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Alzheimer’s disease (AD), the most common cause of dementia in the elderly, results
in the impairment of executive function, including that of performance monitoring.
Feedback-related negativity (FRN) is an electrophysiological measure reflecting the
activity of this monitoring system via feedback signals, and is generated from the anterior
cingulate cortex. However, there have been no reports on FRN in AD. Based on prior
aging studies, we hypothesized that FRN would decrease in AD patients. To assess this,
FRN was measured in healthy individuals and those with AD during a simple gambling
task involving positive and negative feedback stimuli. Contrary to our hypothesis, FRN
amplitude increased in AD patients, compared with the healthy elderly. We speculate
that this may reflect the existence of a compensatory mechanism against the decline
in executive function. Also, there was a significant association between FRN amplitude
and depression scores in AD, and the FRN amplitude tended to increase insomuch as
the Self-rating Depression Scale (SDS) was higher. This result suggests the existence of
a negative bias in the affective state in AD. Thus, the impaired functioning monitoring
system in AD is a more complex phenomenon than we thought.
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INTRODUCTION

Executive function is a set of cognitive processes including attentional control, working memory
and planning, and so on, and is necessary for selecting and successfully monitoring behavior
(Alvarez and Emory, 2006; Chan et al., 2008; Diamond, 2013). Executive function is impaired
in individuals with dementia, including those suffering from Alzheimer’s Disease (AD) (Collette
et al., 1999; Perry and Hodges, 1999). Monitoring is a part of the executive function, and is the
ability to monitor one’s own actions and responses during task performance in order to detect
and correct errors. Impairment of executive function in AD patients is involved in the failure
of self-monitoring (Ott et al., 1996), which may underlie subtle difficulties in coping with daily
activities (Perry and Hodges, 1999). It has been suggested that deficits in self-monitoring occur
after damage to the frontal lobes and other cerebral areas (Ott et al., 1996).

Feedback-Related Negativity (FRN) is a neurophysiological index that reflects the monitoring
process associated with feedback inputs. FRN has been shown to be elicited by feedback stimuli
(particularly negative stimuli) in a gambling task (Gehring, 2002; Hajcak et al., 2006; Holroyd
et al., 2006) and a time production task (Miltner et al., 1997; Wild-Wall et al., 2009; Becker et al.,
2014). This negative potential appears at a latency of 200–300 ms after feedback (Miltner et al.,
1997; Falkenstein et al., 2000; Gehring, 2002; Holroyd and Coles, 2002; Nieuwenhuis et al., 2004),
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and is primarily distributed over the frontal-central scalp area.
Generally, FRN means the negative peak obtained by subtracting
the waveform for the positive feedback from that for the negative
feedback, or the negative waveform obtained from the negative
feedback. A great amount of evidence indicates that FRN is
generated in the anterior cingulate cortex (Holroyd and Coles,
2002; Hajcak et al., 2007; Bellebaum and Daum, 2008; Holroyd
et al., 2009). FRN codes negative prediction errors in the
context of varying reword probabilities and magnitudes (Cohen
et al., 2007; Bellebaum and Daum, 2008; Wu and Zhou, 2009;
Bellebaum et al., 2010). As with other components of event-
related evoked potentials (ERPs), many studies have revealed
that FRN amplitude is reduced and its latency prolonged in the
elderly compared to that in young individuals (Eppinger et al.,
2008; Mathewson et al., 2008; Wild-Wall et al., 2009; Hämmerer
et al., 2011; Pietschmann et al., 2011a), although some studies
show no such age differences in FRN (Bellebaum et al., 2011).
However, in line with the FRN aging effects, AD patients might
show alterations of FRN. However, no reports have investigated
the changes in FRN in AD patients.

Error-Related Negativity (ERN) is an ERP component elicited
by an individual’s own behavioral errors. ERNmeasures may also
provide insights to the monitoring system. Some reports have
demonstrated that ERN amplitude decreases in older participants
(Gehring and Knight, 2000; Falkenstein et al., 2001; Nieuwenhuis
et al., 2002; Pietschmann et al., 2011a,b; Schreiber et al., 2011;
Endrass et al., 2012), and is further reduced in AD patients
with prolonged latency (Mathalon et al., 2003). Considering its
similarity to ERN, this evidence suggests that FRN should also
demonstrate decreased amplitude and delayed latency in AD
patients.

