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Abstract Characterizations of the solution set in terms of subdifferentials
play an important role in research of mathematical programming. Previous
characterizations are based on necessary and sufficient optimality conditions
and invariance properties of subdifferentials. Recently, characterizations of the
solution set for essentially quasiconvex programming in terms of Greenberg-
Pierskalla subdifferential are studied by the authors. Unfortunately, there are
some examples such that these characterizations do not hold for non-essentially
quasiconvex programming. As far as we know, characterizations of the solution
set for non-essentially quasiconvex programming have not been studied yet.

In this paper, we study characterizations of the solution set in terms of sub-
differentials for non-essentially quasiconvex programming. For this purpose, we
use Mart́ınez-Legaz subdifferential which is introduced by Mart́ınez-Legaz as a
special case of c-subdifferential by Moreau. We derive necessary and sufficient
optimality conditions for quasiconvex programming by means of Mart́ınez-
Legaz subdifferential, and, as a consequence, investigate characterizations of
the solution set in terms of Mart́ınez-Legaz subdifferential. In addition, we
compare our results with previous ones. We show an invariance property of
Greenberg-Pierskalla subdifferential as a consequence of an invariance prop-
erty of Mart́ınez-Legaz subdifferential. We give characterizations of the solu-
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1 Introduction

In this paper, we study the following mathematical programming problem (P):

(P )

{
minimize f(x),
subject to x ∈ F,

where f is a function from Rn to R = [−∞,∞], and F is a convex subset of
Rn. Let NF (x) be the normal cone of F at x ∈ F , and S be the solution set of
(P ). Characterizations of the solution set in terms of subdifferentials play an
important role in research of mathematical programming. In [15], Mangasarian
introduces characterizations of the solution set for convex programming in
terms of the subdifferential, ∂f(x). Mangasarian’s characterizations are based
on the optimality condition in terms of the subdifferential, 0 ∈ ∂f(x)+NF (x),
and an invariance property of the subdifferential. Especially, the following
characterization is closely related to the optimality condition: let x̄ ∈ S, then

x ∈ S ⇐⇒ ∃v ∈ ∂f(x) such that ⟨v, x− x̄⟩ ≤ 0.

Motivated by Mangasarian’s results, many researchers introduce characteri-
zations of the solution set for mathematical programming, see, for example,
[2,9–13,25,33–35]. Recently, in [31], characterizations of the solution set for
essentially quasiconvex programming in terms of Greenberg-Pierskalla subdif-
ferential, ∂GP f(x), are studied by the authors. Greenberg-Pierskalla subdiffer-
ential in [6] plays important roles in quasiconvex analysis and surrogate duality.
Characterizations in [31] are based on a necessary and sufficient optimality con-
dition in terms of Greenberg-Pierskalla subdifferential, 0 ∈ ∂GP f(x)+NF (x),
and an invariance property of Greenberg-Pierskalla subdifferential. Especially,
the following characterization is closely related to the necessary and sufficient
optimality condition: let x̄ ∈ S, then

x ∈ S ⇐⇒ ∃v ∈ ∂GP f(x) such that ⟨v, x− x̄⟩ ≤ 0.

Unfortunately, characterizations in [31] are valid for only essentially quasi-
convex programming. There are some examples such that characterizations
in [31] do not hold for non-essentially quasiconvex programming. As far as
we know, characterizations of the solution set for non-essentially quasiconvex
programming have not been studied yet.

In this paper, we study characterizations of the solution set in terms of sub-
differentials for non-essentially quasiconvex programming. For this purpose, we



Characterizations of the solution set for non-essentially quasiconvex programming 3

use Mart́ınez-Legaz subdifferential which is introduced in [18] as a special case
of c-subdifferential by Moreau in [20]. We derive necessary and sufficient opti-
mality conditions for quasiconvex programming by means of Mart́ınez-Legaz
subdifferential. Using the optimality condition, we investigate characteriza-
tions of the solution set in terms of Mart́ınez-Legaz subdifferential. In addition,
we compare our results with previous ones. We show an invariance property of
Greenberg-Pierskalla subdifferential as a consequence of an invariance prop-
erty of Mart́ınez-Legaz subdifferential. We give characterizations of the solu-
tion set for essentially quasiconvex programming in terms of Mart́ınez-Legaz
subdifferential. Furthermore, we explain a relation between Mart́ınez-Legaz
subdifferential and other types of subdifferentials used in the literature.

