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Ab initio scaling laws for the formation energy of nanosized interstitial defect
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The size limitation of ab initio calculations impedes first-principles simulations of crystal defects at nanometer
sizes. Considering clusters of self-interstitial atoms as a paradigm for such crystal defects, we have developed
an ab initio–accuracy model to predict formation energies of defect clusters with various geometries and sizes.
Our discrete-continuum model combines the discrete nature of energetics of interstitial clusters and continuum
elasticity for a crystalline solid matrix. The model is then applied to interstitial dislocation loops with 〈100〉 and
1/2〈111〉 Burgers vectors, and to C15 clusters in body-centered-cubic crystals Fe, W, and V, to determine their
relative stabilities as a function of size. We find that in Fe the C15 clusters were more stable than dislocation
loops if the number of self-interstitial atoms involved was fewer than 51, which corresponds to a C15 cluster
with a diameter of 1.5 nm. In V and W, the 1/2〈111〉 loops represent the most stable configurations for all defect
sizes, which is at odds with predictions derived from simulations performed using some empirical interatomic
potentials. Further, the formation energies predicted by the discrete-continuum model are reparametrized by a
simple analytical expression giving the formation energy of self-interstitial clusters as a function of their size.
The analytical scaling laws are valid over a very broad range of defect sizes, and they can be used in multiscale
techniques including kinetic Monte Carlo simulations and cluster dynamics or dislocation dynamics studies.
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I. INTRODUCTION

The ability of materials to sustain extreme conditions,
encountered in fusion-plasma confinement reactors or in space
exploration, depends on the formation and mobility of clusters
of vacancies and interstitial atoms. As such, a study of defects
in body-centered-cubic refractory metals and iron provides
a foundation for future research in structural materials, and
it paves the way for a better understanding of materials
ageing. Over the lifetime of reactor components, the mobility
of individual defects gives rise to clustering and growth of
defect clusters. Vacancies and self-interstitial atoms (SIAs)
form either two- or three-dimensional clusters, depending on
their size, as a result of competition between the interface
and bulk energies, as described by the Gibbs theory of
wetting [1]. Vacancy cluster morphology of various bcc metals
is fairly well known and exhibits similar behavior. There is a
competition between planar loops and voids, as confirmed by
experimental observations [2,3]. However, SIA clusters show
acutely different properties depending on the bcc material
under consideration.

Density functional theory (DFT) calculations and other ab
initio methods provide quantitative insight into the nature
of clusters containing a small number of defects. DFT
calculations show that the most stable single SIA in Fe
adopts a configuration that corresponds to a 〈110〉 dumbbell,
whereas in other bcc transition metals, a single SIA forms
a defect aligned along the 〈111〉 direction, known as a
crowdion [4–7]. These DFT predictions broadly agree with
experiment [8], which makes it desirable to extend predictions
to clusters larger than a single SIA. Dumbbells can be packed
together in bundles to form small dislocation loops. DFT
predicts that in Fe the orientation of these dumbbells changes

from 〈110〉 to 〈111〉 depending on the number of SIAs
involved. The transition occurs at around five SIAs [9,10].
In Fe, observation of nanometric-sized clusters of SIAs by
transmission electron microscopy (TEM) techniques reveals
the presence of planar loops, which can adopt either the
1/2〈111〉 (highly mobile) or 〈100〉 (immobile) configurations,
depending on temperature [8,11,12]. At high temperature,
the magnetic excitations induce elastic instabilities, near the
temperature of the α-γ transition, which play a crucial role
in the relative stability of the two types of loops. It has
been shown that at low temperature 1/2〈111〉 loops are
more stable, while at high temperatures (over 700 K) 〈100〉
loops are more stable [13,14]. TEM observations show that
in all other bcc metals, dislocation loops with a 1/2〈111〉
Burgers vector are dominant, which suggests that they are
the most stable configurations for bundles of dumbbells.
Recently, much progress has been made in the experimental
field, enabling observation of small 〈100〉 loops in W under
heavy-ion irradiation at low temperatures, which vanish at
high temperatures [15,16]. The reason why the 〈100〉 loops
form in W is still under debate. In the intermediate defect
cluster size range, spanning the interval between individual
self-interstitial atoms and nanometric-sized dislocation loops,
it is difficult to generate experimental data because of the
high resolution of observations required to characterize such
small objects. According to recent DFT calculations [10],
SIA clusters can also form three-dimensional structures with
symmetry corresponding to the C15 Laves phase. In Fe,
these C15 aggregates are stable, immobile, and exhibit large
antiferromagnetic moments. These C15 clusters have been
found to form directly inside atomic displacement cascades,
and they are able to grow by capturing self-interstitial atoms
from the surrounding material.
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The energetics of interstitial clusters with nanometer size
plays an important role, being a key ingredient that enables
the connection between the asymptotic limits: isolated point
defects that can be modeled using ab initio methods, and
large observable dislocation loops. Limitations on the size of
a DFT simulation cell in transition metals does not permit the
exploration of clusters containing more than a few tens of SIAs.
This technical problem can be overcome in part through the
development of interatomic potentials based on the embedded
atom method (EAM), but then unavoidable approximations
result in the loss of accuracy and transferability. Most of the
EAM potentials developed to study clusters of SIAs are built
to fit the energetics of small clusters of SIAs provided by ab
initio methods [5,10,17–20]. Because of this, all the potentials
provide similar results in the small cluster size limit, but
there is significant scatter in the predicted formation energies
over the nanometer-sized range for loops [21,22] and C15
clusters [10,23]. For instance, the EAM potentials proposed
in Refs. [17–19,21,24] can be used to compute the formation
energy of nanometer-sized clusters in Fe containing up to 1000
SIAs in the form of 1/2〈111〉 dislocation loops, which span
a fairly broad interval from 400 to 700 eV. Similar scatter is
observed for other bcc elements, such as W, and for different
types of clusters (〈100〉 or C15).