P300 is a positive component at the dominantly parietal area
approximately 300 ms after stimulus onset (Sutton et al., 1965),
and is elicited typically by an oddball task, i.e., auditory, visual,
olfactory or somatosensory stimuli (Yamaguchi and Knight,
1991a,b; Frodl et al., 2002; Polich, 2004; Bennys et al., 2007;
Golob et al., 2007). This component reflects various cognitive
processes, including context updating (Donchin, 1981; Polich,
2007), resource allocation (Wickens et al., 1983; Kramer et al.,
1985; Polich, 2007), memory encoding (Karis et al., 1984;
Fabiani et al., 1990; Johnson, 1995; Polich, 2007) and attention,
stimulus evaluation, judgment and decision-making (Becker and
Shapiro, 1980; Duncan-Johnson and Donchin, 1982; Kramer
and Strayer, 1988; Katada et al., 2004; Gironell et al., 2005).
There are many regions in the brain, especially in the parietal,
temporal, prefrontal cortex and hippocampus, that contribute
to its generation (Yamaguchi and Knight, 1991a; Halgren et al.,
1998; Tarkka and Stokic, 1998; Kirino et al., 2000; Kiehl et al.,
2001). P300 amplitude and latency are modulated by a variety
of factors, including subjective probability of stimuli, stimulus
saliency, availability of attentional resources (Kutas et al., 1977;
Polich, 1986; Kramer and Strayer, 1988; Gonsalvez and Polich,
2002), and memory performance (Fabiani et al., 1990; Johnson,
1995). P300 has been proposed as one of the electrophysiological
biomarkers of dementia (Olichney et al., 2011; Howe et al.,
2014), and its usefulness has been well documented in the early
diagnosis of dementia (Polich et al., 1990; Juckel et al., 2008;

Ahiskali et al., 2009; Chapman et al., 2011; Vecchio and Määttä,
2011). Elderly people show a decreased amplitude and prolonged
latency of P300, and these changes are more pronounced in
dementia (Polich and Corey-Bloom, 2005; Bennys et al., 2007;
Lai et al., 2010; Parra et al., 2012). We speculate that these
findings regarding P300 may also be applicable to feedback
stimuli.

Previous studies have also claimed that FRN and P300 encode
different aspects of outcome evaluations (Yeung and Sanfey,
2004). These suggest that outcome evaluation can be roughly
divided into two related processes: one is an early evaluation of
the cognitive or motivational significance of feedback stimuli,
which relates to FRN; and the other is a more elaborative
evaluation of feedback stimuli, which is affected by the allocation
of attentional resources such as intentionality or expectancy
and is related to P300. Furthermore, other research has
reported that FRN is sensitive not only to reward valence and
magnitude, but also to expectancy towards reward magnitude.
While P300 is sensitive to both feedback valence and reward
magnitude, this sensitivity can be modulated by expectancy
towards reward magnitude (Wu and Zhou, 2009). These findings
suggest that FRN may play a role as a general mechanism that
evaluates whether an outcome is consistent or inconsistent with
expectations; whereas P300 is sensitive to the later, top-down
controlled process of outcome evaluation, which links with the
allocation of attentional resources, including reward valence,
reward magnitude and magnitude expectancy. In AD patients,
these processes of outcome evaluation for feedback stimulus are
considered to be impaired.

Accordingly, we investigated the monitoring system of AD
patients using a neurophysiological measure (i.e., FRN), in a
gambling task. We hypothesized that, compared with healthy
elderly people and healthy young people, the amplitude of FRN
would be reduced, and latency delayed in AD patients due to
disruption of feedback processing.

MATERIALS AND METHODS

Participants
Twenty-four patients with (AD; 15 males, 9 females, age range
from 66 to 75, mean age = 71.5, SD = 2.8), 20 healthy
older subjects (HO; 13 males, 10 females, age range from
62 to 79, mean age = 69.6, SD = 6.0), and 19 healthy young
subjects (HY; 10 males, 9 females, age range from 19 to
28, mean age = 22.2, SD = 2.2) participated in this study.
The AD patients met the National Institute of Neurological
and Communicative Disorders and Stroke and the AD and
Related Disorders Association (NINCDS/ADRDA) criteria for
individuals with AD. Their scores on the Mini-Mental State
Examination (MMSE) were 19.3 ± 3.9, and on the Clinical
Dementia Rating (CDR) were 1.1 ± 0.4, (21 patients for CDR
1, and 3 patients for CDR 2). All participants had normal or
corrected-to-normal vision. Virtually all participants were right-
handed, with three exceptions (one in each group). Participants
in the HO and HY groups had no history of neurological or
psychiatric diseases. Finally, this study was approved by the ethics
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committee of the Shimane University. All participants provided
signed informed consent following our explanation of the study’s
purpose and protocols.