The remainder of the present paper is organized as follows. In Section 2,
we introduce some preliminaries and previous results. In Section 3, we study
characterizations of the solution set for non-essentially quasiconvex program-
ming in terms of Mart́ınez-Legaz subdifferential. In Section 4, we compare our
results with those existing in the literature.

2 Preliminaries

Let Rn denote the n-dimensional Euclidean space, and ⟨v, x⟩ denote the inner
product of two vectors v and x. For a set A ⊂ Rn, we denote the relative
interior generated by A, by riA. The indicator function δA is defined by

δA(x) =

{
0 x ∈ A,
∞ otherwise.

Throughout the paper, let f be a function from Rn to R = [−∞,∞]. We
define the domain of f by domf = {x ∈ Rn | f(x) < ∞}. The epigraph
of f is denoted by epif = {(x, r) ∈ Rn × R | f(x) ≤ r}. A function f is
said to be convex if for each x, y ∈ Rn, and α ∈ (0, 1), f((1 − α)x + αy) ≤
(1− α)f(x) + αf(y). The subdifferential of f at x is defined as ∂f(x) = {v ∈
Rn | ∀y ∈ Rn, f(y) ≥ f(x) + ⟨v, y − x⟩}. Additionally, the normal cone of A
at x ∈ A is defined as NA(x) = {v ∈ Rn | ∀y ∈ A, ⟨v, y − x⟩ ≤ 0}. It is clear
that NA(x) = ∂δA(x). Fenchel conjugate of f , f∗ : Rn → R, is defined as
f∗(v) = supx∈Rn{⟨v, x⟩ − f(x)}. A function f is said to be quasiconvex if for
each x, y ∈ Rn and α ∈ (0, 1), f((1 − α)x + αy) ≤ max{f(x), f(y)}. Define
level sets of f as

L(f,≤, α) = {x ∈ Rn | f(x) ≤ α},

L(f,<, α) = {x ∈ Rn | f(x) < α}

for any α ∈ R. Then, f is quasiconvex if and only if for any α ∈ R, L(f,≤, α)
is a convex set, or equivalently, for any α ∈ R, L(f,<, α) is a convex set.
Any convex function is quasiconvex, but the converse is not true in general.
A quasiconvex function f is said to be essentially quasiconvex if each local
minimizer x ∈ Rn of f in Rn is a global minimizer of f in Rn. It is clear that any
convex functions are essentially quasiconvex. We can easily see that there exists
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a function such that it is quasiconvex and not essentially quasiconvex. Some
types of characterizations of essentially quasiconvexity have been introduced,
see [1,3,9,10,31] for more details.

In quasiconvex analysis, various types of subdifferentials have been inves-
tigated, see [4–7,14,16–24,26–32]. Especially, in [6], Greenberg and Pierskalla
introduce Greenberg-Pierskalla subdifferential of f at x0 ∈ Rn as follows:

∂GP f(x0) = {v ∈ Rn | ⟨v, x⟩ ≥ ⟨v, x0⟩ implies f(x) ≥ f(x0)}.

Greenberg-Pierskalla subdifferential is closely related to surrogate duality, and
plays an important role in inexact subgradient methods, see [6,8,18].

Throughout the paper, we study the following quasiconvex programming
problem (P):

(P )

{
minimize f(x),
subject to x ∈ F,

where f is a quasiconvex function from Rn to R, and F is a convex subset of Rn.
Let S be the solution set of (P ), that is, S = {x ∈ F | f(x) = miny∈F f(y)}.

In [31], we introduce the following necessary and sufficient optimality con-
dition for essentially quasiconvex programming.

Theorem 2.1 [31] Let f be an upper semicontinuous (usc) essentially qua-
siconvex function, F a convex subset of Rn, and x ∈ F . Then, the following
statements are equivalent:

(i) f(x) = min
y∈F

f(y),

(ii) 0 ∈ ∂GP f(x) +NF (x).