One way of circumventing this difficulty is to establish
scaling laws from elasticity theory and then to use these laws
to extrapolate DFT calculations from small clusters to larger
scales. One model, proposed by Soneda et al. [25] two decades
ago, postulated an ad hoc function for the formation energy
in terms of the number n of SIAs forming the cluster. The
formation energy takes the form Ef (n) = P0 + P1n

2/3, where
P0 and P1 are adjustable parameters. This popular model has
been widely used in the literature. Over 100 studies have used
this simple law in order to parametrize kinetic Monte Carlo
or cluster dynamics simulations for the time evolution of a
distribution of clusters (see, for instance, Refs. [9,26–28] and
references therein). However, as we shall see later, this model
yields large uncertainties at large sizes when its parameters are
fitted to properties of small clusters.

In this paper, we develop a model for the energy of clusters,
which combines cluster expansion and elasticity for crystalline
solids, enabling us to predict the formation energies for large
SIA clusters directly from ab initio calculations performed
on small clusters. The main advantage of this model is that
it successively treats the discrete nature of small clusters,
combining it with the continuous nature of larger clusters such
as dislocation loops. The only input required to predict the
formation energies of clusters of a particular type (〈100〉,
1/2〈111〉, or C15) is the formation energies of a number
of configurations of small clusters of that type. To test the
validity of the scaling laws derived for different types of
clusters, this approach has been applied first to the case of
cluster formation energies computed using EAM interatomic
potentials [5,10,17–20]; after a calibration of the laws with
EAM data for small clusters, we have compared the scaling
law predictions for large clusters to direct computations
performed using the same EAM potentials and large simulation
cells. Excellent agreement was obtained for different EAM
potentials and different types of clusters, which demonstrates
that the subsequent calibration of the scaling laws with DFT

calculations can generate formation energies for large SIA
clusters with ab initio accuracy.

Our developments allow us to use the power of ab initio
theory to assess the relative stability of dislocation loops with
〈100〉 and 1/2〈111〉 Burgers vectors and the recently proposed
C15 clusters.

The paper is organized as follows. Section II describes
the key aspects of the energetic model adapted to dislocation
loops (Sec. II A) and to the C15 clusters (Sec. II B). The
discrete-continuum model is parametrized using a database
described in Sec. III A. The analysis given in Sec. III B
addresses the transferability of the model. The analysis of
the relative stability of SIA clusters is presented in Sec. III C.
Ab initio scaling laws having a simple analytical form for the
formation energy of self-interstitial clusters as a function of
their size are presented in Sec. III D. A final discussion and
conclusions are given in Sec. IV.

II. DISCRETE-CONTINUUM MODEL

A. Discrete-continuum model for dislocation loops

According to the elastic theory of dislocations [29], the
formation energy of a 2D platelike cluster of SIAs is related
essentially to two quantities: the line energy density of the
edge dislocation, which encloses the cluster, and the stacking
fault energy. The latter is very high in bcc metals, and as a
result stacking faults do not form and are hence neglected in
the following. The elastic energy associated with the volume
V, which contains one dislocation loop bordering a cluster of
n SIAs with Burgers vector �b, can be written using the elastic
tensor Cijkl and the elastic field around the loop ui (summation
over indices i,j,k,l is performed over x, y, and z) [30] as

Eelastic(n,�b) = 1

2

∑
i,j,k,l

∫
V

Cijkl

∂ui

∂xj

∂uk

∂xl

dV . (1)

Using anisotropic elasticity theory and the Gauss the-
orem to transform the volume integral into a surface in-
tegral [13,30,31], we find the elastic contribution to the
formation energy as the sum of the energy stored in the elastic
field and the core energy of the edge dislocation that encloses
the cluster as

Eelastic(n,�b; δ,R̃,Ec−δ) =
[∮

K(�t)d�t
]

ln(R̃/δ)

+
∮

Eδ−c(�t)d�t, (2)

where δ is the radius of the nonlinear dislocation core, R̃ is a
measure of the effective range of the elastic field of the loop,
and K(�t) is the prelogarithmic energy factor for a straight
dislocation with orientation �t in the bcc matrix. In the last term
in Eq. (2), Eδ−c(�t) includes the core-traction and nonlinear core
energies per unit length of a dislocation. The usual assumption
on Eδ−c(�t) is to neglect the dependency on the orientation of the
dislocation. If we define an average prelogarithmic factor for
a circular loop as Ka = 1

2π

∮
K(�t)d �θ , then the elastic energy

becomes

Eelastic(n,�b; δ,Ec−δ) = 2πR∗Ka ln

(
R∗

δ

)
+ 2πR∗Eδ−c, (3)
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FIG. 1. (a) Formation energies of the 1/2〈111〉 and 〈100〉 dislocation loops in Fe against the number of SIAs, computed (i) from atomic-scale
simulations using an EAM interatomic potential [18]; (ii) using predictions based on the law P0 + P1n

2/3 (see Ref. [25]); (iii) using the anisotropic
elasticity theory [see Eq. (5)], which is parametrized with atomic-scale calculations up to n = 21 SIAs. P0 and P1 are fitted while term T

is computed directly from the elastic tensor associated with the EAM potential. (b) The ratio of the convex hull perimeter of the dislocation
loops to the perimeter deduced from the discrete number n of SIAs contained in the cluster. The full curve was fitted using the function
{1 − [1/(xa1 + a2)]}, with values of 0.70 and 0.88 for the exponent a1 of 1/2〈111〉 and 〈100〉 loops, respectively.