Neuropsychological Assessment
AD and HO participants were assessed using neuropsychological
test batteries that included the Mini Mental State Examination
(MMSE; Folstein et al., 1975), the Frontal Assessment Battery
(FAB; Dubois et al., 2000), the Word Fluency Test (WFT;
vegetable for the semantic category), the Self-rating Depression
Scale (SDS; Zung, 1965), and the Apathy Scale (AS; Okada
et al., 1998). These assessments were conducted by a trained
clinical researcher within the 2-week period before the ERP
experiment.

Task, Stimuli and Procedure
In the experiment conducted for this study, each participant
performed a simple gambling task (Figure 1). Participants were
comfortably seated approximately 1.5 m in front of a computer
screen in an electrically shielded and sound-attenuated room.
At the start of each trial, a depiction of the choice display was
presented on a screen, which lasted until a participant made
a response. The picture consisted of two colored squares with
green and purple presented on the left and right screen sides
respectively, and the relationship between the color and position
was consistently maintained for all individuals. We instructed

FIGURE 1 | Trial procedure for the gambling task.

participants that they could winmoney by correctly choosing one
of the squares. Participants then chose one of the two squares
by pressing one of two corresponding buttons (i.e., left or right).
A feedback stimulus appeared 1.5 s after the choice picture was
turned off, and lasted for 1 s. The feedback stimulus consisted
of a display of a win or loss. If the selected box was a win, a
100 yen (about 1 USD) coin appeared in the center of the screen.
If the selected box was a loss, a 100 yen coin was presented
with a superimposed red X. The next trial started following
an inter-trial interval of 2–3 s. The experiment consisted of
120 trials (two blocks of 60 trials each). The probabilities of
winning and losing for each option was equal (50%), and this
was same in all three groups. Participants were told that they
would be participating in a virtual game; they were instructed to
try to maximize their monetary rewards. Participants performed
10 practice trials before the experiment. Total task duration
including 2 blocks and rest was about 15–20 min, and the whole
experiment including the installation and removal of electrodes
lasted about 1 h.

Electroencephalography (EEG) Recording
and Data Reduction
The electroencephalogram (EEG) was obtained from 21 Ag/AgCl
electrodes at the positions of the International 10–20 System:
midline (FPz, Fz, Cz, Pz, Oz); frontal (Fp1, Fp2, F3, F4, F7,
F8); central (C3, C4); temporal (T3, T4, T5, T6); parietal (P3,
P4); occipital (O1, O2); and was referenced to the linked
mastoids. Horizontal and vertical electrooculograms (EOG) were
recorded at sites lateral to the left and right outer canthi,
and above and below each eye. Impedances were kept below
5 kΩ for each electrode. The EEG signals were recorded using
the BrainAmp amplifier (Brain Products, Munich, Germany)
with appropriate software. The EEG signals were recorded
continuously with a band pass set at 0.01–250 Hz, and a
sampling frequency of 500 Hz. In addition, each participant’s
reaction time (RT) was measured simultaneously with the EEG
recording.

Event-Related Potentials (ERPs)
EEG data were analyzed off-line using the BrainVision Analyzer
2 software (Brain Products, Munich, Germany). An independent
component analysis (ICA) was performed on single-subject
EEG data in order to correct for blink artifacts. All segments
exceeding ± 100 µV were rejected as artifacts. EEG epochs
were extracted beginning 200 ms before and ending 800 ms
after the presentation of feedback for win and loss conditions,
separately. A baseline was set at the duration of 200 ms prior
to feedback stimulus onset. ERP peak amplitude and latency
were derived from each individual’s average waveform. The
FRN was semi-automatically measured as the most negative
peak within the time window of 150–400 ms after feedback
presentation, and was finally identified by visual inspection.
P300 was measured as the most positive peak within the time
window of 300–600 ms in the same way. The additional FRN
measures were computed for each participant by subtracting
the waveform after positive feedback from that after negative
feedback. The peak amplitudes and latencies of the components
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were derived from the resulting difference wave within the time
window of 150–450 ms.

