) in Experiment 2. Six participants took part
in both experiments. Most of the participants were males, so the

results cannot with certainty be generalized to females. The response
time for choosing an arrow cue (RT;,,;..) was 0.95 = 0.08 s (mean =
SEM) in Experiment 1 and 1.25 = 0.21 s in Experiment 2. The mean
correct answer rates for high-demand and low-demand problems
were 0.94 = 0.008 (mean = SEM) and 0.98 * 0.010, respectively,
in Experiment 1, and 0.92 * 0.024 and 0.99 * 0.004 respectively,
in Experiment 2. In both experiments, correct answer rates for
low-demand problems were higher than those for high-demand
problems on average (paired t test, 5,y = —3.0,p = 4.9 X 10 7,
inExp. 15ty = —2.7,p =13 X 10 2 in Exp.2). The mean solve
times (i.e., times for problem solving) for high-demand and low-
demand problems were 10.00 * 0.70 s (mean = SEM) and 1.86 =
0.09 s, respectively, in Experiment 1, and 12.44 * 1.13 s and
4.60 * 0.32 s, respectively, in Experiment 2. In both experiments,
participants took longer for high-demand problems on average
(paired t test, £(3,, = 12.5,p = 8.1 X 10 M in Exp. 1; t(19) = 8.3,
p=1.1X1077,in Exp. 2). To ensure the quality of data used, we
set a performance criterion for inclusion. Specifically, we as-
sumed a participant faithfully executed the problems if the
correct answer rate was =0.8 for either low-demand or high-
demand problems. As a consequence, one participant in each
experiment was excluded from the following analyses.

As an initial analysis of the participants’ learning and choice
behavior, we inferred whether each participant learned to avoid
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Table 1. BIC scores and best-fit parameters of the models fitted to the choices of demand-avoiding participants

Experiment 1 (n = 24) Experiment 2 (n = 17)
Models BIC/parameters Median 25th percentile 75th percentile Median 25th percentile 75th percentile
A, PE models
ST BIC 95.1 84.0 114.8 103.1 96.1 108.8
EC,nehosen1): free ECnchocen) 7.51 4.69 10.61 11.05 6.44 13.16
«a 0.65 0.53 0.85 0.41 0.32 0.60
B 0.29 0.17 0.61 0.28 0.18 0.42
ST BIC 913 81.8 109.7 99.7 95.0 106.3
EC,nehosen(®) = EChosen(l) a 0.66 0.57 0.87 0.53 0.38 0.65
B 0.25 0.16 0.53 0.25 0.17 0.41
HL BIC 833 64.2 106.5 80.7 67.9 97.0
ECynchosen(1): free ECinchosen(1) 0.75 0.67 0.87 0.75 0.71 0.96
e 0.84 0.72 0.96 0.85 0.63 0.92
313 2.3 449 332 247 448
HL BIC 78.5 59.2 101.4 81.9 63.3 93.4
ECuncnosen(T) = EChosen(]) @ 0.80 0.1 0.96 0.87 0.64 0.97
B 313 2.3 446 3.15 244 432
IC BIC 135.2 128.6 138.0 130.9 126.8 134.9
ECynchosen(1): free ECnchosen(1) 0.70 0.49 1.11 0.90 0.41 129
e 0.23 0.15 0.38 0.20 0.10 0.40
B 218 —4.15 3.14 243 —0.44 3.86
IC BIC 130.7 123.9 134.0 126.2 1245 130.8
ECuncnosen(T) = EChosen(]) @ 0.29 0.18 0.46 0.20 0.12 0.32
2.90 0.72 339 3.60 2.24 431
ST-IC BIC 100.3 85.6 119.7 108.0 99.2 114.0
EC,nehosen(1): free ECnchocen() 7.59 4.70 10.70 11.30 6.44 14.44
a 0.65 0.53 0.84 0.40 0.32 0.60
B 0.29 0.17 0.60 0.28 0.18 0.40
Wincorrect 0.67 0.00 6.96 0.00 0.00 0.00
ST-IC BIC 96.4 83.4 114.6 104.1 98.3 L)
ECunchosen(!) = ECchosen(1) e 0.67 0.57 0.86 0.53 0.38 0.65
B 0.26 0.16 0.53 0.26 0.17 0.36
W comect 0.00 0.00 3.14 0.00 0.00 1.28
HL-IC BIC 88.5 69.2 111.6 85.9 73.1 102.1
EC,nchosen(1): free ECynenosenl) 0.75 0.67 0.89 0.76 0.70 0.96
« 0.83 0.72 0.93 0.85 0.64 0.92
B 3.38 218 4.40 3.16 2.36 4.58
Wincorrect 0.00 0.00 0.14 0.00 0.00 0.08
HL-IC BIC 83.7 64.2 106.5 843 68.5 98.6
ECunenosen(T) = EChosen(1) @ 0.80 0.1 0.96 0.87 0.64 0.97
B 3.13 2.3 436 3.15 244 432
Wincorect 0.00 0.00 0.01 0.00 0.00 0.00
B, PE-Rest models
Rest BIC 1323 129.0 134.0 131.0 125.5 1321
a 0.40 0.06 0.97 0.12 0.06 0.45
B 0.01 —0.05 0.1 0.05 —0.05 0.12
HL-Rest BIC 88.7 69.2 103.8 92.8 73.6 109.0
Qost 0.80 0.68 0.96 0.87 0.63 0.97
Qrepard 0.00 0.00 0.03 0.00 0.00 0.01
—3.21 —4.54 —245 —3.14 —432 —224
Wieward —0.03 —043 0.60 0.76 —035 2.02
C, pWSLS/PS models
pWSLS-HL BIC 929 79.0 110.8 97.1 9.1 109.4
p 0.19 0.14 0.27 0.21 0.18 0.27
pWSLS-IC BIC 111 88.6 1247 100.9 92.7 110.8
p 0.76 0.67 0.85 0.80 0.76 0.83
PS-HL BIC 69.4 57.8 87.4 70.1 54.6 90.2
a 0.95 0.91 0.98 0.97 0.91 0.98
b 0.47 0.30 0.58 0.48 0.46 0.58
Ps-IC BIC 1111 88.6 1247 100.9 92.7 110.8
a 0.76 0.67 0.85 0.80 0.76 0.83
b 0.50 0.41 0.55 0.66 0.50 0.77

This table shows the median, 25th, and 75th percentiles of BIC scores and best-fit parameter estimates for 10 variants of PE models (5 assumptions on ActualCost [ Solve-Time (SV), High-Low (HL), Incorrect-Correct (IC), ST-IC, and HL-IC] X
2assumptions on EC,,posen(1) [free parameter or equal to EC,p .., (1)]), two types of additionally considered PE models (Rest and HL-Rest models), and pWSLS and PS models. EC,y, 55, the expected cost for the unchosen option; ECposens
the expected cost for the chosen option; e, learning rate; (3, inverse temperature; Wi, o,recy Weighting parameter; c, the learning rate for cost; ot,e,arq, the leaming rate for reward; w,q,.q Weighting parameter; p, probability to select
the different and same option after Win and Lose, respectively; a, probability to select the same option after Win; b, probability to select the same option after Lose.
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participant (in Exp. 1) were as follows: [learning rate, inverse temperature] = [0.68, 3.62]).

high-demand problems from the dependence of choices on the
previous trials. We reasoned that participants wanting to avoid
high-demand problems (whether consciously or not) would stay
at the same side (left or right) if a low-demand problem appeared
in the previous trial but would rather switch to the opposite side
if a high-demand problem appeared. We thus examined whether
such a bias existed by conducting a y* test [on 2 X 2 factors: problem
types (high or low demand) in the previous trial X choice (same side
or opposite side) in the current trial]. In the results, significant
bias (p < 0.01) existed in 26 of 32 (81.3%) and 17 of 19 (89.5%)
participants in Experiments 1 and 2, respectively. Among these
cases, 24 of 32 (75.0%) and 17 of 19 (89.5%) participants in
Experiments 1 and 2, respectively, showed avoidance of high-
demand problems. This indicates that these participants (i.e., the
majority) learned to avoid high-demand problems in the situa-
tion where the probabilistic associations between cues and de-
mand levels changed over time. Overall, these demand-avoiding
participants in Experiments 1 and 2 experienced low-demand
problems in 63.6 * 1.0% (mean = SEM) and 64.6 * 1.2%,
respectively, and chose the same option as in the previous trial in
74.9 * 2.1% and 79.5 % 1.8% (in Trials 2-180), respectively. On
the other hand, the remaining two participants in Experiment 1 had
the opposite bias, indicating that this minority of participants
learned (chose) to seek high-demand problems.