where R∗ is the radius of an equivalent circular loop with the
same perimeter, and Ka depends also on the Burgers vector �b
and the habit plane. Parameter Ka is evaluated from the elastic
tensor of the material Cijkl using Bacon’s theory [13,32,33]
or Stroh’s sextic formalism [30,31,34–38]. In this study, both
theories have been tested and yielded very similar results. R∗
is uniquely determined by the number n of SIAs. Imposing
that the surface area of the loop is equal to n times the average
surface area per SIA, we obtain that R∗ is f�babcc

√
n, where

abcc is the lattice parameter of the bcc structure and f�b is
a factor that depends on the Burgers vector and the habit
plane of the loop, i.e., f�b = √

1/(2π ) and
√√

2/(2π ) for the
〈100〉{001} and 1/2〈111〉{110} loops, respectively. The latter
consideration allows us to rewrite Eq. (3) as follows:

Eelastic(n,�b; δ,Ec−δ) = 2πf�babccKa

√
n ln

(
f�babcc

√
n

δ

)

+ 2πf�babcc
√

nEδ−c. (4)

The elastic theory, detailed above, is adapted to the
treatment of large clusters. However, we note from Eq. (4)
that the elastic energy varies as the square root of n, so that for
small clusters, different contributions, either from the shape of
the loops or from the internal structure of the loop, are expected
to become dominant below a certain value of n. Additionally,
the values of δ and Eδ−c cannot be determined solely from
elastic theory, but they must be determined from atomistic
calculations. To illustrate that, we write the elastic term as a
function of three unknown parameters: T , P0, and P1:

Eelastic(n,�b; δ,Ec−δ) = T
√

n ln(n) + P1
√

n + P0, (5)

where the P0 term is introduced to match the atomic data in the
limit of small SIA cluster size, e.g., n = 1 or 2, for which the
concepts of perimeter and surface are not well defined. Using
the sextic formalism [13,32], for the case of pure prismatic
loop, the term T can be written as

T = 1

2
f�babcc ln

(
f�babcc

δ

) ∮
bibmnjnqcijklcnpmq

×Im

[
3∑

κ=1

κη
pκ

η

l

Nkn(κη)

ns
∂D(κη)

∂κs

]
dθ. (6)

For an edge dislocation, �κη = �m + �nω(η), �n = �b/b,
and �m = �n × �t . ω(1), ω(2), and ω(3) are the three
complex roots of the sextic equation S(ω) =
det [cijkl(mj + njω) × (ml + nlω)] = 0, which are situated in
the upper half of the complex plane ω = Reω + i Imω, where
Imω > 0, and Nik(�κ) is the matrix adjoint to Lik(�κ) = cijklκj κl

and D(�κ) = det Lik(�κ). An example of parametrization of
Eq. (5) is shown in Fig. 1(a). The best set of parameters for this
model has been obtained using a database of clusters smaller
than 22 SIAs, which are accessible to a DFT computation.
The atomistic formation energies are computed using an EAM
interatomic potential [18] in order to check the validity of our
parametrization for large SIA clusters through a comparison
between predictions and direct atomic-scale simulations. Two
strategies have been tested for fitting. In the first case, all
three parameters, P0, P1, and T were fitted. For that case,
not described here, the predictions made from Eq. (5) for
large clusters stringently diverge from the atomistic values,
with some relative errors up to 60% for the two families of
loops that have been examined. In a second method, T was
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computed from the elastic tensor as shown in Eq. (6), and only
P0 and P1 were adjusted with respect to the formation energies
computed at the atomic scale for clusters with n < 22. Using
this approach, as can be seen in Fig. 1(a), the predictions are
much better since the error is around 10% for the 1/2〈111〉
and less than 4% for the 〈100〉 loops. The error is smaller than
ad hoc laws proposed by Soneda [25] but still important in
absolute terms for 1/2〈111〉 loops. Even worse, the accuracy
of the elastic model depends strongly on the choice of the
database used for the fit. For the same number of clusters
involved in the database, we can arbitrarily change the error by
choosing various shapes of clusters. To reduce the variability
of the results due to differences in the shapes of small clusters
included in the database, and to reduce the relative error below
3% for the two types of loops, we must increase the maximum
size of the loops included in the database to 53 SIAs. However,
this is not accessible to DFT simulations in transition metals
with conventional computers because to obtain the formation
energies for clusters larger than 53 SIAs with reasonable
accuracy, the total number of atoms needed in the simulation
cell is larger than 5000. The fact that a pure elastic model
parametrized on small clusters fails to correctly predict the
formation energies for large clusters can be ascribed to the
following two reasons: (i) the description of dislocation loops
with finite core extensions is inappropriate for small clusters
where the enclosing dislocation core is comparable in size to
the radius of the cluster; (ii) the perimeter of the enclosing
loops is fixed by a function indexed on integer values, i.e., the
number of interstitial atoms. To emphasize the latter point,
we have reported in Fig. 1(b) the ratio of the convex hull
perimeter of loops to the perimeter deduced from n using the
criterion described above. This ratio converges very slowly
to 1, and for sizes included in the fit (n between 3 and 21
SIAs) the value ranges from 0.56 to 0.85. Even if the ratio of
convex hull perimeter and perimeter deduced as a function
of n using the

√
n criterion can be improved, the ambiguity

in the definition of the perimeter of small and large loops
remains. Therefore, the two points noted above imply that the
parameters fitted to the data derived for small loop sizes are
not representative of larger loop sizes generating large errors
in the adjustment/extrapolation procedure.