Statistics
We conducted t-tests on the demographic (except for the χ2

test for sex) and neuropsychological data to allow comparison of
AD and HO. To check each participant’s understanding of the
task, we calculated switching response ratios following negative
and positive feedback, respectively. A higher switching ratio
for negative feedback than for positive feedback means that
participants had a tendency to avoid the option with the last
negative feedback, and were able to understand the gambling
task. Therefore, we compared the switching ratios between
preceding negative and positive feedback using paired t-tests
in each group. A one-way analysis of variance (ANOVA) was
used to analyze the RT data, and a two-way repeated measures
ANOVA (group × channel, or group × feedback condition)
was performed (separately) for the amplitudes and latency of
ERP components. The statistical criterion was set at a p value
of less than 0.05, and Tukey method analysis was used for
post hoc tests. Partial correlation analyses were also conducted
to examine the relationships between the ERP components and
the neuropsychological data.

RESULTS

Neuropsychological and Behavioral Data
The background, neuropsychological and behavior data are
summarized in Table 1. There were no significant differences
in age and gender ratios between AD and HO. However,
independent t tests revealed that there were significant
differences between AD and HO on the cognitive function
scores (MMSE, FAB, WFT), and that AD showed reduced
cognitive function compared to HO (ts (45) > 5.0, ps < 0.001).
However, affective function scores did not differ between those
groups (ts (45) < 1.9, ps > 0.068). RT in the gambling task
was delayed significantly in AD and HO compared to that in

HY (ps < 0.001). Switching response ratio was higher for the
following negative feedback than positive feedback in every three
groups (ps< 0.05).

ERP Waveforms
Figure 2 presents the feedback-locked ERP waveforms at the
three midline sites, Fz, Cz and Pz, for positive and negative
conditions in each group. In both conditions, FRN appeared at
a latency range of 200–400 ms, and P300 appeared at a latency of
300–500 ms. A difference in FRN amplitude between the positive
and negative conditions was observed clearly at Fz, Cz and Pz
in AD. The FRN difference in HY was also as apparent as that
in AD, but not in HO. On the other hand, P300 amplitude was
reduced markedly in AD. The P300 amplitude in HY was the
largest among the three groups, and P300 in HO was lower than
that observed in the HY group.

Figure 3 displays the difference waves formed by subtracting
the ERP for the positive feedback from that for the negative
feedback in each group. Here, FRN is the negative deflection in
the time window of 200–400 ms after feedback stimuli. The FRN
in the AD group showed larger amplitude and prolonged latency
compared to that in the HO group. However, the FRN amplitude
in HY group was almost the same as that in the AD group, but its
latency was shorter than in the latter group. Finally, HO showed
smaller FRN amplitude and delayed latency compared to HY.

FRN in Difference Waves
The upper row in Figure 4 presents the FRN peak amplitude
(left panel) and peak latency (right panel) for the three groups;
Table 2 gives the ANOVA results. The ANOVA revealed that the
main effect of group for amplitude was significant (F(2,63) = 4.1,
ε = 0.69, p = 0.021). Post hoc tests indicated the amplitude in AD
was significantly larger than that in HO (p = 0.015). However, the
main effect of channel did not reach significance (F(2,63) = 3.0,
ε = 0.69, p = 0.053), nor was interaction of group by channel
significant (F(4,126) = 1.2, ε = 0.69, p = 0.296).

Regarding latency, the main effects of group and channel
were significant (Fs(2,63) > 6.3, ε = 0.73, ps < 0.003). Post hoc

TABLE 1 | Participants’ background, neuropsychological data and behavioral data.