Next, we analyzed whether the choices of the demand-avoiding
participants as judged above depended also on the demand experi-
enced two trials before the present trial, i.e., in the trial before the
previous trial. The paired bars in Figure 2 show the proportions that
the choice at the k-th trial was the same as the choice at the (k —
2)-th trial when the demand experienced at the (k — 2)-th trial
was high (left bar) or low (right bar), for each case sorted by the
choice and demand at the (k — 1)-th trial in Experiment 1 (Fig.
2Aa—d) and Experiment 2 (Fig. 2Ba—d). As shown in the figure,
the proportion that the k-th choice was the same as the (k — 2)-th
choice was significantly higher when the demand experienced at
the (k — 2)-th trial was low than when it was high, with medium-
to-large effect sizes, in two cases in Experiment 1 (Fig. 2Aa; p = 0.01,
d=0.73, 1,5, = 2.89; Fig. 2Ab; p = 0.02,d = 0.46, 55, = 2.59) and
in two cases in Experiment 2 (Fig. 2Ba; p < 0.01,d = 1.27, t(,¢) =
4.9; Fig. 2Bc; p = 0.01,d = 1.13, t,4) = 2.98). In this way, in both

(trials)

Example of participant’s choices and choice probability predicted by the PE-HL model. Short vertical bars at the top
and bottom indicate participant’s left and right choices, respectively, with dark or light gray indicating that high-demand or
low-demand problems were experienced, respectively. The black dashed line in the middle indicates the left—right difference in
the presentation rates (moving average of latest 5 trials) of low-demand problems plotted against the left scale. The blue and red
solid lines indicate the participant’s actual left-choice rate (moving average of latest 5 trials) and the left-choice probability
predicted by the PE-HL model plotted against the blue and red scales on the right, respectively. The best-fit parameters for this

[%2]
@
Q
o
§ 5 demand experienced two trials prior.
8 &
S Detailed analyses of learning and
N choice behavior
5% = To analyze learning and choice behavior
o8 in detail, we fitted the choices using PE-
U] based models (O’Doherty et al., 2007; Daw,
< _g' 2011), considering that PE-based models
0 E % have been suggested to be able to approx-
180 g imate reinforcement learning of reward
a

values (McClure et al., 2003; O’'Doherty et
al., 2003; Daw et al., 2006) as well as avoid-
ance learning of pain (Seymour et al.,
2004; Roy et al., 2014; Zhang et al., 2016),
physical-effort cost (Skvortsova et al,
2014), or sustained effort (selecting circles
on the screen) concurrently with reward
learning (Scholl et al., 2015). In particular,
we assumed that (1) participants had
(whether consciously or not) expectations
of the cost of mental effort, referred to as
the ExpectedCost below, needed to solve a left or right problem
(denoted by ExpectedCost;,;; and ExpectedCost,;,,,), (2) partici-
pants chose either the left or the right problem according to Ex-
pectedCost,., and ExpectedCost,y,, in a “softmin” manner, i.e.,
avoided an option with a higher ExpectedCost with a higher prob-
ability, and (3) the ExpectedCost for the chosen option (denoted
by ExpectedCostcy,,s.,,) Was updated according to the CPE: Actu-
alCost — ExpectedCostcy,ys.,,» Where the ActualCost was the cost
actually experienced.

Given that participants took much longer times for high-
demand problems than for low-demand problems on average as
shown above, it is possible that the time spent to solve the prob-
lem constituted ActualCost, while it is also conceivable that Actu-
alCost directly reflected the demand level of the problem itself.
Moreover, because the correct answer rates also differed between
the low-demand and high-demand problems, incorrect solving
could also constitute or contribute to ActualCost, even though the
incorrect answer rates were rather low and we did not provide
correct/incorrect feedback to participants. With these consider-
ations, we considered the following five cases for constituent(s) of
ActualCost: (1) time spent solving the problem (solve time) in
individual trials [referred to as the PE-Solve-Time(ST) model];
(2) demand level of the problem; more specifically, 1 and 0 for
high-demand and low-demand problems, respectively [PE-High-
Low(HL) model]; (3) incorrect solving; more specifically, 1 and 0 for
incorrect and correct solving, respectively [PE-Incorrect-Correct(IC)
model]; (4) sum of (1) and (3), with a weighting parameter for
(3) (PE-ST-IC model); and (5) sum of (2) and (3), with a weight-
ing parameter for (3) (PE-HL-IC model).

For each of these five cases, we considered two models
assuming that ExpectedCost for the unchosen option (Expect-
edCost . nosen) at the first trial was either a free parameter or a
value equal to ExpectedCost .., resulting in 5 X 2 = 10 models.

We fitted these models to the participants’ choices, individu-
ally for each participant who showed avoidance of high-demand
problems (as judged by the x test above), by exploring parame-
ters that maximized the log-likelihood. We then compared the
fitted models according to the BIC. As a result, the model assum-
ing case (2) ActualCost [i.e., the PE-High-Low(HL) model] and
ExpectedCost,,,, ,psen = ExpectedCost .., at the first trial had the
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Figure 6.  Results of model fitting for all the participants who showed avoidance in Experiment 1. The configurations are the same as those of Figure 5.
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best (i.e., least) BIC score for most of the participants in both
experiments (23 of 24 in Exp. 1; 14 of 17 in Exp. 2; Fig. 4A; Table
1; hereafter we refer to this model as the PE-HL model). This result
indicates that mental-effort cost in our experiments was experienced
and/or registered as (nearly) binary variables corresponding to the
binary demand levels of the problems, rather than variables reflect-
ing the solve time or mistakes (we will return to this later). An exam-
ple of the fit by this model is shown in the red solid line in Figure 5,
and the results of all the analyzed participants in Experiments 1 and
2 are shown in Figures 6 and 7, respectively.

We additionally examined two more PE models that assumed
that the rest time in the scanner was reward for participants and

1
(triglg)

Results of model fitting for all the participants who showed avoidance in Experiment 2. The configurations are the same as those of Figure 5.

they made choices based on the expectation of this reward (re-
ferred to as the PE-Rest model) or on the expectations of both this
reward and the mental-effort cost, which was assumed to be 0 and
1 for low-demand and high-demand problems, respectively, in-
heriting the assumption of the PE-HL model that gave the best
BIC score (referred to as the PE-HL-Rest model). However, these
models gave larger (i.e., worse) BIC scores than the PE-HL model
in almost all cases (except for one participant in Exp. 1 for both
PE-Rest and PE-HL-Rest models; Fig. 4B).

We also examined models having different structures from
the PE models. In particular, we considered a pWSLS model, in
which Win or Lose was followed by a selection of the same or
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Figure8. Effectsofthe experienced demand attwo trials before on the current choice in pooled simulated choices. A, B, The dots connected by lines indicate the proportions that the k-th choice was the same

as the (k — 2)-th choice when the (k — 2)-th demand was high (left) or low (right), sorted by the (k — 1)-th choice and demand (a- d), in pooled simulated choices corresponding to each demand-avoiding
participant, which were generated by performing 100 simulation runs of task execution (180 trials) in Experiment 1 (Exp. 1; ) or Experiment 2 (Exp. 2; B) with actual demand sequences (high or low in the left
or right) used for the participant by the PE-HL model with best-fit parameters for the participant. The bars indicate the average of the proportions corresponding to individual participants, and the error bars
indicate the mean == SEM. (~F, Same as A and B except that the pWSLS-HL model (C, D) or the PS-HL model (E, F) was used instead of the PE-HL model.

different option, respectively, with exceptions with a certain
probability that was a free parameter. Win and Lose were defined
in two ways: (1) experiences of low-demand and high-demand
problems, respectively (pWSLS-HL model), or (2) solving cor-
rectly and incorrectly, respectively (pWSLS-IC model). As a re-
sult, for either type of pWSLS models, participants for whom the
given type of pWSLS model gave smaller (i.e., better) BIC scores
than the PE-HL model (i.e., the best-BIC PE model) were out-

numbered by those who had the opposite pattern (pWSLS-HL
model: 14 of 24 in Exp. 1; 16 of 17 in Exp. 2; pWSLS-IC model: 20
of 24 in Exp. 1515 of 17 in Exp. 2; Fig. 4C). We further considered
a full probabilistic selection (PS) model, in which Win or Lose
was followed by a selection of the same or a different option with
arbitrary probabilities that were free parameters, with the same
two definitions of Win and Lose as above (PS-HL model and
PS-IC model). As a result, the number of participants for whom
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Table 2. Neural correlates of the expected cost of mental effort for the chosen option revealed by using GLM1