In [31], we study the following characterizations of the solution set for
essentially quasiconvex programming.

Theorem 2.2 [31] Let f be an usc essentially quasiconvex function, F a con-
vex subset of Rn, x̄ ∈ S = {x ∈ F | f(x) = miny∈F f(y)} and x0 ∈ riS. Then
the following statements hold:

(i) ∂GP f(x̄) ⊃ ∂GP f(x0),
(ii) ∂GP f(x) is constant on x ∈ riS,
(iii) the following sets are equal:

(a) S = {x ∈ F | f(x) = miny∈F f(y)},
(b) S1 = {x ∈ F | ∃v ∈ ∂GP f(x̄) ∩ ∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0},
(c) S2 = {x ∈ F | ∃v ∈ ∂GP f(x̄) ∩ ∂GP f(x) s.t. ⟨v, x− x̄⟩ ≤ 0},
(d) S3 = {x ∈ F | ∂GP f(x0) ⊂ ∂GP f(x),∃v ∈ ∂GP f(x0) s.t. ⟨v, x− x0⟩ =

0},
(e) S4 = {x ∈ F | ∂GP f(x0) ⊂ ∂GP f(x),∃v ∈ ∂GP f(x0) s.t. ⟨v, x− x0⟩ ≤

0},
(f) S5 = {x ∈ F | ∃v ∈ ∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0},
(g) S6 = {x ∈ F | ∃v ∈ ∂GP f(x) s.t. ⟨v, x− x̄⟩ ≤ 0}.
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Unfortunately, characterizations in Theorem 2.2 are not always valid for
non-essentially quasiconvex programming, see the following example.

Example 2.1 Let F = [1, 3], and f a real-valued function on R as follows:

f(x) =

x x ∈ (−∞, 1],
1 x ∈ [1, 2],
x− 1 x ∈ [2,∞).

Then, f is usc quasiconvex, not essentially quasiconvex, and S = [1, 2]. Let
x̄ ∈ S and x0 ∈ riS. Then, we can check that the following equations hold:

∂GP f(x) = (0,∞) ∀x ∈ F,

S1 = S5 = {x̄},
S2 = S6 = [1, x̄],

S3 = {x0},
S4 = [1, x0].

Hence, characterizations in Theorem 2.2 do not hold.

3 Characterizations of solution set for non-essentially quasiconvex
programming

In this section, we study characterizations of the solution set for non-essentially
quasiconvex programming. For the purpose, we use the following subdifferen-
tial. Mart́ınez-Legaz subdifferential of f at x ∈ Rn is defined as follows:

∂Mf(x) := {(v, t) ∈ Rn+1 | inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x), ⟨v, x⟩ ≥ t}.

Mart́ınez-Legaz subdifferential is introduced by Mart́ınez-Legaz [18] as a spe-
cial case of c-subdifferential in Moreau’s generalized conjugation [20], in detail,
see Section 4.

In the following theorem, we show a necessary and sufficient optimality
condition for quasiconvex programming problem with a convex set constraint.

Theorem 3.1 Let f be an usc quasiconvex function from Rn to R, F a convex
subset of Rn, and x ∈ F . Then, the following statements are equivalent:

(i) f(x) = min
y∈F

f(y),

(ii) 0 ∈ ∂Mf(x) + epiδ∗F .

Proof Assume that f(x) = miny∈F f(y). If f(x) = miny∈Rn f(y), then (0, 0) ∈
∂Mf(x) since ⟨0, x⟩ ≥ 0 and

inf{f(y) | ⟨0, y⟩ ≥ 0} = inf
y∈Rn

f(y) = f(x).

Clearly, (0, 0) ∈ epiδ∗F , hence (ii) holds. Assume that f(x) = miny∈F f(y) >
infy∈Rn f(y). By usc quasiconvexity of f , L(f,<, f(x)) is a nonempty, open
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and convex set. Since x is a minimizer of f in F , F ∩ L(f,<, f(x)) is empty.
By the separation theorem, there exist v ∈ Rn \ {0} and t ∈ R such that for
each z ∈ F and y ∈ L(f,<, f(x)),

⟨v, z⟩ ≥ t > ⟨v, y⟩ .