AD HO HY p

N 24 25 19
Age (years) 71.5 ± 2.8 69.6 ± 6.0 22.0 ± 2.2 0.181
Sex (M/F) 15/9 13/10 10/9 0.684
MMSE 19.3 ± 3.9 28.9 ± 1.9 − <0.001
FAB 10.8 ± 3.4 16.0 ± 1.1 − <0.001
WFT 8.7 ± 4.8 15.1 ± 3.6 − <0.001
SDS 32.5 ± 7.4 30.7 ± 6.5 − 0.357
AS 12.7 ± 8.3 9.0 ± 4.7 − 0.068
RT (ms) 1884 ± 834 1027 ± 319 679 ± 395 <0.001
SR ratio following NF 0.60 ± 0.18 0.67 ± 0.15 0.56 ± 0.17 <0.001
SR ratio following PF 0.37 ± 0.20 0.24 ± 0.11 0.38 ± 0.22

Data are shown in mean and standard deviation format. All p-values except for SR ratio indicate results of the comparisons between Alzheimer’s disease (AD) and healthy

old (HO). The p-value of the SR ratio shows results of the comparisons between following Negative feedback and following Positive feedback in all groups. HY means

healthy young. MMSE, Mini Mental State Examination; FAB, Frontal Assessment Battery; WFT, Word Fluency Test; SDS, Self-rating Depression Scale; AS, Apathy Scale;

RT, Reaction time in gambling task; SR ratio, Switching Response ratio in gambling task; NF, Negative feedback; PF, Positive feedback.
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FIGURE 2 | Grand-average event-related potential (ERP) waveforms
time-locked to feedback onset according to conditions (negative
feedback or positive feedback) at Fz, Cz and Pz in each group.
Waveforms for negative feedback (solid line) and positive feedback (dashed
line) are inserted as overlays. AD, Alzheimer’s disease; HO, healthy old;
HY, healthy young.

tests denoted that the latency was prolonged significantly in AD
compared to HY (p = 0.002), although there was no significant
interaction of group by channel (F(4,126) = 0.7, ε = 0.73, p = 0.602).

FRN
We also examined group differences for the FRN component.
The results appear in the middle row of Figure 4 and in
Table 3. The ANOVA for the amplitude yielded significant main
effects of group at Fz and Cz (Fs(2,63) > 5.0, ps < 0.010).
Post hoc tests showed that FRN at Fz and Cz were larger for
AD compared to HO in both positive and negative conditions
(ps < 0.028). All channels showed significant main effect
of condition (Fs(2,63) > 17.6, ps < 0.001). No significant
interaction of group by condition was observed (Fs(4,126) < 2.9,
ps> 0.062).

For the analysis of latency, significant main effects of group
and condition were found at all channels (Fs(2,63) > 10.9,
ps < 0.002). Post hoc tests indicated that the latency at Fz and
Cz were significantly delayed in AD and HO compared to that
in HY in both conditions (ps< 0.043). There were no significant
interactions for group by condition (Fs(4,126) > 0.2, ps> 0.794).

P300
The analysis for P300 is also depicted in the lower rows of
Figure 4 and Table 3. Significant interactions of group by

FIGURE 3 | Grand-average difference waveforms created by
subtracting ERP for the positive feedback from that for the negative
feedback in each group. Waveforms for AD (thick solid line), HO (dashed
line) and HY (thin solid line) are inserted as overlays. FRN, feedback-related
negativity; AD, Alzheimer’s disease; HO, healthy old; HY, healthy young.

condition were observed at Cz and Pz (Fs(4,126)> 4.1, ps< 0.022).
Post hoc tests indicated that the amplitudes were significantly
smaller in AD than those in HO and HY in both conditions
(ps < 0.028). There was a tendency for the amplitude to be
larger for negative feedback than for positive feedback at Cz
and Pz in HY (ps < 0.087), while there was no significant
difference between the two types of feedback in AD and
HO.

With regard to latency, significant interactions of group
by condition were observed at Cz and Pz (Fs(4,126) > 3.3,
ps < 0.043). Post hoc tests indicated that latency was
delayed in AD and HO compared with HY in both
positive and negative conditions (ps < 0.032). Additionally,
latency in AD was more prolonged than HO for negative
feedback (ps < 0.032), but this was not the case for positive
feedback.

Correlation between Neuropsychology and
ERP
We also performed correlation analyses between the
neuropsychological data and the ERP measurements for groups
AD and HO (Table 4, Figure 5); and found that there was a
significant association between the FRN amplitude in difference
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FIGURE 4 | Each row shows data relating to FRN at Fz and P300 at Pz,
respectively. Error bars denote standard deviations.

waves and SDS at Cz in AD (r = −0.495, p = 0.023), but not in
HO (r = 0.227, p = 0.309). A direct comparison revealed that the
correlation coefficients of the two groups differed significantly
(p < 0.05). There were significant correlations between FRN
amplitude andWFT scores in AD for both conditions (rs> 0.46,
ps < 0.05). P300 amplitudes were positively correlated with
WFT scores in both conditions in AD (ps < 0.05), and
positive feedback in HC (ps < 0.01). There were no noticeable
correlations between ERP latencies and cognitive function test
scores.