Cluster Peak MNI coordinates (mm)
Area Left, right, bilateral Size p(FWE) (n X y z
A, Experiment 1
Positive correlation
MFG/inferior frontal gyrus/anterior insula Right 691 <0.001 6.0 3 50 4
aMFG/anterior insula Left 213 0.001 6.2 —30 47 7
dmFC/dACC Bilateral 354 <0.001 6.3 0 14 49
Inferior parietal lobule Right 230 <0.001 5.6 45 =52 49
Negative correlation
Rostromedial PFC Bilateral 137 0.006 54 0 59 13
vmPF(/striatum Bilateral 291 <0.001 7.6 3 41 =17
Primary motor cortex/primary somatosensory cortex Right 92 0.031 53 42 —-19 64
Temporal lobe Left 749 <<0.001 6.7 —42 —37 25
Precuneus Left 180 0.002 5.2 —6 —67 22
B, Experiment 2
Positive correlation
aMFG/orbitofrontal cortex Left 129 0.010 7.6 -33 44 4
Anterior insula Left 86 0.044 6.1 =27 26 4
dmFC/dACC/superior frontal gyrus Bilateral 520 <0.001 74 6 20 49
Anterior insula/aMFG/orbitofrontal cortex Right 582 <0.001 137 33 20 4
Inferior parietal lobule Right 142 0.006 5.2 48 —49 55
Cerebellum Left 143 0.006 8.5 —18 —61 -4
Negative correlation
Striatum? Bilateral 30 0.425 45 0 5 -8
(, Conjunction analysis
Positive correlation (strict mask®)
dmFC/dACC Bilateral 215 0.002 6.3 6 20 46
Anterior insula® Right 57 0.164 49 30 20 4
aMFG* Left 50 0.211 55 =30 47 7
aMFG Right 212 0.002 5.6 33 44 1
Inferior parietal lobule® Right 75 0.088 49 45 —49 49
Negative correlation (relaxed mask?)
vmPFC® Bilateral 68 0.112 43 —6 53 -5

A, B, The brain area, laterality of hemisphere, cluster size, cluster p value, peak T value, and peak coordinate of the regions that were positively and negatively correlated with the expected cost of mental effort for the chosen option
(ExpectedCost s.,) predicted by the PE-HL model in Experiment 1 (n = 21; ) or Experiment 2 (n = 15; B) revealed by using GLM1. Statistical thresholds were set to be cluster-level FWE corrected p < 0.05 and voxel-level uncorrected p <
0.001 except for the case of the negative correlation in Experiment 2, for which the thresholds were voxel-level uncorrected p << 0.001 and voxel size =5. C, The information for the regions obtained in the conjunction analyses shown in Figure

9A. Methods for analyses and statistical thresholds were the same as those used for Figure 9.
“Voxel-level uncorrected p << 0.001 and voxel size =5.

°A binary mask consisting of common voxels at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected p < 0.001.
“Cluster-level uncorrected p << 0.05 and voxel-level uncorrected p << 0.001; with a binary mask consisting of common voxels at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected p < 0.001.

“A binary mask consisting of common voxels at voxel-level uncorrected p << 0.01.

“Cluster-level uncorrected p << 0.05 and voxel-level uncorrected p << 0.001; with a binary mask consisting of common voxels at voxel-level uncorrected p << 0.01.

the PS-HL model gave a smaller (better) BIC score than the
PE-HL model was comparable to the number of those who had
the opposite pattern in Experiment 1 [12 participants for each;
though the average BIC score across participants was smaller
(better) in the PS-HL model], and the PS-HL model gave a
smaller (better) BIC score than the PE-HL model in a large num-
ber of participants in Experiment 2 (13 of 17; Fig. 4C). The PS-IC
model gave larger (worse) BIC scores than the PE-HL model in
most participants (23 of 24 in Exp. 1; 15 of 17 in Exp. 2; Fig. 4C).

As seen above, in terms of BICs, while the PE-HL model gave
better fit than the pWSLS models and the PS-IC model, the
PS-HL model outperformed the PE-HL model. Nevertheless, be-
cause the PS models, as well as the pWSLS models, assume that
choice depends solely on the outcome of the previous trial, these
models were expected to be unable to explain the observed con-
siderable dependence of the actual choices on the experienced
demand at two trials before (Fig. 2). To confirm this, we performed
simulations of task execution by the PS-HL and pWSLS-HL models,
as well as the PE-HL model, with the best-fit parameters for each
individual demand-avoiding participant and actual demand se-
quences (high or low for the left and right arrow-cues) used for
the participant in the experiments. We performed 100 simulation
runs of task execution (180 trials) for each demand-avoiding

participant in each experiment, and examined the proportions
that the k-th choice was the same as the (k — 2)-th choice when
the (k — 2)-th demand was high or low, sorted by the (k — 1)-th
choice and demand, in the pooled simulated choices correspond-
ing to each participant (178 X 100 = 17,800 simulated choices:
see Materials and Methods). As expected, dependence of the cur-
rent choice on the demand at two trials before hardly appeared in
the cases of the PS-HL and pWSLS-HL models, in contrast to the
case of the PE-HL model (Fig. 8). In this way, although the PS-HL
model gave good fit in terms of BIC scores, this model could not
adequately explain the considerable dependence on multiple trials
back observed in the actual choices, which could potentially be cap-
tured by the PE-HL model. Therefore, in the following we present
model-based fMRI analyses by using the results of fitting by the
PE-HL model.

fMRI analyses

We searched the whole brain for regions where changes in hemody-
namic response for the presentation of the left or right arrow-cue
were positively or negatively correlated with the ExpectedCost for the
chosen option (ExpectedCost ,...,)- We also searched for regions
correlated with the CPE. Regarding the time of CPE generation,
there were multiple possibilities. To see this, we need to return to
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Table 3. Neural correlates of the expected cost of mental effort for the chosen option revealed by using GLM2

Cluster MNI coordinates (mm)
Area Left, right, bilateral Size p(FWE) Peak (7) X y z
A, Experiment 1
Positive correlation
MFG/inferior frontal gyrus/anterior insula Right 514 <0.001 5.6 30 50 4
aMFG Left 103 0.033 55 —30 47 7
dmFC/dACC Bilateral 196 0.002 5.7 0 14 49
Inferior parietal lobule Right 144 0.009 5.0 45 —52 49
Negative correlation
Rostromedial PFC Bilateral 233 0.001 6.0 -9 53 16
vmPF(/striatum Bilateral 392 <0.001 7.5 3 41 =17
Primary motor cortex/primary somatosensory cortex Right 125 0.017 54 [y} —-22 64
Temporal lobe Right 190 0.003 53 69 —34 13
Parietal operculum/temporal lobe Left 1217 <0.001 6.8 —42 =37 25
Precuneus Bilateral 218 0.001 54 -3 —58 16
B, Experiment 2
Positive correlation
Anterior insula/aMFG/orbitofrontal cortex Left 266 <0.001 7.6 =27 23 4
dmFC/dACC/superior frontal gyrus Bilateral 489 <0.001 73 6 20 49
Anterior insula/aMFG/orbitofrontal cortex Right 663 <0.001 12.9 33 20 4
Inferior parietal lobule/precuneus Right 262 <0.001 54 45 —49 55
Cerebellum Left 1 0.007 8.0 —18 —61 —41
Negative correlation
vmPFC? Left 12 0.818 45 -3 35 —20
Striatum? Bilateral 48 0.201 49 0 5 —8
(, Conjunction analysis
Positive correlation (strict mask®)
aMFG Right 223 0.002 6.0 33 47 4
dmFC/dACC Bilateral 136 0.018 58 3 20 46
Inferior parietal lobule Right 91 0.064 49 45 —49 49
Negative correlation (relaxed mask?)
vmPFC Bilateral 131 0.020 438 —6 35 =17

Configurations are the same as those in Table 2, except that GLM2 was used and C corresponds to Figure 9B.
“Voxel-level uncorrected p << 0.001 and voxel size =5.

®A binary mask consisting of common voxels at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected p < 0.001.
“Cluster-level uncorrected p < 0.05 and voxel-level uncorrected p << 0.001; with a binary mask consisting of common voxels at cluster-level FWE corrected p < 0.05 and voxel-level uncorrected p < 0.001.

A binary mask consisting of common voxels at voxel-level uncorrected p < 0.01.

the result of model fitting that the PE-HL model assuming binary
costs gave the best BIC among the PE models. As described be-
fore, this result indicates that mental-effort cost in our experi-
ments was experienced and/or registered as (nearly) binary
variables corresponding to the binary demand levels of the prob-
lems, rather than variables reflecting the solve time or mistakes.
Looking more closely, this would involve (at least) two possibil-
ities. The first possibility is that the demand level itself was regis-
tered as “actual cost” and used to update the expected cost,
potentially even before the cost was experienced (i.e., before the
problem was solved). The second possibility is that the expe-
rienced cost at the time of answer was in fact more closely
approximated by binary variables than by the solve time in our
experiments. Although response time is generally thought to re-
late to subjective difficulty, it is possible that the within-participant
variances of the solve time for the problems of the same demand
types in our experiments were due in a large part to factors that did
not linearly relate to the experienced cost. For example, partici-
pants might sometimes solve a problem sluggishly so that solve
time was large but experienced cost was not large: even though
they were asked to solve as fast and accurately as possible, how
well participants complied with this instruction was somewhat
elusive given that there was no time limitation and no feedback/
penalty, and also participants’ mood could fluctuate during the
experiment so as to modulate the solve time and experienced cost
in potentially different or nonlinearly related ways.