Since x ∈ F , ⟨v, x⟩ ≥ t. By using the above separation inequality, for all
y ∈ Rn,

f(y) < f(x) =⇒ ⟨v, y⟩ < t.

Hence,
⟨v, x⟩ ≥ t =⇒ f(y) ≥ f(x),

that is,
inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x).

This means that (v, t) ∈ ∂Mf(x). Also, for each z ∈ F , ⟨−v, z⟩ ≤ −t, that is,
(−v,−t) ∈ epiδ∗F . This shows that (ii) holds.

Conversely, assume that 0 ∈ ∂Mf(x) + epiδ∗F . Then, there exist (v, t) ∈
∂Mf(x) such that −(v, t) ∈ epiδ∗F . By the definition of Mart́ınez-Legaz subd-
ifferential,

inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x).

Since −(v, t) ∈ epiδ∗F , ⟨−v, y⟩ ≤ −t for each y ∈ F . Hence

F ⊂ {y | ⟨v, y⟩ ≥ t}.

This shows that

inf
y∈F

f(y) ≥ inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x),

that is, (i) holds. This completes the proof.

Next, we show characterizations of the solution set for quasiconvex pro-
gramming in terms of Mart́ınez-Legaz subdifferential.

Theorem 3.2 Let f be an usc quasiconvex function, F a nonempty convex
subset of Rn, and x̄ ∈ S = {x ∈ F | f(x) = miny∈F f(y)}. Then, the following
sets are equal:

(i) S = {x ∈ F | f(x) = min
y∈F

f(y)},

(ii) S′
2 = {x ∈ F | ∂Mf(x̄) ∩ ∂Mf(x) ̸= ∅},

(iii) S′
6 = {x ∈ F | ∃(v, t) ∈ ∂Mf(x) s.t. ⟨v, x̄⟩ ≥ t}.

Proof Let x ∈ S. By Theorem 3.1, 0 ∈ ∂Mf(x) + epiδ∗F . Hence, there exists
(v, t) ∈ ∂Mf(x) such that (v, t) ∈ −epiδ∗F . Since x̄ ∈ S ⊂ F and (v, t) ∈
−epiδ∗F , ⟨v, x̄⟩ ≥ t. By the definition of Mart́ınez-Legaz subdifferential,

inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x) = f(x̄).

This shows that (v, t) ∈ ∂Mf(x̄), that is, x ∈ S′
2.
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Let x ∈ S′
2, then there exists (v, t) ∈ ∂Mf(x̄) ∩ ∂Mf(x). Since (v, t) ∈

∂Mf(x̄), ⟨v, x̄⟩ ≥ t, that is, x ∈ S′
6.

Let x ∈ S′
6, then there exists (v, t) ∈ ∂Mf(x) such that ⟨v, x̄⟩ ≥ t. Hence

min
y∈F

f(y) = f(x̄) ≥ inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x).

This shows that x ∈ S and completes the proof.

Remark 3.1 S′
2 and S′

6 in Theorem 3.2 are similar to S2 and S6 in Theorem 2.2
since we can easily see that

S′
2 = {x ∈ F | ∃(v, t) ∈ ∂Mf(x̄) ∩ ∂Mf(x) s.t. ⟨v, x̄⟩ ≥ t}

by the definition of Mart́ınez-Legaz subdifferential.

Characterizations in Theorem 2.2 are not always valid for non-essentially
quasiconvex programming. On the other hand, in Theorem 3.2, we show char-
acterizations of the solution set for non-essentially quasiconvex programming,
see the following example.

Example 3.1 Let F = [1, 3], and f a real-valued function on R as follows:

f(x) =

x x ∈ (−∞, 1],
1 x ∈ [1, 2],
x− 1 x ∈ [2,∞).

F and f are the same in Example 2.1. Hence f is usc quasiconvex, not essen-
tially quasiconvex, and S = [1, 2].

We can check that for each x ∈ F ,

∂Mf(x) =

{
{(v, t) ∈ R2 | v > 0, vx ≥ t ≥ v}, x ∈ [1, 2],
{(v, vx) ∈ R2 | v > 0}. x ∈ (2, 3].