DISCUSSION

The aim of this study was to examine the changes in
the monitoring system of AD patients and healthy control
participants (HO) during gambling tasks using FRN. Results
reveal that the AD group showed a larger amplitude and a
delayed latency of FRN compared to the HO group, and the FRN
amplitude correlated with cognitive function scores. This study
revealed electrophysiological abnormalities of the monitoring
function in AD. However, the increased amplitude of FRN in AD
was unexpected. It is the opposite of predictions made from the
original hypothesis.

The original hypothesis relating to changes in FRN for the
AD group was based on prior evidence of aging effects on FRN.
Many researchers have reported decreases in FRN amplitude
associated with aging (Eppinger et al., 2008; Mathewson et al.,
2008;Wild-Wall et al., 2009; Hämmerer et al., 2011; Pietschmann
et al., 2011a), and our results also replicated this aging effect.
ERN is also known to be affected by aging, with elderly people
typically showing smaller ERN than young people (Gehring
and Knight, 2000; Falkenstein et al., 2001; Nieuwenhuis et al.,
2002). Several research groups have reported that the impairment
of error processing and learning in older adults is the result
of age-related changes in the mesencephalic dopamine system,
such as the loss of dopamine receptors and the deterioration
of dopaminergic receptor binding with aging (Volkow et al.,
1998; Bäckman et al., 2000; Kaasinen et al., 2000). Based on
findings that the efficiency of the dopamine system declines
with age, Nieuwenhuis et al. (2002) extended reinforcement
learning theory to older adults. They proposed that weakened
phasic activity of the midbrain dopamine system leads to
reduced negative reinforcement learning signals; implying that
elderly people are learning impaired compared to younger adults
(Nieuwenhuis et al., 2002). We had expected that this aging
effect would be most pronounced in AD, which would mean
that AD patients would exhibit smaller amplitudes in monitoring
responses. A previous ERN study had indeed reported that
amplitudes decreased for AD patients compared to healthy
elderly people (Mathalon et al., 2003). However, in contrast to
the results of that previous study, we found a significant increase
of FRN amplitude in AD patients.

First of all though, whether AD patients in our study could
understand the gambling task is a problem when we try to
explain this result. Nevertheless, some behavioral studies have
reported that AD patients have accomplished more complex
tasks like the Iowa Gambling Task (Sinz et al., 2008). In our
study, moreover, the switching ratio following the feedback was
larger for the negative feedback than the positive feedback in
all groups, suggesting that even AD patients could distinguish

TABLE 2 | Repeated two-way ANOVA (group × channel) for feedback-related negativity (FRN) in difference waves data.

Main effect of group Main effect of channel Interaction (group × channel)

F p F p F p

FRN peak amplitude 4.1 0.021 3.0 0.053 1.2 0.296
FRN peak latency 6.3 0.003 7.6 0.001 0.7 0.602

Significant p-values are in BOLD.
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TABLE 3 | Repeated two-way ANOVA (group × condition) for FRN and P300 data.

Main effect of group Main effect condition Interaction (group × condition)

F p F p F p

FRN peak amplitude
Fz 7.6 0.001 17.6 <0.001 1.6 0.216
Cz 5.0 0.010 28.1 <0.001 2.9 0.062
Pz 1.3 0.270 44.7 <0.001 1.5 0.227

FRN peak latency
Fz 15.4 <0.001 10.9 0.002 0.2 0.794
Cz 15.2 <0.001 14.9 <0.001 0.1 0.975
Pz 12.9 <0.001 22.1 <0.001 0.1 0.977

P300 peak amplitude
Fz 11.8 <0.001 10.6 0.002 2.1 0.129
Cz 10.9 <0.001 6.2 0.016 4.1 0.022
Pz 14.1 <0.001 3.0 0.086 4.6 0.014

P300 peak latency
Fz 28.6 <0.001 0.9 0.334 3.1 0.053
Cz 16.6 <0.001 0.8 0.371 4.0 0.023
Pz 13.7 <0.001 0.3 0.615 3.3 0.043

Significant p-values are in BOLD.