If the first possibility mentioned above holds, CPE may be
generated at the time of problem presentation (or soon after it)
because the binary demand level of the problem could be recog-
nized almost instantaneously, although CPE could also be repre-
sented at the time of answer if the neural process for updating the
expected cost could operate only after the process for problem-
solving was ended. On the other hand, if the second possibility
mentioned above holds, CPE would be generated at the time of
answer. There was yet another possibility that CPE was generated
at a time between problem presentation and answer. Therefore,
by using separate GLMs (Fig. 3, GLM1-GLM3), we examined
three possibilities for when CPE was generated/represented: at
the time of problem presentation, at the midpoint of problem pre-
sentation and answer, and at the time of answer. Each of these GLMs
was adjusted for the actual demand level of, and solve time for, the
problem and also the response time for choosing an arrow (RT,;c.)
which could reflect decision difficulty, a potential confounder (cf.,
Heekeren et al., 2004; Shenhav et al., 2014; Shenhav et al., 2016b)
although RT,,,;. was hardly correlated with ExpectedCostcyyse,
[Exp. 1 (mean * SEM): r = 0.07 £ 0.03; Exp. 2: r = 0.02 £ 0.02],
the relative-cost (ExpectedCostcy,ps., — ExpectedCost,,,, osens EXP-
I: r = 0.08 = 0.03; Exp. 2, r = 0.04 = 0.02), or the absolute-
difference (|ExpectedCostposn — ExpectedCost,,posenls EXp- 1:
r= —0.03 = 0.03; Exp. 2: r = 0.01 = 0.02) in our experiments. In
any of these GLMs, VIF of the regressors for ExpectedCost s,
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Table 4. Neural correlates of the expected cost of mental effort for the chosen option revealed by using GLM3

Cluster MNI coordinates (mm)
Area Left, right, bilateral Size p(FWE) Peak (T) X y z
A, Experiment 1
Positive correlation
MFG Right 307 <0.001 5.4 33 44 1
dmFC/ACC Bilateral 128 0.016 5.2 0 14 49
Negative correlation
Rostromedial PFC Bilateral 200 0.002 6.0 -9 53 16
vmPF(/striatum Bilateral 322 <0.001 6.6 -9 17 -1
Primary motor cortex/primary somatosensory cortex Right 12 0.026 5.7 4 -22 64
Temporal lobe/inferior occipital gyrus Right 341 <0.001 52 69 —37 13
Precuneus Left 178 0.004 4.9 -3 —61 13
middle occipital gyrus/temporal lobe/parietal operculum Left 1335 0.000 6.6 —48 —79 28
B, Experiment 2
Positive correlation
aMFG/orbitofrontal cortex Right 342 <0.001 14 24 47 -
aMFG Left 101 0.024 73 —33 44 4
Anterior insula Left 85 0.044 55 =27 23 4
Anterior insula Right 136 0.007 10.8 33 20 4
Superior frontal gyrus/dmFC/dACC Bilateral 408 <0.001 8.1 24 8 67
Inferior parietal lobule Right 177 0.002 54 48 —49 55
Cerebellum Left 129 0.009 7.0 =21 —61 —41
Negative correlation
vmPFC? Left 5 0.955 4.2 -3 56 =5
vmPF(? Left 13 0.795 45 -3 35 =20
Striatum? Bilateral 0.340 5.0 0 5 -8
Middle occipital gyrus” Left 6 0.940 5.0 =30 —88 37
(, Conjunction analysis
Positive correlation (strict mask?)
aMFG Right 163 0.009 53 42 4 22
dmFC/dACC Bilateral 74 0.109 5.5 3 20 46
Negative correlation (relaxed mask?)
vmPFC Bilateral 116 0.031 47 —6 35 —17

Configurations are the same as those in Table 2, except that GLM3 was used and C corresponds to Figure 9C.
“Voxel-level uncorrected p << 0.001 and voxel size =5.

°A binary mask consisting of common voxels at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected p < 0.001.

“Cluster-level uncorrected p << 0.05 and voxel-level uncorrected p << 0.001; with a binary mask consisting of common voxels at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected p < 0.001.

“A binary mask consisting of common voxels at voxel-level uncorrected p << 0.01.

and CPE was on average, across sessions and participants, <5,
and thus we judged that collinearity was at a tolerable level.
Tables 2A,B, 3A,B, and 4 A, B show the correlates of Expect-
edCost ey, from the individual experiments in the analyses
using GLM1, GLM2, and GLM3, respectively. For positive corre-
lates in both experiments and negative correlates in Experiment
1, clusters detected at a threshold of cluster-level FWE corrected
p < 0.05, voxel-level uncorrected p < 0.001 were reported. For
negative correlates in Experiment 2, no clusters were detected
with the same threshold, and clusters detected at a relaxed
threshold of voxel-level uncorrected p < 0.001 and voxel-size
=5 were reported. To identify regions commonly correlated
with ExpectedCost 5., in both experiments, we performed con-
junction analyses. For positive correlations, we applied a binary
mask consisting of common voxels between the results of the
individual analyses for Experiments 1 and 2 with the threshold of
cluster-level FWE corrected p < 0.05 and voxel-level uncorrected
p < 0.001 (hereafter we refer to the mask with this threshold as
the strict mask). For negative correlations, we applied a binary
mask consisting of common voxels between the results in Exper-
iments 1 and 2 at voxel-level uncorrected p < 0.01 (hereafter we
refer to the mask with this threshold as the relaxed mask). Figure
9 and Tables 2C, 3C, and 4C show the results of the masked
conjunction analyses using the three GLMs, which are reported
with the threshold of cluster-level uncorrected p < 0.05, voxel-
level uncorrected p < 0.001. Regarding positive correlations,

conjunction analyses with the strict mask using any of the
three GLMs revealed clusters in dorsomedial frontal cortex
(dmFC)/dorsal anterior cingulate cortex (dAACC) and the right
anterior middle frontal gyrus (aMFG), while other cluster(s)
were also detected in GLM1 and GLM2. As for negative corre-
lations, conjunction analyses with the relaxed mask using any
of the three GLMs revealed the vmPFC, although it should be
noted that the relaxed mask was literally relaxed (note that it
differed from the threshold for negative correlates in Exp. 2),
and therefore we regarded this result for negative correlation
as a trend.

It was conceivable that the PE model’s variables other than
ExpectedCost ., I particular, relative-cost (ExpectedCostypeen, —
ExpectedCost,,, nosen) and/or absolute-difference (|Expected-
Cost posen — ExpectedCost,,,osen]) Were also represented in the
brain at the time of arrow-cue presentation commonly for both
tasks. In fact, however, there were strong positive correlations
between ExpectedCostcy,,s.,, and relative-cost [r = 0.89 * 0.01
(Exp. 1) and 0.90 = 0.02 (Exp. 2)] and negative correlations
between ExpectedCost ., and absolute-difference [r = —0.74 *
0.05 (Exp. 1) and —0.77 % 0.05 (Exp. 2)]. Presumably because of
these, when regressor for relative-cost or absolute-difference was
added to GLM1, VIF of the regressor for relative-cost or absolute-
difference was > 10, precluding valid analysis. We also considered
GLM in which regressor for ExpectedCost,,,, o, Was added to
GLM1, but VIF of the regressor for ExpectedCost was >10,

unchosen
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Neural correlates of the expected cost of mental effort for the chosen option. A-C, Neural correlates of the expected cost of mental effort for the chosen option (Expected(ost ) at

the time of arrow-cue presentation common for both experiments. The results obtained by using GLM1 (4), GLM2 (B), and GLM3 (C). In each of these, the left three panels show the result of
conjunction analysis with a binary mask consisting of common voxels between the positive correlations in Experiments 1and 2 at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected
p < 0.007. In all the three cases, clusters in the right aMFG and dmFC/dACC were detected with the threshold of cluster-level uncorrected p << 0.05, voxel-level uncorrected p << 0.001, while
additional cluster(s) were also detected in GLM1 (4) and GLM2 (B). The right panel shows the result of conjunction analysis with a binary mask consisting of common voxels between the negative
correlations in Experiments 1and 2 at the relaxed threshold, voxel-level uncorrected p << 0.01, revealing a cluster in the vmPFCin all the three cases.

precluding valid analysis. Therefore, it remained to be clari-
fied whether relative-cost, absolute-difference, or Expected-
Cost enosen Was represented in addition to or instead of
ExpectedCosty,gson-

The detection of ExpectedCostcy,,s,,,-correlated clusters in the
dmFC/dACC and aMFG raises a further possibility. The dACC or
nearby region has been suggested to encode/calculate the value of
exploring alternative/nondefault options (Kolling et al., 2016b)

or the value of cognitive control (Shenhav et al., 2016a; see also
Ebitz and Hayden, 2016 for the debate and Kolling et al., 2016a,b
for presumable difference in the precise locations). While possi-
ble relation of our results to the latter proposal will be discussed
(see Discussion), the former proposal raises a possibility that the
dmFC/dACC activity correlated with ExpectedCostcy,,,,,, could
possibly reflect an override of participants’ default choice. More-
over, activity related to exploratory choices has also been re-
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(50G), and left fusiform gyrus (FG).