Hence, due to the size limitation of ab initio calculations, it
is impossible at present—or in the near future—to parametrize
an elastic model using Eq. (5) for the formation energies of
SIA nanometric clusters. To overcome this difficulty, we add a
cluster-expansion-like term to the elastic model, which takes
into account the discrete structure of small dislocation loops:

Eformation(n) = Ediscrete(n,n1,n2, . . . ; {Pj })
+Eelastic(n,b; δ,Ec−δ). (7)

The discrete term depends on a set of parameters {Pj }, and
we impose a requirement that it vanishes in the asymptotic
limit n −→ ∞, i.e., Ediscrete(n,n1,n2, . . . ; {P }j ) −−−→

n→∞ 0. The

discrete nature and the geometric structure of clusters are
accounted for in the term Ediscrete through a topological
mapping to the local neighborhood of each dumbbell, which
is defined by the number of first (n1), second (n2), or higher
nearest-neighbor pairs of dumbbells. The distance between
dumbbells is defined as the distance between their centers.

For example, in the case of a 1/2〈111〉 dislocation loop with
a {110} habit plane, the first- and second-nearest-neighbor
shells each have four nearest-neighboring dumbbells, situated
at distances

√
3abcc/2 and abcc, respectively.

The discrete part of the energy for a dislocation loop
containing n SIAs is written as the sum of contributions from
all dumbbells:

Ediscrete =
n∑

i=1

Ei =
n∑

i=1

f
(
n; ni

1,n
i
2

)
E

(
ni

1,n
i
2

)
. (8)

The local energy associated with the ith dumbbell of
the cluster is expressed as Ei = f (n; ni

1,n
i
2)E(ni

1,n
i
2), where

the function E(ni
1,n

i
2) fully determines how Ei depends on the

dumbbell neighborhood, i.e., on the number of first- and
second-nearest-neighbor dumbbells in the habit plane, denoted
ni

1 and ni
2, respectively. Function f (n; ni

1,n
i
2) fixes the weight

for the ith dumbbell energy E(ni
1,n

i
2). To define the latter

function, we note that various atomic-scale studies [21,39,40]
have confirmed that the interatomic distance between two
atoms that form the dumbbells situated far from the cluster’s
edges recovers bulk coordination. For example, relaxation
of dumbbells recovers perfect bulk first-nearest-neighbor
distance

√
3abcc/2 in the center of clusters. As a result, the

dumbbells that are close to the center of the loops, with full
nearest-neighbor shells, make no contribution to the energy
of the system other than twice the cohesive bulk energy. This
means that in terms of the formation energy, these dumbbells
make no contribution to the discrete energy. Therefore, the
function f (n,ni

1,n
i
2) should be zero for the dumbbells with

their full nearest-neighbor shell. A second constraint on this
function is given by the asymptotic limit at large n, i.e.,
f (n; n1,n2) −−−→

n→∞ 0. Hence we consider the following product

form: f (n; n1,n2) = g(n)h(n1,n2), where h(n1,n2) equals
unity for the atoms that do not have full nearest neighborhood,
and zero otherwise, and g(n) −→ 0 for large clusters. To
ensure the condition Ediscrete(n,n1,n2, . . . ; {P }j ) −−−→

n→∞ 0, we

have tried many monotonically decreasing functions of the
form proportional to 1/nα for g(n), with α in the interval from
0.5 to 1. The best choice for α was found to be 0.55.

To reduce the sum in Eq. (8), we can rewrite the discrete
energy contribution by introducing the number of dumbbells
having n1 and n2 first and second neighbors, (in1,n2 ):

Ediscrete =
Nb

1∑
n1=0

Nb
2∑

n2=0

in1,n2f (n; n1,n2)E(n1,n2) + P2, (9)

where Nb
1 and Nb

2 are the bulk numbers of first and second
neighbors, and P2 is a constant. A pair formulation is neither
a necessity nor a constraint in this approach, since the model
can be readily extended to more complex types of interaction.
To exemplify this energetic model, let us take the example of a
small 〈100〉{001} loop containing 15 SIAs, which is sketched
in Fig. 2. In this case, the discrete part of the energy can be
written as

Ediscrete = 1

150.55
[2E(1,2) + 4E(2,2) + 3E(2,3) + 2E(4,2)

+ 3E(4,3)] + P2. (10)
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FIG. 2. Structure of a 〈100〉 loop in the {001} habit plane containing 15 SIAs showing the number of first and second nearest neighbors of
all dumbbells. Note: The loops were constructed such that each dumbbell has at least one dumbbell in the first-nearest-neighbor position. As
a result, the possible number of first nearest neighbors varies from 1 to 4, while the number of second nearest neighbors varies from 0 to 4.
There exists just one exception, namely the case of mono-SIA.

In the above equation, h(4,4) = 0 and h(1,2) = h(2,2) =
h(2,3) = h(4,2) = 1.

Combining the elastic and discrete parts, we find that the
formation energy of a loop with n SIAs is

Eformation(n) = T
√

n ln(n) + P1
√

n + P0 +
Nb

1∑
n1=0

Nb
2∑

n2=0

in1,n2

×f (n; n1,n2)E(n1,n2). (11)

We note that parameter P0 derived from elasticity is combined
with P2, deduced from the discrete model, to give just one
constant, denoted by P0 in Eq. (11). Our goal here is to
produce an analytical model that defines a general functional
form of the scaling law that describes the formation energy
Eformation(n) of clusters as a function of their size n. The
advantage of this formulation, expressed in Eq. (11), is that
a full set of parameters E(n1,n2) and P0,1 can be obtained
from ab initio formation energies derived using a training
series of configurations of small interstitial clusters. The model
combines a discrete contribution to the energy, evaluated using
a cluster expansion formalism, with a term derived using a
treatment of prismatic loops based on elasticity theory. The
predicted formation-energy values are going to be used to
determine the functional form of the energy scaling law, as
described in Sec. III.