(1)

Actually, let x ∈ [1, 2] and (v0, t0) ∈ ∂Mf(x), then v0x ≥ t0 and

inf{f(y) | v0y ≥ t0} ≥ f(x) = 1.

We show that v0 > 0. If v0 < 0, then inf{f(y) | v0y ≥ t0} = −∞. If v0 = 0
and t0 ≤ 0 then inf{f(y) | v0y ≥ t0} = −∞. Also if v0 = 0 and t0 > 0,
0 = v0x ≥ t0 > 0. Hence v0 > 0. It is clear that v0x ≥ v0 since x ≥ 1. If
t0 < v0, then

t0
v0

< 1, v0
t0
v0

= t0, and

inf{f(y) | v0y ≥ t0} ≤ f

(
t0
v0

)
< 1 = f(x).

This is a contradiction. Hence v0x ≥ t0 ≥ v0, that is,

(v0, t0) ∈ {(v, t) ∈ R2 | v > 0, vx ≥ t ≥ v}.
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Conversely, let and (v0, t0) ∈ R2 with v0 > 0, and v0x ≥ t ≥ v0, then

inf{f(y) | v0y ≥ t0} ≥ inf{f(y) | v0y ≥ v0}
= inf{f(y) | y ≥ 1}
= f(x).

This shows that (v0, t0) ∈ ∂Mf(x). The other inclusions are similar and omit-
ted.

Let x̄ = 1 ∈ S and x ∈ F . If x ∈ (2, 3], then x /∈ S′
2. Actually, if x ∈ S′

2,
then there exists (v, t) ∈ ∂Mf(x̄) ∩ ∂Mf(x). By Equation (1), vx̄ ≥ t ≥ v and
t = vx. Since v > 0, x̄ = 1 ≥ x. This is a contradiction. Hence by Theorem 3.2,
x /∈ S. Of course, we can check that f(x) > 1 = infy∈F f(y). If x ∈ [1, 2], then
(1, 1) ∈ ∂Mf(x). Since (1, 1) ∈ ∂Mf(x̄), (1, 1) ∈ ∂Mf(x̄) ∩ ∂Mf(x), that is,
x ∈ S′

2. Hence by Theorem 3.2, x ∈ S. Actually, f(x) = 1 = miny∈F f(y).
Similarly, we can check whether x ∈ S or not by using a characterization

S = S′
6.

4 Comparisons

In this section, we compare our results with previous ones. We show an in-
variance property of Mart́ınez-Legaz subdifferential and prove an invariance
property of Greenberg-Pierskalla subdifferential as a corollary. We give char-
acterizations of the solution set for essentially quasiconvex programming in
terms of Mart́ınez-Legaz subdifferential. Furthermore, we explain a relation
between Mart́ınez-Legaz subdifferential and previous subdifferentials.

As seen in Theorem 2.2 (ii), Greenberg-Pierskalla subdifferential are con-
stant on riS. Characterizations of the solution set, Theorem 2.2 (iii), are conse-
quences of this invariance property. Motivated by this results, we study invari-
ance properties of Mart́ınez-Legaz subdifferential for essentially quasiconvex
functions.

Theorem 4.1 Let f be an usc essentially quasiconvex function, F a convex
subset of Rn, x ∈ S = {z ∈ F | f(z) = miny∈F f(y)}, and x0 ∈ riS. Assume
that infy∈F f(y) > infy∈Rn f(y). Then, the following statements hold:

(i) ∂Mf(x0) ⊂ −epiδ∗S,
(ii) ∂Mf(x0) ⊂ ∂Mf(x).

Proof (i) Let (v, t) ∈ ∂Mf(x0). By the definition of Mart́ınez-Legaz subdiffer-
ential, ⟨v, x0⟩ ≥ t. Assume that there exists y ∈ S such that ⟨v, y⟩ < t. Since
x0 ∈ riS, z = x0 + ε(x0 − y) ∈ S for sufficiently small ε > 0. Then,

⟨v, z⟩ = (1 + ε) ⟨v, x0⟩ − ε ⟨v, y⟩
= ⟨v, x0⟩+ ε(⟨v, x0⟩ − ⟨v, y⟩)
> ⟨v, x0⟩
≥ t.
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Since infy∈F f(y) > infy∈Rn f(y), z is not a global minimizer of f in Rn. By
essential quasiconvexity of f , there exists z̄ ∈ L(f,<, f(z)) such that ⟨v, z̄⟩ >
⟨v, x0⟩ ≥ t. However, since (v, t) ∈ ∂Mf(x0),

f(x0) = f(z) > f(z̄) ≥ inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x0).