ported in frontopolar regions that appear to be close to or overlap
with our aMFG cluster (Daw et al., 2006). In our experiments, the
rate of choosing the same option as in the previous trial was high
as described before, and so participants could possibly regard it as
a default choice and choosing the opposite option as the override
of the default choice. Moreover, we found positive correlation
between ExpectedCostcy,,,,,, and opposite choices (Exp. 1: r =
0.55 = 0.04; Exp. 2: 0.49 * 0.03). We thus conducted analyses
using another GLM, which differed from GLMI in that the re-
gressor at time of arrow cue was not set at the initial trial and was
additionally parametrically modulated by opposite-versus-same
choices (same choice as in the previous trial, 0; opposite choice,
1); VIF for ExpectedCost ., and opposite-versus-same choices
was on average, across sessions and participants, <5. As a result,
however, conjunction analysis with the strict mask revealed
ExpectedCost oj,sen-correlated clusters in the dmFC/dACC and
the right aMFG that were similar to, albeit weaker than, those
obtained in GLM1, whereas no cluster was detected as correlates
of opposite-versus-same choices even with the relaxed mask
(data not shown). Based on this result, it seems unlikely that our
results for ExpectedCostcy,,.,, are explained by an override of de-
fault choice of the same options. Another possibility related to
nondefault/exploratory choices, which depends on the existence
of ExpectedCost, is that choosing an option with higher ExpectedCost
could be regarded as nondefault/exploratory (cf. Daw et al,
2006). The rate of higher-ExpectedCost choices (in Trials 2-180)
was 20.2 = 2.2% in Experiment 1 and 19.9 % 2.0% in Experiment

Neural correlates of the CPE at the times of problem presentation and answer. Results of conjunction analyses
with a binary mask consisting of common voxels between the positive correlations of the (PF at the time of problem
presentation (A: GLM1 was used) or answer (B: GLM3 was used) in Experiments 1and 2 at cluster-level FWE corrected p <
0.05 and voxel-level uncorrected p << 0.001. A, Two clusters were detected in the rostromedial prefrontal cortex (rmPFC)
and anterior temporal lobe/posterior insula (aTL/pINS). B, Five clusters were detected in the right anterior insula (aINS),
bilateral dmFC/dACC, left primary motor cortex (M1)/primary somatosensory cortex (S1), left superior occipital gyrus
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2, and such choices were correlated with
ExpectedCostcpysen, (Exp. 1: 7 = 0.59 *
0.02; Exp. 2: 0.64 £ 0.02), and thus the
override of the default choice in this
sense could possibly contribute to the
signal for ExpectedCostcy,yep-

Last, we report the correlates of CPE.
Conjunction analyses with the strict mask
revealed two clusters for positive correla-
tions with CPE at time of problem presen-
tation in GLM1 (Fig. 104; Table 5C). For
positive correlations with CPE at the mid-
point of problem presentation and answer
in GLM2, no cluster was detected by con-
junction analysis with the strict mask,
while analysis with the relaxed mask re-
vealed a cluster (Table 6C). Meanwhile,
five clusters for positive correlations with
CPE were detected by conjunction analy-
sis with the strict mask at time of answer in
GLM3 (Fig. 10B; Table 7C). For negative
correlations with CPE at any of the three
times, conjunction analyses with the re-
laxed mask did not reveal any cluster.
Comparing the revealed common posi-
tive correlates of CPE at time of problem
presentation in GLM1 (Fig. 10A) or at
time of answer in GLM 3 (Fig. 10B) with
the common positive correlates of Expect-
edCost cppsen, at time of arrow-cue presen-
tation (Fig. 9), there appear to be possible
overlap between the regions for CPE at
time of answer and those for Expected-
Cost cppice At time of arrow cue. We exam-
ined this possibility by using the correlates
of ExpectedCost ..., at the time of the ar-
row cue and CPE at time of answer obtained from the same
GLM3, and found overlapping and neighboring regions in the
right dmFC (overlap, seven voxels; Fig. 11).

The existences of common CPE correlates at time of both
problem presentation and answer imply coexistence of the
different possibilities mentioned before. Specifically, the CPE
correlates at problem presentation imply existence of a system
that registers the demand level itself as “actual cost” and cal-
culates CPE before problem-solving. On the other hand, the
CPE correlates at answer imply that CPE-dependent update of
expected cost occurred at this time even though the demand-
level itself was registered as “actual cost” and/or the actually
experienced cost was in fact more closely approximated by
binary variables than by the solve time. The result that there
was overlap/adjacence between the common correlates of CPE
at answer and the common correlates of ExpectedCost ., at
arrow cue could then imply that CPE represented at answer,
whether calculated from the demand level itself and/or the
actually experienced cost, was used for update of expected
cost. However, while these implications are intriguing, we
note that this present work is limited by the difficulty in spec-
ifying the time of CPE generation, as well as the fact that
in any case CPE generation was likely temporally overlapped
with problem-solving. These points need to be addressed by
using a different task design to isolate the time of CPE
generation.
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Table 5. Neural correlates of the cost prediction error at the time of problem presentation revealed by using GLM1

cluster MNI coordinates (mm)
Area Left, right, bilateral Size p(FWE) Peak (7) X y z
A, Experiment 1
Positive correlation
Rostromedial PFC Bilateral 172 0.004 54 -9 56 13
Temporal pole Right 106 0.027 5.1 33 17 —26
Temporal lobe/posterior insula/vmPF(/striatum Left 1898 <0.001 8.2 —54 —4 -2
Hippocampus/parahippocampal gyrus Right 9% 0.040 59 27 -19 -23
Temporal lobe/posterior insula Right 714 <0.001 7.0 66 —22 13
Cuneus Bilateral 164 0.005 75 -3 —85 28
B, Experiment 2
Positive correlation
Rostromedial PFC/ventral anterior cingulate Bilateral 676 <<0.001 8.9 0 17 =5
cortex/striatum
Temporal lobe/insula Right 999 <0.001 7.2 -39 5 =17
Temporoparietal junction Right 89 0.023 5.6 60 —58 16
Negative correlation
MFG Right 84 0.028 6.4 45 35 19
Precentral gyrus/posterior MFG Left 101 0.014 5.4 =51 5 40
Precentral gyrus/posterior MFG Right 150 0.002 49 27 -1 46
Inferior parietal sulcus Right 423 <0.001 6.8 36 —46 46
Inferior parietal sulcus/occipital lobe Left 667 <0.001 6.9 =27 =73 31
(, Conjunction analysis
Positive correlation (strict mask?)
Rostromedial PFC Bilateral 108 0.031 4.8 —12 56 16
Anterior temporal lobe/posterior insula Left 520 <0.001 5.9 —57 =1 -2

The brain area, laterality of hemisphere, cluster size, cluster p value, peak T value, and peak coordinate of the fMRI results for the neural correlates of the cost prediction error at the time of problem presentation obtained by using GLM1.

Methods for analyses and statistical thresholds are described in Materials and Methods and Results.

“A binary mask consisting of common voxels at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected p << 0.001.

Table 6. Neural correlates of the cost prediction error at the midpoint between problem presentation and answer revealed by using GLM2

Cluster MNI coordinates (mm)
Area Left, right, bilateral Size p(FWE) Peak (7) X y z
A, Experiment 1
Positive correlation
Parietal-temporal-occipital association area/ Left 692 <0.001 55 —48 —76 28
superior temporal gyrus
Superior temporal gyrus/operculum Right 328 <<0.001 5.1 57 —16 7
B, Experiment 2
Positive correlation
Anterior temporal lobe/insula Right 285 <0.001 8.5 4 —16 =17
Temporal lobe/subcallosal area/vmPFC Bilateral 757 <0.001 7.7 —48 —-19 =17
(, Conjunction analysis
Positive correlation (relaxed mask?)
Temporoparietal junction® Left 82 0.079 42 =57 =52 7

Thebrain area, laterality of hemisphere, cluster size, cluster p value, peak Tvalue, and peak coordinate of the fMRI results for the neural correlates of the CPE at the midpoint between problem presentation and answer obtained by using GLM2.

Methods for analyses and statistical thresholds are described in Materials and Methods and Results.
“A binary mask consisting of common voxels at voxel-level uncorrected p << 0.01.

bCluster-level uncorrected p << 0.05 and voxel-level uncorrected p << 0.001; with a binary mask consisting of common voxels at voxel-level uncorrected p << 0.01.

Discussion

Most participants learned to avoid higher cognitive demand in
the changing environments, and their choices depended on the
demand experienced during the preceding multiple trials; this
could potentially be captured by the PE-based model assuming
that the experienced demand level constituted actual cost. At the
neural level, ExpectedCost ,,.,, was positively correlated with the
activity in the dmFC/dACC and aMFG, and with the relaxed
mask, negatively correlated with vmPFC activity, commonly across
the demand types. Further, we identified common positive cor-
relates of CPE at time of problem presentation and answering the
problem, the latter of which partially overlapped with or was in
proximity with the positive correlates of ExpectedCost s, at
time of arrow cue in the dmFC.