B. Discrete-continuum model for C15 clusters

The strategy described above has also been adopted to
develop a model for C15 clusters. C15 inclusions have
different elastic properties in comparison to the host bcc
matrix [41], and the corresponding energy is treated using
the formalism of isotropic Eshelby inclusion [30,42,43]. The
discrete contribution to the formation energy takes into account
the particular structure of C15 clusters. In comparison with the
case of dislocation loops, they have an additional contribution
from the atoms having perfect C15 bulk coordination situated
inside the clusters. Thence the core region of a C15 cluster does
contribute non-negligibly to the formation energy. In addition,
the bcc bulk atoms of the perfect lattice are replaced by C15

bulk atoms with different cohesive energies, and consequently
this difference must be accounted for. The remaining atoms
of the SIA cluster, which do not have the perfect C15 bulk
coordination, correspond to the interface between the C15
cluster and the bcc matrix. These interfacial atoms also
contribute significantly to the formation energy. The present
energetic model is close to the Zhang et al. [23] model used for
interpolating the formation energy of C15 clusters provided by
EAM interatomic potential calculations. In the model of Zhang
et al., the number of atoms situated both at the interface and in
the perfect C15 bulk is deduced from the asymptotic limit of
large clusters. The present model is used for predicting the for-
mation energy of C15 clusters from DFT calculations. The dif-
ference between the convex hull surface and the surface
computed from the number of SIAs in a cluster is fairly large
for small sizes [even larger than that for the perimeter of loops,
Fig. 1(b)]. Therefore, the number of atoms with perfect C15
bulk coordination NC15, the number of interfacial atoms Ni , as
well as the surface area SC15 and volume VC15 of C15 clusters
are deduced directly from the geometry of the cluster. The
formation energy expression used in our model is written as
follows:

Eformation(n) = SC15γ + 6VC15με2

α
+ NC15

(
Ebcc

coh − EC15
coh

)
+Ni�Ei, (12)

where Ebcc
coh and EC15

coh are the cohesive energies of the perfect
bulk bcc and of the perfect C15 structures, respectively. The
coefficient �Ei is the average energy of atoms at the interface,
and γ is the interface energy per unit area between the bcc
matrix and the C15 inclusion. The second term in Eq. (12) is
the energy of isotropic Eshelby’s inclusion, with a C15 cluster
treated as an inclusion in the otherwise isotropic bcc matrix.
Eshelby discovered an elegant way of calculating the stress,
strain, and displacement fields, both in the inclusion as well as
in the matrix, by using a superposition of linear elasticity and
the Green’s-function formalism [42,43]. The same approach
allows the computation of the strain energy contribution in
the presence of a C15 cluster. Here, μ is the isotropic shear
modulus of the matrix, while α = 1 + 3μ/(4BC15), where
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FIG. 3. Formation energies of n SIAs of (a) 1/2〈111〉 and (b) 〈100〉 dislocation loops in Fe, computed with an EAM potential [18] with
different configurations in cubic simulation cells containing 250 + n (red circle), 432 + n (blue square), 686 + n (orange triangle up), and
1024 + n (green rhombus) atoms. All energies are normalized to the asymptotic limit, taken as the formation energy in a simulation cell
containing 207 646 + n atoms. Lines are guides for the eyes, obtained using a fit to a fourth-order polynomial. Formation energies have been
corrected using the elastic dipole correction method to account for the finite size of the simulation cells [47].

BC15 is the bulk modulus of C15 clusters and ε is the misfit
strain, which can be computed directly from atomic-scale
calculations. �Ei and γ are adjusted with respect to atomic-
scale simulations, while the cohesive energies of bcc and C15
clusters are determined from atomistic calculations [41]. In
the limit of large spherical C15 clusters, the previous equation
can be written as a function of the number n of SIAs as in the
Zhang model [23]:

Eformation(n) = 2γs(9π
2)
1/3

n2/3 + 12
με2

α
n

+ 3n
(
Ebcc

coh − EC15
coh

)
, (13)

where 
 is the atomic volume of bcc iron. In the large limit, a
cluster with n interstitials is obtained by replacing 2n bcc atoms
by 3n C15 atoms, which gives the volume of the C15 cluster as
VC15 = 2n
. The convex hull surface and the atomic interface
energies, i.e., the first and last terms of Eq. (12), have been
combined into a single term that is the first term of Eq. (13).
The prefactor γs in the first term, which gives the dependence
in n2/3, plays the role of interface energy. Due to the fact that
the SC15 and Ni terms of the discrete formulation in Eq. (13)
take the form n2/3 in the infinite limit, the interface energy γs

combines γ and �Ei .