This is a contradiction. Hence, (v, t) ∈ −epiδ∗S .
(ii) Let (v, t) ∈ ∂Mf(x0). By the statement (i), (v, t) ∈ ∂Mf(x0) ⊂ −epiδ∗S .

Since (v, t) ∈ −epiδ∗S , ⟨v, x⟩ ≥ t. This shows that (v, t) ∈ ∂Mf(x) since

inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x0) = f(x).

This completes the proof.

In the following theorem, we show an invariance property of Mart́ınez-
Legaz subdifferential on riS.

Theorem 4.2 Let f be an usc essentially quasiconvex, F a convex subset of
Rn, and S = {x ∈ F | f(x) = miny∈F f(y)}. Assume that infy∈F f(y) >
infy∈Rn f(y). Then, ∂Mf is constant on riS.

Proof Let x, y ∈ riS. By Theorem 4.1, ∂Mf(x) ⊂ ∂Mf(y), and ∂Mf(x) ⊃
∂Mf(y). This completes the proof.

Remark 4.1 In Theorem 4.2, essential quasiconvexity is necessary, see the fol-
lowing function in Example 3.1:

f(x) =

x x ∈ (−∞, 1],
1 x ∈ [1, 2],
x− 1 x ∈ [2,∞).

We can check that f is usc quasiconvex, not essentially quasiconvex, and for
each x ∈ F = [1, 3],

∂Mf(x) =

{
{(v, t) ∈ R2 | v > 0, vx ≥ t ≥ v}, x ∈ [1, 2],
{(v, vx) ∈ R2 | v > 0}. x ∈ (2, 3].

Clearly, ∂Mf is not constant on riS = (1, 2).
Also, the assumption “infy∈F f(y) > infy∈Rn f(y)” is important in Theo-

rem 4.2. Actually, let f(x) ≡ 0 and F = [0, 1]. Then f is an usc essentially
quasiconvex function on R, infy∈F f(y) = infy∈Rn f(y), S = F , and

∂Mf(x) = {(v, t) | v ∈ Rn, ⟨v, x⟩ ≥ t}.

Let x, y ∈ riS satisfying x ̸= y. Then, ⟨x− y, x⟩ > ⟨x− y, y⟩. Hence

(x− y, ⟨x− y, x⟩) ∈ ∂Mf(x), and (x− y, ⟨x− y, x⟩) /∈ ∂Mf(y).

This shows that Mart́ınez-Legaz subdifferential of f is not constant on riS.

We show a relation between Mart́ınez-Legaz subdifferential and Greenberg-
Pierskalla subdifferential in the following theorem.
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Theorem 4.3 Let f be a function from Rn to R, and x0 ∈ Rn. Then,

∂GP f(x0) = {v ∈ Rn | (v, ⟨v, x0⟩) ∈ ∂Mf(x0)}.

Proof Let v ∈ ∂GP f(x0). Then

⟨v, x⟩ ≥ ⟨v, x0⟩ implies f(x) ≥ f(x0).

Hence
inf{f(x) | ⟨v, x⟩ ≥ ⟨v, x0⟩} ≥ f(x0),

that is, (v, ⟨v, x0⟩) ∈ ∂Mf(x0).
Conversely, let v ∈ Rn with (v, ⟨v, x0⟩) ∈ ∂Mf(x0). By the definition of

Mart́ınez-Legaz subdifferential,

inf{f(x) | ⟨v, x⟩ ≥ ⟨v, x0⟩} ≥ f(x0),

that is, v ∈ ∂GP f(x0).

We show an invariance property of Greenberg-Pierskalla subdifferential as
a consequence of our results.

Corollary 4.1 Let f be an usc essentially quasiconvex, F a convex subset of
Rn, and S = {x ∈ F | f(x) = miny∈F f(y)}. Then, ∂GP f is constant on riS.