Relation to previous studies on mental-effort avoidance
Previous studies have demonstrated that humans avoid cognitive
demand/mental effort in carefully controlled experimental set-
tings (Botvinick, 2007; Kool et al., 2010; McGuire and Botvinick,
2010; Risko et al., 2014; Schouppe et al., 2014). Our results have
extended these findings by showing that humans adaptively learn
to avoid higher cognitive demands under uncertain and nonsta-
tionary environments, with the choices depending on the de-
mand on multiple preceding trials.

Previous studies have also explored neural substrates related
to cognitive demand-avoidance by using fMRI (Botvinick et al.,
2009; McGuire and Botvinick, 2010; Schouppe et al., 2014; Mas-
sar et al., 2015; Chong et al., 2017). One study (McGuire and
Botvinick, 2010) reported that post-experience self-reports of the
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Table 7. Neural correlates of the cost prediction error at the time of answer revealed by using GLM3

Cluster MNI coordinates (mm)
Area Left, right, bilateral Size p(FWE) Peak (7) X y z
A, Experiment 1
Positive correlation
Insula Right 190 0.005 5.6 36 26 4
Anterior insula Left 157 0.010 6.4 —33 23 =5
dmFC/dACC Bilateral 529 <0.001 5.8 9 —1 55
Posterior insula/primary auditory cortex Right 107 0.040 5.2 39 -22 4
Occipital lobe/parietal lobe Bilateral 6393 <0.001 8.6 —18 —88 —14
B, Experiment 2
Positive correlation
dmFC/dACC/middle cingulate cortex Bilateral 494 <0.001 8.0 -9 20 37
Anterior insula Right 12 0.010 55 30 20 7
Primary motor cortex/primary somatosensory cortex/ Left 161 0.002 6.7 —36 —22 58
supramarginal gyrus
Fusiform gyrus Right 165 0.001 6.4 30 =73 —14
Fusiform gyrus Left 214 <0.001 55 —24 =73 -
Occipital lobe Left 9% 0.020 59 =15 —91 25
Negative correlation
Striatum Right 74 0.047 6.2 21 8 19
(, Conjunction analysis
Positive correlation (strict mask”)
Anterior insula® Right 65 0.144 44 33 20 7
dmFC/dACC Bilateral 179 0.006 48 -9 —1 55
Primary motor cortex/primary somatosensory cortex Left 148 0.013 53 -39 -22 52
Superior occipital gyrus® Left 77 0.099 46 —18 —82 31
Fusiform gyrus Left 110 0.037 55 =27 —82 -

The brain area, laterality of hemisphere, cluster size, cluster p value, peak Tvalue, and peak coordinate of the fMRI results for the neural correlates of the CPE at the time of answer obtained by using GLM3. Methods for analyses and statistical

thresholds are described in Materials and Methods and Results.

“Abinary mask consisting of common voxels at cluster-level FWE corrected p < 0.05 and voxel-level uncorrected p << 0.001.
®Cluster-level uncorrected p << 0.05 and voxel-level uncorrected p << 0.001; with a binary mask consisting of common voxels at cluster-level FWE corrected p << 0.05 and voxel-level uncorrected p < 0.001.

Overlap/Adjacence

Expected Cost of GLM3 1l

Figure 11.

desire to avoid high demand were related with activity in regions
in the lateral PFC, but not with a dmFC/dACC cluster. The
apparent inconsistency between their results and ours can be
explained given the differences between the studies: here we ex-
amined activations during demand-based selection, whereas in
their work, no demand selection was made in the scanner and the
avoidance ratings were made after experience of demands.
Another previous study (Schouppe et al., 2014) examined in-
scanner choice of options with high or low expected cognitive
demand in two conditions, where participants were instructed to

Cost Prediction Error at Answer of GLM3

Overlap and adjacence between the correlates of the expected cost for the chosen option at the time of arrow-cue
presentation and those of the CPE at the time of answer. Common positive correlates of the (PE at the time of answer obtained by
using GLM3 (indicated by light blue color) and common positive correlates of the expected cost for the chosen option (Expected-
(08t eyice) at the time of arrow-cue presentation obtained by using the same GLM3 (indicated by yellow color). The right panel
shows an enlarged view. The overlapped region is enclosed by the black dashed line, which was drawn manually by the authors.

make either a voluntary but random
choice, or a forced choice. Then, partici-
pants chose high-demand and low-de-
mand options with almost equal rates in
voluntary trials presumably because of the
instruction to choose randomly, and thus
brain activation during natural demand-
avoidance was not examined.

Brain activity during effort-related
choices has been also examined in the
cases where reward values are discounted
by mental (and physical) effort (Botvinick
et al., 2009; Massar et al., 2015; Chong et
al., 2017). A recent study investigated
choices between two cues that explicitly
represented a variable high-effort—high-
reward option and a fixed low-effort—low-
reward (baseline) option (Chong et al.,
2017). Effort exertion was experienced be-
fore and after scans, but not during scans.
This study showed that the activity in re-
gions including the dmPFC/dACC was
negatively correlated with the subjective
value difference between the chosen option and baseline, com-
monly across mental and physical effort tasks. The peak of the
dmPFC/dACC cluster was within the region correlated with Ex-
pectedCost ¢y, in our study. This seems reasonable given that
the subjective value difference in their study could be negatively
related to the ExpectedCosty,ose,- On the other hand, activity in
the aMFG and vinPFC were detected in our study, but not in their
study. This might reflect differences in our study from theirs,
including the absence of reward manipulations and/or experi-
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ence of in-scanner effort exertion. There exists much evidence
that the vmPFC has common representations of values for use in
decision making (Levy and Glimcher, 2012), negatively integrat-
ing the cost of monetary loss (Basten et al., 2010), delay (Prévost
et al,, 2010), or choice difficulty (Shenhav et al., 2016b). There-
fore, the vmPFC might specifically serve for experience-based
learned choices of values, as argued in the above-mentioned study
(Chong et al., 2017). Meanwhile, the aMFG region might serve
for mental-effort avoidance when experience-based learning oc-
curs and/or when reward effects are absent. As for the latter,
existence of such a specialized system for no reward-effect con-
ditions seems in line with the suggestion that systems for appet-
itive and aversive learning can be separated to some extent
(Seymour et al., 2004, 2005; Yacubian et al., 2006; Basten et al.,
2010; Li et al., 2011; Roy et al., 2014; Scholl et al., 2017).

Implications for the mechanisms

We hypothesized the existence of neural representations of Ex-
pectedCost ¢y, which are updated according to CPE and used
for decision making to avoid higher demand. Possible substrates
of this could be captured in our finding that the cue-time activity
of the dmFC/dACC and aMFG clusters and the answer-time
activity of the clusters including a dmFC/dACC cluster, were
correlated with ExpectedCosty,,,.,, and CPE, respectively, both
commonly across tasks, and these two correlates partially overlapped
or were adjacent in the right dmFC. In reference to reinforcement
learning (RL) theory (Daw et al., 2005), this mechanism could be
called model-free RL based on the “cached cost” of options.
Whereas RL of reward values (McClure et al., 2003; O’Doherty et
al., 2003; Daw et al., 2006), pain (Seymour et al., 2004; Roy et al.,
2014; Zhang et al., 2016), physical effort (Skvortsova et al., 2014),
or sustained effort (selecting circles on the screen) concurrently
with reward-learning (Scholl et al., 2015) has been well investi-
gated, our current study presents for the first time an empirical
indication that humans might also learn to avoid high cognitive
demands, even without reward-learning, in an RL-like fashion,
although a different decision strategy may also be used. An intriguing
hypothesis (Kurzban et al., 2013) indicates that humans might avoid
mental effort so as to minimize the opportunity cost of focusingon a
particular task. Estimating opportunity cost by forward-reading
may not always be possible, and thus caching mechanisms may be
needed, possibly in line with the indication from our results. On the
other hand, the detection of common CPE correlates at problem
presentation in the rostromedial prefrontal cortex and the anterior
temporal lobe/posterior insula implies that another, more explicit
knowledge-based system might simultaneously operate. Specifically,
error signal calculated from perceived demand level could possibly
be used for learning of the probabilistic associations between the
cues and demand levels.

Regarding the mechanisms of decision making, a circuit that
selects lower expected-cost options in a softmin manner might
exist. Alternatively, information about expected cost can be used
to calculate the expected value, through a sign reversal by inhib-
itory connections, so that higher expected-value options are cho-
sen in a softmax manner. The conjunction analysis with the
relaxed mask suggested that ExpectedCostcy,,;.. Was negatively
correlated with vimPFC activity (Fig. 9; Tables 2C, 3C, 4C), po-
tentially supporting the latter possibility. This possibility is also
consistent with the suggestion that the vmPFC has common rep-
resentations of values, and also that the vimPFC exhibits features
of recurrent neural dynamics that can implement softmax selec-
tions (Hunt et al., 2012; Jocham et al., 2012). However, given a
recent suggestion that reward-based choice emerges from com-
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putations in distributed networks (Hunt and Hayden, 2017),
choice might rather be made through interactions between the
detected regions.