TABLE 4 | Correlation coefficients between neuropsychological data and amplitudes of event-related potential (ERP).

FRN in difference
waves

FRN P300

Negative Positive Negative Positive

AD HO AD HO AD HO AD HO AD HO

MMSE −0.02 −0.10 0.01 0.15 0.01 0.14 0.03 0.13 0.14 0.16
FAB 0.22 −0.17 0.22 0.10 0.12 0.07 0.01 0.12 −0.05 0.03
WFT 0.23 −0.17 0.53∗ 0.22 0.46∗ 0.35 0.59∗∗ 0.39 0.45∗ 0.60∗∗

SDS −0.50∗ 0.23 −0.05 −0.23 0.08 −0.24 −0.01 0.07 0.19 −0.18
AS −0.33 0.01 −0.09 −0.35 −0.01 −0.39 −0.06 −0.04 0.05 −0.20

The results of FRN in difference waves and FRN are in Cz, and P300 in Pz. MMSE, Mini Mental State Examination; FAB, Frontal Assessment Battery; WFT, Word

Fluency Test; SDS, Self-rating Depression Scale; AS, Apathy Scale; AD, Alzheimer’s disease; HO, healthy old. ∗Uncorrected p < 0.05, ∗∗Bonferoni corrected p < 0.05

(=uncorrected p < 0.05/6).

FIGURE 5 | The correlations between the Self-rating Depression Scale
(SDS) and amplitudes of FRN in difference waves. Diamond and thick
solid line: AD, circle and dashed line: HO.

between positive and negative stimuli, and could avoid the
options associated with recent negative results. Therefore, the
negative component obtained from the differential waveform in
AD could be considered as FRN.

As a result, we demonstrated that AD patients show a higher
FRN. It is already known that the source of FRN is located in the
ACC (Holroyd and Coles, 2002; Hajcak et al., 2007; Bellebaum
and Daum, 2008; Holroyd et al., 2009), and abnormalities of
the ACC in AD have been reported at histopathological and
physiological levels. In AD patients, accumulation of both beta
amyloid and tau (Morishima-Kawashima and Ihara, 2002; Leuba
et al., 2009; Murphy and LeVine, 2010; Bloom, 2014), metabolic
changes (Bracco et al., 2007; Lim et al., 2012), and decreased
blood flows (Dukart et al., 2013; Long et al., 2013; Terada et al.,
2013; Lin et al., 2014; Bailly et al., 2015) are observed in the
ACC. The ACC is atrophied structurally (Buckner et al., 2005;
Jones et al., 2006; Seeley et al., 2009; Krueger et al., 2010), and
the anatomical connectivity with other areas is also impaired
(Greicius et al., 2004; Rombouts et al., 2005; Wang et al., 2007;
Boublay et al., 2016; Hafkemeijer et al., 2016b). On the other
hand, higher functional connectivity of the ACC for the salience
network has been reported in some resting-state fMRI studies for
AD (Zhou et al., 2010; Hafkemeijer et al., 2016a). The salience
network plays a crucial role in the detection of salient events from
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internal and external information (Seeley et al., 2007), therefore
the network is inevitably involved in monitoring processing. The
enhanced functional connectivity of the ACC in AD is dovetailed
with the enhanced FRN in our study in the context of intensified
detection of salient feedback information. Thus, the influence of
AD pathology on the ACC function might be affected depending
on the segregated functional network of the ACC.

One of the possible mechanisms for explaining this
discrepancy is the compensation-related utilization of neural
circuits hypothesis (CRUNCH; Grady, 2012). The idea of
CRUNCH is that more neural resources are recruited by the
elderly at low levels of cognitive load (when tasks are easier) than
younger adults, who do not need them. At higher load levels,
this compensatory mechanism is not effective, leading to less
activation in elderly compared with young adults. This could
apply to the relationship between AD and the healthy elderly
(Grady, 2012). According to CRUNCH, enhanced FRN reflects
a compensatory mechanism with larger recruitment of neural
activity in AD patients compared to younger adults. Younger
adults in our study might search a best strategy or hidden rule
to get a better performance although the probabilities of positive
and negative feedbacks were truly equal and the sequence was
completely random.