Proof If infy∈F f(y) = infy∈Rn f(y), then we can prove easily that ∂GP f(x) =
Rn for each x ∈ S.

Assume that infy∈F f(y) > infy∈Rn f(y). Let x, y ∈ riS, and v0 ∈ ∂GP f(x).
By Theorem 4.2 and Theorem 4.3,

v0 ∈ ∂GP f(x) = {v | (v, ⟨v, x⟩) ∈ ∂Mf(x)} = {v | (v, ⟨v, x⟩) ∈ ∂Mf(y)}.

Hence ⟨v0, y⟩ ≥ ⟨v0, x⟩, and

inf{f(z) | ⟨v0, z⟩ ≥ ⟨v0, y⟩} ≥ inf{f(z) | ⟨v0, z⟩ ≥ ⟨v0, x⟩} ≥ f(y).

This shows that v0 ∈ ∂GP f(y). Similarly, we can show that ∂GP f(y) ⊂
∂GP f(x). This completes the proof.

For essentially quasiconvex programming, we show characterizations of the
solution set in terms of Mart́ınez-Legaz subdifferential as corollaries of Theo-
rem 2.2 and our results in this paper.

Corollary 4.2 Let f be an usc essentially quasiconvex function, F a nonempty
convex subset of Rn, x̄ ∈ S = {x ∈ F | f(x) = miny∈F f(y)}, and x0 ∈ riS.
Assume that infy∈F f(y) > infy∈Rn f(y). Then the following sets are equal to
S:

(i) S′
1 = {x ∈ F | ∃(v, t) ∈ ∂Mf(x̄) ∩ ∂Mf(x) s.t. ⟨v, x̄⟩ = t},

(ii) S′
3 = {x ∈ F | ∂Mf(x0) ⊂ ∂Mf(x),∃(v, t) ∈ ∂Mf(x0) s.t. ⟨v, x0⟩ = t},

(iii) S′
4 = {x ∈ F | ∅ ̸= ∂Mf(x0) ⊂ ∂Mf(x)},

(iv) S′
5 = {x ∈ F | ∃(v, t) ∈ ∂Mf(x) s.t. ⟨v, x̄⟩ = t}.
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Proof By Theorem 3.2, we can show that

S′
1 ⊂ S′

5 ⊂ S′
6 = S, and S′

3 ⊂ S′
4.

Hence we only show that S ⊂ S′
1 and S′

4 ⊂ S ⊂ S′
3.

Let x ∈ S. By Theorem 2.2, x ∈ S1, that is, there exists v ∈ ∂GP f(x̄) ∩
∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0. By Theorem 4.3, (v, ⟨v, x⟩) ∈ ∂Mf(x) ∩ ∂Mf(x̄)
since ⟨v, x⟩ = ⟨v, x̄⟩. This shows that x ∈ S′

1.
Let x ∈ S′

4, then there exists (v, t) ∈ ∂Mf(x0) ⊂ ∂Mf(x). Since ⟨v, x0⟩ ≥ t,

f(x0) ≥ inf{f(y) | ⟨v, y⟩ ≥ t} ≥ f(x),

that is, x ∈ S.
Let x ∈ S. Then by Theorem 2.2 and Theorem 4.1, x ∈ S3 and ∂Mf(x0) ⊂

∂Mf(x). Hence there exists v ∈ ∂GP f(x0) such that ⟨v, x− x0⟩ = 0. By The-
orem 4.3, (v, ⟨v, x0⟩) ∈ ∂Mf(x0), that is, x ∈ S′

3. This completes the proof.

Remark 4.2 S′
1, S

′
3, S

′
4, and S′

5 in Corollary 4.2 are similar to S1, S3, S4, and
S5 in Theorem 2.2 since we can easily see that

S′
4 = {x ∈ F | ∂Mf(x0) ⊂ ∂Mf(x),∃(v, t) ∈ ∂Mf(x0) s.t. ⟨v, x0⟩ ≥ t}.