III. PARAMETRIZATION AND RESULTS

A. Database used for parametrization of the
discrete-continuum model

The energy landscape of dislocation loops has been widely
studied at the atomic scale by various authors [13,21,33,44,45],

and the lowest-energy configurations of various clusters have
already been reported in the literature. 1/2〈111〉 dislocation
loops were generated by inserting 〈111〉 dumbbells in the
{110} habit plane so as to form compact clusters. 〈100〉
dislocation loops were generated by inserting atomic 〈100〉
dumbbells in the {001} habit planes. In addition to these
configurations, we have found that some specific cluster
geometries needed to be included in the database in order
to have a good parametrization for E(n1,n2). The choice of
these configurations was made to reproduce the neighborhood
of large loops, i.e., those containing thousands of SIAs (see the
Appendix A for further details). In this work, the size of the
clusters included in the database is limited by the feasibility of
ab initio calculations. The size of the clusters in the database
ranges from 2 to 20 SIAs with a total of about 50 configurations
for 〈100〉, and from 2 to 22 SIAs with 31 configurations for
1/2〈111〉. The choice of the largest cluster size, i.e., 22 SIAs for
1/2〈111〉, is justified by the low relative error in the formation
energy in simulation cells with 1024 + n atoms (8a × 8a × 8a

cells). As shown in Fig. 3, the relative errors in the formation
energies due to this size limit are lower than 2%. More details,
along with the exhaustive list of configurations included in the
database, are given in the Appendix A.

The building block of C15 clusters is a di-interstitial cluster.
A simple way to insert a di-interstitial C15 cluster into a bcc
matrix is to place a Z16 Frank-Kasper polyhedron having
12 atoms at the interstitial positions [see Fig. 4(a)] together
with 10 vacancies around a given bcc atomic site. Larger
C15 clusters can be described as sums of Z16 Frank-Kasper
polyhedra having centers situated on a diamond network,
which underlies the initial bcc structure [this network is shown

024103-6



Ab INITIO SCALING LAWS FOR THE FORMATION . . . PHYSICAL REVIEW B 94, 024103 (2016)

FIG. 4. (a)–(d) Top: Structure of small C15 interstitial clusters in a bcc lattice of the di-, tetra-, hexa-, and octo-interstitial clusters, in a
skeleton representation, i.e., only SIAs are represented as orange spheres without any representation of vacancies and cubic lattice sites. (a)–(d)
Bottom: centers of the Z16 Frank-Kasper polyhedron corresponding to the top C15 skeletons are represented by green spheres. (e) The 11 SIA
C15 cluster, the lowest size that forms a closed ring with the centers of Z16 Frank-Kaspers polyhedra. This ring is emphasized by blue bonds
connecting the centers of Z16 polyhedra.

in Figs. 4(a)–4(e)]. The present database should include the
lowest-energy configurations. To form a cluster with a given
number of SIAs, the number of possible choices of Z16
centers is quite large, and guessing the configurations with
the lowest formation energies is problematic. The database
for C15 clusters contains up to 20 configurations of SIAs.
This limit is fixed, as in the case of loops, by the accuracy
in the formation energies derived from DFT calculations with
a cell containing 1024 + n atoms. Systematic exploration of
the energy landscape in search of the minimum energy C15
configurations gives good results for small clusters. Marinica
et al. [10] used the activation relaxation technique [46] for
finding the lowest-energy configurations for two, three, or four
SIA clusters. Nonetheless, the number of possible configura-
tions grows exponentially with the size of the cluster, making
a systematic search prohibitive at larger sizes. More advanced
techniques using a genetic algorithm were proposed, making it
possible to find the lowest-energy configurations containing up
to 10 SIAs [48]. In a more pragmatic approach, configurations
for the present database were generated using three “selection
rules” that have been established from the observation of the
formation energies of several trial configurations generated
using EAM potentials [18,21,24]:

(i) All Z16 centers must be connected by at least one
nearest-neighbor bond to another center. This rule prevents
the construction of configurations formed by disconnected
clusters.

(ii) Closed hexagonal paths made of six Z16 centers are
favored whenever possible. The smallest cluster having six
Z16 connected centers is the 11 SIA cluster, which is shown in
Fig. 4(e). Loop closure then occurs for specific sizes, referred
to as magic numbers. The next magic numbers are observed
for 17 and 23 SIAs. These structures indeed have very low
formation energies. The next step is to eliminate different
possible constructions containing the same numbers of SIAs.
Careful observation reveals that closed loops in compact form
have lower formation energies if compared to closed loops in
planar form.

(iii) The C15 clusters must be constructed in the most
compact 3D way.

The C15 configurations for validation data were also
generated using these three rules.

B. Validation of the discrete-continuum model
using different EAM potentials

The discrete-continuum model can be parameterized
through simulations performed using different EAM inter-
atomic potentials, which allows us to test model predictions
for large clusters, using large simulations cells. Several EAM
potentials for Fe [17,18,21,24] and for W [5,20,49,50] were
used for our tests. Note that in the Fe EAM potential published
in Ref. [21], a typo was corrected in Ref. [10].

The set of cluster geometries used for training the discrete-
continuum model with EAM energies is the same as the one
that will be used later for parametrizing the model from
DFT data. The tests were performed for 〈100〉{100} and
1/2〈111〉{110} dislocation loops containing up to 1200 SIAs.
Three types of shapes were considered to construct configu-
rations: rectangular, circular, and hexagonal, where the sides
of the polygon correspond to the dense directions of the habit
planes. The database of C15 clusters contains configurations
with sizes up to 110 SIAs. The C15 configurations were mostly
generated in accordance with the three rules mentioned in the
previous section. The few configurations that do not obey these
rules will be discussed later.

The atomistic formation energies of clusters of SIAs were
computed using zero Kelvin atomic relaxation simulations.
The asymptotic values of the formation energies were obtained
by introducing interstitial clusters in a constant volume
simulation cell with millions of atoms, sufficient to remove
any residual size effect. The system was relaxed using a
conjugate gradient technique with a convergence criterion
on the maximal force per atom of lower than 0.02 eV/Å.
We have also performed calculations where the criterion was
0.001 eV/Å, resulting in minor changes in the formation
energies, less than 0.001 eV.