Activity in the dmFC, dACC, and the surrounding areas has
been suggested to be related to the preparation of tasks or the
allocation of control (Botvinick et al., 2001; Sakai, 2008). Extend-
ing the influential conflict monitoring theory (Botvinick et al.,
2001) rooted in experimental findings (Pardo et al., 1990), Shen-
hav and colleagues recently proposed the Expected Value of
Control (EVC) theory (Shenhav et al., 2013), which explicitly
theorizes the relationship between mental effort, valuation, and
the dACC (Shenhav et al., 2013, 2016a, 2017). EVC is defined as
the expected total reward, given a control signal (identity and
intensity), discounted by the cost associated with the signal, and
the EVC theory proposes that the dACC receives motivation/
valuation inputs from regions including vmPFC, calculates EVC,
and allocates control through interactions with lateral PFC and
other brain regions. Our finding that dmFC/dACC activity was
correlated with ExpectedCost ,,..,, may be in line with this theory,
although learning and selection based on cached costs have not
been explicitly discussed. Moreover, from a perspective of the
EVC theory, the ExpectedCosty,y,.,-correlated region in the
vmPFC might send motivation/valuation inputs to the dmFC/
dACC, while the aMFG region would communicate control
allocation-related information with the dmFC/dACC.

There are further possibilities related to the EVC theory. In
our tasks, when ExpectedCost ., 1s high (i.e., when a chosen
problem is expected to be difficult), recruiting a high level of
control is likely to be necessary to solve the forthcoming problem.
In contrast, when ExpectedCost ;.. s low, recruiting a low level
of control is likely to be sufficient. ExpectedCost ., is thus con-
sidered to be positively correlated with the optimal intensity of
control signal or a relative EVC (i.e., EVC of high control minus
EVC of low control). Therefore, the correlates of Expected-
Cost cosen IN OUT Tesults potentially also reflected the relative EVC,
expected cost of optimal control signal, or the optimal control
signal itself. This last possibility indicates that the dmFC/dACC
and aMFG activity could represent preparatory control instead of
or in addition to the expected cost: an important issue that needs
to be clarified in future work.

Note Added in Proof: The author contributions were accidentally
incorrectly listed in the Early Release version published February
5,2018. The author contributions have now been corrected.

References

Basten U, Biele G, Heekeren HR, Fiebach CJ (2010) How the brain inte-
grates costs and benefits during decision making. Proc Natl Acad Sci
U S A 107:21767-21772. CrossRef Medline

Blain B, Hollard G, Pessiglione M (2016) Neural mechanisms underlying
the impact of daylong cognitive work on economic decisions. Proc Natl
Acad Sci U S A 113:6967-6972. CrossRef Medline

Botvinick MM (2007) Conflict monitoring and decision making: reconcil-
ing two perspectives on anterior cingulate function. Cogn Affect Behav
Neurosci 7:356-366. CrossRef Medline

Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict
monitoring and cognitive control. Psychol Rev 108:624—652. CrossRef
Medline

Botvinick MM, Huffstetler S, McGuire JT (2009) Effort discounting in hu-
man nucleus accumbens. Cogn Affect Behav Neurosci 9:16-27. CrossRef
Medline

Chong TT, Apps M, Giehl K, Sillence A, Grima LL, Husain M (2017) Neu-
rocomputational mechanisms underlying subjective valuation of effort
costs. PLoS Biol 15:¢1002598. CrossRef Medline

Daw ND (2011) Trial-by-trial data analysis using computational models.
In: Decision making, affect, and learning, attention and performance
XXIII (Delgado M, Phelps EA, Robbins TW, eds). Oxford: Oxford UP.


http://dx.doi.org/10.1073/pnas.0908104107
http://www.ncbi.nlm.nih.gov/pubmed/21118983
http://dx.doi.org/10.1073/pnas.1520527113
http://www.ncbi.nlm.nih.gov/pubmed/27274075
http://dx.doi.org/10.3758/CABN.7.4.356
http://www.ncbi.nlm.nih.gov/pubmed/18189009
http://dx.doi.org/10.1037/0033-295X.108.3.624
http://www.ncbi.nlm.nih.gov/pubmed/11488380
http://dx.doi.org/10.3758/CABN.9.1.16
http://www.ncbi.nlm.nih.gov/pubmed/19246324
http://dx.doi.org/10.1371/journal.pbio.1002598
http://www.ncbi.nlm.nih.gov/pubmed/28234892

Nagase et al. @ Neural Mechanisms for Mental Effort Avoidance

Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Nat
Neurosci 8:1704—1711. CrossRef Medline

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical
substrates for exploratory decisions in humans. Nature 441:876—879.
CrossRef Medline

DuncanJ (2010) The multiple-demand (MD) system of the primate brain:
mental programs for intelligent behaviour. Trends Cogn Sci 14:172-179.
CrossRef Medline

Ebitz RB, Hayden BY (2016) Dorsal anterior cingulate: a Rorschach test for
cognitive neuroscience. Nat Neurosci 19:1278-1279. CrossRef Medline

Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general
mechanism for perceptual decision-making in the human brain. Nature
431:859-862. CrossRef Medline

Hunt LT, Hayden BY (2017) A distributed, hierarchical and recurrent
framework for reward-based choice. Nat Rev Neurosci 18:172-182.
CrossRef Medline

Hunt LT, Kolling N, Soltani A, Woolrich MW, Rushworth MF, Behrens TE
(2012) Mechanisms underlying cortical activity during value-guided
choice. Nat Neurosci 15:470—476, S1-S3. CrossRef Medline

Jocham G, Hunt LT, Near J, Behrens TE (2012) A mechanism for value-
guided choice based on the excitation-inhibition balance in prefrontal
cortex. Nat Neurosci 15:960-961. CrossRef Medline

Kolling N, Behrens T, Wittmann MK, Rushworth M (2016a) Multiple sig-
nals in anterior cingulate cortex. Curr Opin Neurobiol 37:36—43. CrossRef
Medline

Kolling N, Wittmann MK, Behrens TE, Boorman ED, Mars RB, Rushworth
MF (2016b) Value, search, persistence and model updating in anterior
cingulate cortex. Nat Neurosci 19:1280-1285. CrossRef Medline

Kool W, McGuire JT, Rosen ZB, Botvinick MM (2010) Decision making
and the avoidance of cognitive demand. ] Exp Psychol Gen 139:665—682.
CrossRef Medline

Krebs RM, Boehler CN, Roberts KC, Song AW, Woldorff MG (2012) The
involvement of the dopaminergic midbrain and cortico-striatal-thalamic
circuits in the integration of reward prospect and attentional task de-
mands. Cereb Cortex 22:607—615. CrossRef Medline

Kurzban R, Duckworth A, Kable JW, Myers J (2013) An opportunity cost
model of subjective effort and task performance. Behav Brain Sci 36:661—
679. CrossRef Medline

Levy DJ, Glimcher PW (2012) The root of all value: a neural common cur-
rency for choice. Curr Opin Neurobiol 22:1027-1038. CrossRef Medline

Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND (2011) Differential
roles of human striatum and amygdala in associative learning. Nat Neu-
rosci 14:1250-1252. CrossRef Medline

Mansouri FA, Egner T, Buckley MJ (2017) Monitoring demands for execu-
tive control: shared functions between human and nonhuman primates.
Trends Neurosci 40:15-27. CrossRef Medline

Massar SA, Libedinsky C, Weiyan C, Huettel SA, Chee MW (2015) Separate
and overlapping brain areas encode subjective value during delay and
effort discounting. Neuroimage 120:104-113. CrossRef Medline

McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in
a passive learning task activate human striatum. Neuron 38:339-346.
CrossRef Medline

McGuire JT, Botvinick MM (2010) Prefrontal cortex, cognitive control, and
the registration of decision costs. Proc Natl Acad Sci U S A 107:7922—
7926. CrossRef Medline

Mumford JA, Poline JB, Poldrack RA (2015) Orthogonalization of regres-
sors in FMRI models. PLoS One 10:e0126255. CrossRef Medline

O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal
difference models and reward-related learning in the human brain. Neu-
ron 38:329-337. CrossRef Medline

O’Doherty JP, Hampton A, Kim H (2007) Model-based fMRI and its appli-
cation to reward learning and decision making. Ann N'Y Acad Sci 1104:
35-53. CrossRef Medline

Pardo JV, Pardo PJ, Janer KW, Raichle ME (1990) The anterior cingulate

J. Neurosci., March 7, 2018 - 38(10):2631-2651 * 2651

cortex mediates processing selection in the Stroop attentional conflict
paradigm. Proc Natl Acad Sci U S A 87:256-259. CrossRef Medline

Prévost C, Pessiglione M, Météreau E, Cléry-Melin ML, Dreher JC (2010)
Separate valuation subsystems for delay and effort decision costs. ] Neu-
rosci 30:14080—14090. CrossRef Medline

Risko EF, Medimorec S, Chisholm J, Kingstone A (2014) Rotating with ro-
tated text: a natural behavior approach to investigating cognitive offload-
ing. Cogn Sci 38:537-564. CrossRef Medline