For non-essential quasiconvex programming, characterizations in Corol-
lary 4.2 do not always hold. Actually, let F = [1, 3], f be the function in
Example 3.1, x̄ = 2 ∈ S = [1, 2], then we can check that

S′
1 = S′

3 = S′
4 = S′

5 = {x̄}.

On the other hand, let x̄ = 1 ∈ S, then we can check that S′
1 = S′

3 = S′
4 =

S′
5 = S.
In Corollary 4.2, we need the assumption “infy∈F f(y) > infy∈Rn f(y)”. On

the other hand, in Theorem 2.2, we characterize the solution set without the as-
sumption. Hence, for essentially quasiconvex programming, characterizations
in terms of Greenberg-Pierskalla subdifferential is more suitable than char-
acterizations in terms of Mart́ınez-Legaz subdifferential. Of course, for non-
essentially quasiconvex programming, characterizations in terms of Mart́ınez-
Legaz subdifferential is useful, and characterizations in terms of Greenberg-
Pierskalla subdifferential do not always hold.

Finally, we explain a relation between Mart́ınez-Legaz subdifferential and
previous subdifferentials. In many cases, conjugates and subdifferentials con-
cern special cases of Moreau’s generalized conjugation in [20]. In [18], Mart́ınez-
Legaz summarizes the quasiconvex conjugate duality by using the notion of
Moreau’s generalized conjugation. We can regard Mart́ınez-Legaz subdiffer-
ential as a special case of Moreau’s generalized subdifferential. We recall the
essentials of Moreau’s conjugation theory in [18,20].

Let X and Y be arbitrary sets and c a function from X × Y to R. For a
function f from X to R, c-conjugate of f , denoted by f c, is a function from
Y to R as follows:

f c(y) = sup
x∈X

{c(x, y) +̇− f(x)},
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where

+̇

is a natural extension to R of the ordinary addition, such that

∞ +̇

(−∞) = (−∞)

+̇∞ = −∞.

Then, y0 ∈ Y is said to be a c-subgradient of f at x0 ∈ domf if c(x0, y0) ∈ R
and for all x ∈ X,

f(x)− f(x0) ≥ c(x, y0)− c(x0, y0).

The set of all c-subgradients of f at x0 is called c-subdifferential of f at x0,
denoted by ∂cf(x0). If c is the inner product in the n-dimensional Euclidean
space Rn, then f c = f∗ and ∂cf(x) = ∂f(x) for each x ∈ Rn. In this sense,
Fenchel conjugate and the subdifferential are special cases of Moreau’s gener-
alized conjugation.

Let c̄ be a function from Rn × (Rn × R) to R as follows:

c̄(x, (v, t)) =

{
0 ⟨v, x⟩ ≥ t,
−∞ otherwise.

Then,
f c̄(v, t) = − inf{f(x) | ⟨v, x⟩ ≥ t}.

In [18], Mart́ınez-Legaz investigates this conjugate by using the notion of H-
duality and Moreau’s generalized conjugation. By Proposition 4.3 in [18],

∂c̄f(x0) =

(v, t) ∈ Rn × R

∣∣∣∣∣ v ∈ ∂GP f(x0), t ∈
∩

x∈L(f,<,f(x0))

(⟨v, x⟩ , ⟨v, x0⟩]

 .

We can check easily that ∂c̄f(x0) = ∂Mf(x0). Hence, Mart́ınez-Legaz subd-
ifferential is a special case of c-subdifferential, and satisfies properties of c-
subdifferential in [18,20].

5 Conclusion

In this paper, we study characterizations of the solution set for non-essentially
quasiconvex programming. We show a necessary and sufficient optimality con-
dition for quasiconvex programming by Mart́ınez-Legaz subdifferential. As a
consequence, we investigate characterizations of the solution set in terms of
Mart́ınez-Legaz subdifferential. Also, we compare our results with previous
ones. We show an invariance property of Mart́ınez-Legaz subdifferential and
prove an invariance property of Greenberg-Pierskalla subdifferential as a con-
sequence of our results. We give characterizations of the solution set for es-
sentially quasiconvex programming in terms of Mart́ınez-Legaz subdifferential.
Furthermore, we explain a relation between Mart́ınez-Legaz subdifferential and
previous subdifferentials, especially c-subdifferential.
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