The formation energies calculated with EAM potentials
were compared with predictions made using the discrete-
continuum model (see Fig. 5). For dislocation loops, the
difference is less than 2% [see Figs. 5(a) and 5(b) for 1/2〈111〉
and 〈100〉 loops, respectively] using the EAM potential from
Ackland-Mendelev for Fe [18]. Similar results are obtained
for all the EAM potentials tested for Fe and W. For the C15
clusters, the error is slightly larger, i.e., 3% [see Fig. 5(c)]. The
error may reach 5% for some clusters, e.g., clusters containing

024103-7



R. ALEXANDER et al. PHYSICAL REVIEW B 94, 024103 (2016)

FIG. 5. Cluster formation energies as a function of cluster size for (a) 1/2〈111〉 and (b) 〈100〉 loops and for (c) C15 SIA clusters in Fe
calculated using the Ackland-Mendelev potential for Fe [18]. Open diamonds represent the direct EAM results derived from simulations using
large cells, while blue full diamonds represent values predicted by the discrete-continuum model. The relative errors are plotted as insets. Note
that for the nanometric clusters, the relative error is less than 3%.

62, 64, 66, and 67 SIAs. The main reason for this discrepancy is
that such clusters do not have compact geometries, hence they
break the spherical symmetry assumed in the model. These
configurations were created by infringing the third rule given
in Sec. III A. We estimate that such configurations are not
significant for the purpose of this study, being far from the
lowest-energy configurations.

C. Ab initio based predictions of SIA cluster formation energies

Having validated the discrete-continuum model, we can
now proceed to its parametrization using the DFT formation
energies of configurations included in our database. The
DFT simulation cell for n SIAs has been chosen to contain
between 250 + n and 1024 + n atoms in such a way that
the relative error in the formation energy is lower than 2%
from the converged values (see Fig. 3). The DFT calculations
were performed using VASP within the projector augmented
wave (PAW) framework [51]. The plane-wave energy cutoff
is 350 eV and the Hermite-Gaussian broadening width for
Brillouin zone integration is 0.2 eV. The calculations are
performed including the p semicore states. The exchange
correlation energy is evaluated using the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA).
The k-point grid mesh was chosen from 33 for the 250 + n cell
up to (1 or 23) for the 1024 + n cell. W and V are nonmagnetic
materials, and iron is treated in the ferromagnetic state, which
is a reasonable approximation in the low-temperature limit.
Each configuration is relaxed using the conjugate gradient
technique with a convergence criterion on the force on each
atom of 0.02 eV/Å. The size of the supercell remains fixed
in order to ensure constant volume-per-atom simulations.
All the formation energies were adjusted using the dipole
correction [47]. Varvenne et al. [47] have proved that dipole
correction from constant volume, or zero strain, yields a
good correction value for the formation energy of defects in
ferromagnetic iron, such as dislocation loops or C15 clusters.

The formation energies for the 〈100〉 and 1/2〈111〉 loops, as
well as C15 clusters, were computed for Fe, W, and V (except

〈100〉 for V), and the results are shown in Figs. 6, 7, and 8,
respectively.

As mentioned earlier, for all bcc metals, the experimental
evidence, within the limit of detection in TEM, for instance
1–2 nm radius for loops, confirms that the most frequently
observed morphology at low temperature corresponds to
1/2〈111〉 loops. The formation energies predicted by the
discrete-continuum model for large dislocation loops (sizes
larger than hundreds of SIAs) are in agreement with this
observation since the 1/2〈111〉 loops are predicted to be
energetically more stable. The model also shows that, for
dislocation loops from 10 SIAs to sizes visible in TEM,
1/2〈111〉 loops always have smaller formation energy than
the 〈100〉 loops in both Fe and W. The present study is
at odds with some EAM potentials for Fe [10,21] and for
W [5,33,50], which predict a crossover in the relative stability
of two families of loops around 200 SIAs. Below this critical
size, the 〈100〉 loops would be more stable in W whereas they
would be more stable above the critical size in Fe. The origin
of this inversion in the relative stability of loops is still unclear.
It is worth noting that the discrete-continuum model is able to
reproduce the crossover predicted by the EAM potentials if the
model was calibrated using the database corresponding to the
same potential. When the model is calibrated to the database
derived from DFT, the model predicts no crossover between
the loop formation energies.

In contrast, the DFT-based predictions show crossovers
between C15 clusters and loops. In Fe, one crossover appears
with 1/2〈111〉 loops at clusters around 51 SIAs in size,
corresponding to a 1.5-nm-diam C15 cluster. There is also
a crossover with 〈100〉 loops, this time both in W and Fe at 21
and 91 SIAs, respectively. In V there is no crossover; 1/2〈111〉
loops are the most stable configurations for all defect cluster
sizes.