Another idea that might explain the discrepancy is obtained
from ERP studies of other diseases. A similar discrepancy
between FRN and ERN has been reported in several psychiatric
diseases in young people (van Meel et al., 2005, 2011; Groen
et al., 2008; Holroyd et al., 2008; Vlamings et al., 2008;
South et al., 2010; Larson et al., 2011; Santesso et al., 2011).
Studies investigating FRN and ERN in children with autism
have demonstrated that a robust FRN is equally elicited in
children with autism and those with typical development (Larson
and Clayson, 2011; Larson et al., 2011; McPartland et al.,
2012; Stavropoulos and Carver, 2014), but ERN amplitude is
significantly attenuated in autistic children (Vlamings et al., 2008;
South et al., 2010; Santesso et al., 2011; Sokhadze et al., 2011,
2012; McMahon and Henderson, 2015). These results imply
that individuals with autism may process external and concrete
feedback normally, but have difficulty with the internal andmore
abstract regulation of performance. Similar neurophysiological
mechanisms may be operative in AD patients.

As well as our FRN research in AD, there are several reports
that have demonstrated FRN enlargement in other diseases. In
depressed patients, augmentation of FRN amplitude has been
reported (Tucker et al., 2003; Santesso et al., 2008; Cavanagh
et al., 2011; Mueller et al., 2015). According to Beck’s cognitive
theory of depression (Beck et al., 1979), depressed patients
have a ‘‘negativity bias’’, tending to focus more on negative
information. This leads to abnormal responses to negative
feedback, and yields an increase of the FRN amplitude. Although
our study did not include AD patients with moderate or severe
symptoms of depression, there was a significant relationship
between FRN amplitude and depression scores only in AD. In
AD patients, the ‘‘negativity bias’’ might be aggravated, even in
mild depression.

Consistent with previous findings of P300 using an
oddball task (Polich et al., 1990; Golob and Starr, 2000;

Yamaguchi et al., 2000; Frodl et al., 2002; Bennys et al., 2007;
Lee et al., 2013), the present study indicates that P300 exhibits
decreased amplitudes and delayed latency in normal aging and
AD. As expected, altered P300 was associated with cognitive
function scores. The P300 responses are considered to be related
to attention and memory processes (Polich, 2007); therefore,
lower amplitudes and delayed latency of P300 in AD patients
exhibits electrophysiological reflection of attention and memory
deficits (Phillips et al., 2004; Bennys et al., 2007; Lai et al., 2010).
It is considered that the causes of amplitude reduction in the AD
group is atrophy of the hippocampus, decreases in blood flow,
and decreases in functional binding. Because similar results were
obtained in our gambling task, instead of an oddball task, the
gambling task may be a more useful clinical tool in evaluating
both FRN and P300 at the same time.

Our study has some limitations. First, we investigated only
the alteration of FRN, but not of ERN. It has been speculated
that generator sources of FRN and ERN components are located
in the anterior cingulate cortex (Gehring et al., 1993; Dehaene
et al., 1994; Gehring, 2002; Holroyd and Coles, 2002; Holroyd
et al., 2002; Luu et al., 2003), and both potentials are associated
with the monitoring system. FRN and ERN have been linked to
the monitoring of externally provided and internally generated
information, respectively (Müller et al., 2005). Therefore, in
order to study abnormalities of the monitoring system in
AD, it would be most interesting to examine the changes of
both potentials simultaneously. Second, we have not explored
any abnormalities of FRN in other cognitive impairment and
dementia conditions, i.e., in mild cognitive impairment (MCI),
frontotemporal dementia, or dementia with Lewy bodies. It is
important to examine FRN changes in MCI, because MCI is
a prodromal stage of AD. Several studies have reported that
MCI patients show a reduction in P300 amplitude compared to
healthy elderly people (Papaliagkas et al., 2008, 2011). Therefore,
it is possible that similar ERP changes may occur in MCI, and
thus whether FRN amplitude increases in MCI patients should
be confirmed.

CONCLUSIONS

In sum, the present study demonstrated that the FRN in AD
patients showed larger amplitude and delayed latency compared
to age-matched controls, and correlated with depressive
tendency. This indicates that enhanced monitoring response
in AD patients might reflect a compensatory mechanism
and/or negative bias in outcome evaluation. Psychophysiological
measures in the feedback process could provide a clue to
understand the neurobehavioral changes in AD patients.
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