Roy M, Shohamy D, Daw N, Jepma M, Wimmer GE, Wager TD (2014)
Representation of aversive prediction errors in the human periaqueductal
gray. Nat Neurosci 17:1607-1612. CrossRef Medline

Sakai K (2008) Task set and prefrontal cortex. Annu Rev Neurosci 31:219—
245. CrossRef Medline

Scholl J, Kolling N, Nelissen N, Wittmann MK, Harmer CJ, Rushworth MF
(2015) The good, the bad, and the irrelevant: neural mechanisms of
learning real and hypothetical rewards and effort. ] Neurosci 35:11233—
11251. CrossRef Medline

Scholl J, Kolling N, Nelissen N, Browning M, Rushworth MF, Harmer CJ
(2017) Beyond negative valence: 2-week administration of a serotonergic
antidepressant enhances both reward and effort learning signals. PLoS
Biol 15:€2000756. CrossRef Medline

Schouppe N, Demanet J, Boehler CN, Ridderinkhof KR, Notebaert W (2014)
The role of the striatum in effort-based decision-making in the absence of
reward. ] Neurosci 34:2148 —2154. CrossRef Medline

Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan R],
Friston KJ, Frackowiak RS (2004) Temporal difference models describe
higher-order learning in humans. Nature 429:664-667. CrossRef
Medline

Seymour B, O’Doherty JP, Koltzenburg M, Wiech K, Frackowiak R, Friston K,
DolanR (2005) Opponent appetitive-aversive neural processes underlie
predictive learning of pain relief. Nat Neurosci 8:1234-1240. CrossRef
Medline

Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control:
an integrative theory of anterior cingulate cortex function. Neuron 79:
217-240. CrossRef Medline

Shenhav A, Straccia MA, Cohen JD, Botvinick MM (2014) Anterior cingu-
late engagement in a foraging context reflects choice difficulty, not forag-
ing value. Nat Neurosci 17:1249-1254. CrossRef Medline

Shenhav A, Cohen JD, Botvinick MM (2016a) Dorsal anterior cingulate
cortex and the value of control. Nat Neurosci 19:1286—-1291. CrossRef
Medline

Shenhav A, Straccia MA, Botvinick MM, Cohen JD (2016b) Dorsal anterior
cingulate and ventromedial prefrontal cortex have inverse roles in both
foraging and economic choice. Cogn Affect Behav Neurosci 16:1127—
1139. CrossRef Medline

Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, Botvinick
MM (2017) Toward arational and mechanistic account of mental effort.
Annu Rev Neurosci. 40:99-124. CrossRef Medline

Skvortsova V, Palminteri S, Pessiglione M (2014) Learning to minimize ef-
forts versus maximizing rewards: computational principles and neural
correlates. ] Neurosci 34:15621-15630. CrossRef Medline

Sohn MH, Albert MV, Jung K, Carter CS, Anderson JR (2007) Anticipation
of conflict monitoring in the anterior cingulate cortex and the prefrontal
cortex. Proc Natl Acad Sci U S A 104:10330-10334. CrossRef Medline

Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics
and biases. Science 185:1124—1131. CrossRef Medline

Vassena E, Silvetti M, Boehler CN, Achten E, Fias W, Verguts T (2014)
Overlapping neural systems represent cognitive effort and reward antici-
pation. PLoS One 9:¢91008. CrossRef Medline

Yacubian J, Glischer J, Schroeder K, Sommer T, Braus DF, Biichel C (2006)
Dissociable systems for gain- and loss-related value predictions and errors
of prediction in the human brain. ] Neurosci 26:9530-9537. CrossRef
Medline

Zhang S, Mano H, Ganesh G, Robbins T, Seymour B (2016) Dissociable
learning processes underlie human pain conditioning. Curr Biol 26:52—
58. CrossRef Medline


http://dx.doi.org/10.1038/nn1560
http://www.ncbi.nlm.nih.gov/pubmed/16286932
http://dx.doi.org/10.1038/nature04766
http://www.ncbi.nlm.nih.gov/pubmed/16778890
http://dx.doi.org/10.1016/j.tics.2010.01.004
http://www.ncbi.nlm.nih.gov/pubmed/20171926
http://dx.doi.org/10.1038/nn.4387
http://www.ncbi.nlm.nih.gov/pubmed/27669987
http://dx.doi.org/10.1038/nature02966
http://www.ncbi.nlm.nih.gov/pubmed/15483614
http://dx.doi.org/10.1038/nrn.2017.7
http://www.ncbi.nlm.nih.gov/pubmed/28209978
http://dx.doi.org/10.1038/nn.3017
http://www.ncbi.nlm.nih.gov/pubmed/22231429
http://dx.doi.org/10.1038/nn.3140
http://www.ncbi.nlm.nih.gov/pubmed/22706268
http://dx.doi.org/10.1016/j.conb.2015.12.007
http://www.ncbi.nlm.nih.gov/pubmed/26774693
http://dx.doi.org/10.1038/nn.4382
http://www.ncbi.nlm.nih.gov/pubmed/27669988
http://dx.doi.org/10.1037/a0020198
http://www.ncbi.nlm.nih.gov/pubmed/20853993
http://dx.doi.org/10.1093/cercor/bhr134
http://www.ncbi.nlm.nih.gov/pubmed/21680848
http://dx.doi.org/10.1017/S0140525X12003196
http://www.ncbi.nlm.nih.gov/pubmed/24304775
http://dx.doi.org/10.1016/j.conb.2012.06.001
http://www.ncbi.nlm.nih.gov/pubmed/22766486
http://dx.doi.org/10.1038/nn.2904
http://www.ncbi.nlm.nih.gov/pubmed/21909088
http://dx.doi.org/10.1016/j.tins.2016.11.001
http://www.ncbi.nlm.nih.gov/pubmed/27986294
http://dx.doi.org/10.1016/j.neuroimage.2015.06.080
http://www.ncbi.nlm.nih.gov/pubmed/26163803
http://dx.doi.org/10.1016/S0896-6273(03)00154-5
http://www.ncbi.nlm.nih.gov/pubmed/12718866
http://dx.doi.org/10.1073/pnas.0910662107
http://www.ncbi.nlm.nih.gov/pubmed/20385798
http://dx.doi.org/10.1371/journal.pone.0126255
http://www.ncbi.nlm.nih.gov/pubmed/25919488
http://dx.doi.org/10.1016/S0896-6273(03)00169-7
http://www.ncbi.nlm.nih.gov/pubmed/12718865
http://dx.doi.org/10.1196/annals.1390.022
http://www.ncbi.nlm.nih.gov/pubmed/17416921
http://dx.doi.org/10.1073/pnas.87.1.256
http://www.ncbi.nlm.nih.gov/pubmed/2296583
http://dx.doi.org/10.1523/JNEUROSCI.2752-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20962229
http://dx.doi.org/10.1111/cogs.12087
http://www.ncbi.nlm.nih.gov/pubmed/24070616
http://dx.doi.org/10.1038/nn.3832
http://www.ncbi.nlm.nih.gov/pubmed/25282614
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125642
http://www.ncbi.nlm.nih.gov/pubmed/18558854
http://dx.doi.org/10.1523/JNEUROSCI.0396-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26269633
http://dx.doi.org/10.1371/journal.pbio.2000756
http://www.ncbi.nlm.nih.gov/pubmed/28207733
http://dx.doi.org/10.1523/JNEUROSCI.1214-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24501355
http://dx.doi.org/10.1038/nature02581
http://www.ncbi.nlm.nih.gov/pubmed/15190354
http://dx.doi.org/10.1038/nn1527
http://www.ncbi.nlm.nih.gov/pubmed/16116445
http://dx.doi.org/10.1016/j.neuron.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23889930
http://dx.doi.org/10.1038/nn.3771
http://www.ncbi.nlm.nih.gov/pubmed/25064851
http://dx.doi.org/10.1038/nn.4384
http://www.ncbi.nlm.nih.gov/pubmed/27669989
http://dx.doi.org/10.3758/s13415-016-0458-8
http://www.ncbi.nlm.nih.gov/pubmed/27580609
http://dx.doi.org/10.1146/annurev-neuro-072116-031526
http://www.ncbi.nlm.nih.gov/pubmed/28375769
http://dx.doi.org/10.1523/JNEUROSCI.1350-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25411490
http://dx.doi.org/10.1073/pnas.0703225104
http://www.ncbi.nlm.nih.gov/pubmed/17563353
http://dx.doi.org/10.1126/science.185.4157.1124
http://www.ncbi.nlm.nih.gov/pubmed/17835457
http://dx.doi.org/10.1371/journal.pone.0091008
http://www.ncbi.nlm.nih.gov/pubmed/24608867
http://dx.doi.org/10.1523/JNEUROSCI.2915-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16971537
http://dx.doi.org/10.1016/j.cub.2015.10.066
http://www.ncbi.nlm.nih.gov/pubmed/26711494

	Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort
	Introduction
	Materials and Methods
	Results
	Discussion
	References