In Fe, the present results reconcile the theoretical pre-
dictions with experiments, where only the 1/2〈111〉 loops
were observed under irradiation at low temperature, by giving
some support to a mechanism recently identified as a possible
route of formation of the 1/2〈111〉 and 〈100〉 loops involving
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FIG. 6. (a) DFT formation energies of 1/2〈111〉, 〈100〉, and C15 clusters in Fe (empty circles, squares, and diamonds, respectively), and
the DFT-based predictions made using the discrete-continuum model (full circles, squares, and diamonds, respectively). (b) Extrapolation of
the formation energies at large sizes for the 1/2〈111〉 loops, 〈100〉 loops, and C15 clusters in Fe, empty symbols. Full lines represent the elastic
model [Eq. (5)] parametrized using the points predicted by the present discrete-continuum model. This extrapolation can be done without size
limitation. Note the crossover between 1/2〈111〉 loops and the C15 clusters at 51 SIAs, and between 〈100〉 loops and C15 clusters at 91 SIAs.

the collapse of larger C15 clusters [23]. The possible formation
mechanisms of 〈100〉 loops in Fe were addressed in the past in
several studies, and some examples are given in Refs. [52–55].
In particular, Refs. [52–54] propose a mechanism based on

the reaction between two 1/2〈111〉 loops having appropriate
size and specific orientations. The mechanisms proposed by
Marian et al. [52] and Xu et al. [53] are similar, the only
difference being that Xu et al. showed that this reaction holds

FIG. 7. (a) DFT formation energies of 1/2〈111〉, 〈100〉, and C15 clusters in W (empty circles, squares, and diamonds, respectively) and
the DFT-based extrapolation from the discrete-continuum model (colored lines). (b) Extrapolation of formation energies at large sizes for the
1/2〈111〉 loops, 〈100〉 loops, and C15 clusters in W, empty symbols. Full lines represent the elastic model [Eq. (5)] parametrized on the points
predicted by the present discrete-continuum model.
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FIG. 8. DFT and discrete-continuum model predictions for the
formation energies of 1/2〈111〉 interstitial loops and C15 SIA clusters
in V. The same conventions as in Figs. 6 and 7 are used.

for larger clusters and has stochastic components. Another
scenario by Chen et al. proposed transformation of 1/2〈111〉
loops into 〈100〉 by correlated translation-rotation of SIAs
forming the loop [55]. All of these mechanisms involve a
certain number of stringent conditions, such as the direction
of loop migration and the size of the loops, which make
the corresponding events highly infrequent. Zhang et al. [23]
proposed an alternative idea involving the nucleation of C15
clusters and their growth by trapping of single self-interstitials
of 1/2〈111〉 dumbbell structure. In Fe, small C15 clusters are
energetically very stable and act as traps for small mobile
SIAs. Moreover, they are kinetically trapped, meaning that
the lowest-energy reaction pathway that allows C15 clusters
to transform into planar loops corresponds to very large
energy barriers resulting in highly improbable transitions.
In Ref. [10], it was shown that the lowest-energy pathway
that transforms a four-SIA C15 cluster into a planar loop is
of the order of a few electronvolts. Under irradiation, small
mobile interstitial clusters, such as 1/2〈111〉 or 〈110〉 loops, are
continuously produced, facilitating the growth of C15 clusters,
which can reach very large sizes, even larger than the crossover
between C15 and traditional loops because of their kinetic
trapping.

At large sizes, the transformation of C15 clusters into
dislocation loops with 1/2〈111〉 or 〈100〉 orientation becomes
very likely. This transformation was demonstrated even on
the time scale of molecular-dynamics simulations by Zhang
et al. [23]. Therefore, the frequency of formation of 〈100〉 loops
is definitely larger than in any other mechanism proposed in
the past. The only condition is that the C15 clusters should be
formed at small sizes, which is confirmed by DFT calculation
of [10] and the present study for small (up to eight SIAs) and
large clusters (nanometric sized), respectively. Although the
mechanism proposed by Zhang et al. is rather convincing to

explain the formation of 〈100〉 loops at high temperature in
Fe, it does not explain why these loops are not observed at low
temperature [14]. The present work resolves this contradiction
by revealing the DFT relative energy of large clusters. The
interpretations of the mechanism of Zhang et al. were based on
the EAM potential energetic landscape, which is different from
the present DFT findings. As shown in Fig. 6, the crossover
between the C15 clusters with 〈111〉 and 〈100〉 loops occurs
at 51 and 91 SIAs, respectively, in Fe. This means that the
C15 clusters, which could form under irradiation and have
sizes larger than 51 and smaller than 91 SIAs, can decay only
into the 1/2〈111〉 clusters. This could explain the absence of
〈100〉 loops because the C15 clusters are more stable in this
size range (between 51 and 91 SIAs). We expect that C15
clusters should have sizes much larger than 91 SIAs in order
to have nonzero probability to transform into 〈100〉 loops,
which further increases the size range where 〈100〉 cannot
appear. Even though our interpretation does not exclude the
possibility of 〈100〉 loop formation directly under irradiation
at low temperature, it drastically reduces such a probability, in
agreement with experimental observations [14,56].

For small cluster sizes in W and V, the formation energies
of C15 clusters are much higher than for 1/2〈111〉 loops. In W
for small sizes, between 7 and 21 SIAs, the C15 clusters have
slightly lower formation energies than 〈100〉 loops, as shown
in Fig. 7(a), and 〈100〉 clusters become energetically more
favorable than the C15 clusters containing more than 21 SIAs.
In V, 〈100〉 loops have formation energies that are between
those of 1/2〈111〉 loops and C15 clusters at all sizes. We used
a relatively restricted set of calculations to parametrize an
energetic model for 〈100〉 loops in V, and so this conclusion is
given on the basis of calculations for intermediate cluster sizes
performed for 2, 4, 10, and 20 SIA clusters.

D. Ab initio scaling laws for formation energy

One of the goals of this paper is to provide a simple
analytical scaling law formula for the formation energy of
self-interstitial clusters. The interest of such a formulation is
the practical application in multiscale techniques including
kinetic Monte Carlo simulations and cluster dynamics or
dislocation dynamics studies. Using the present analytical
scaling law, we restrict the input required for parametrization
of defect energetics to the number of interstitial atoms and
their type. These new simple scaling laws provide reliable
formation energies over a very broad range of defect sizes for
any subsequent multiscale study.

Therefore, based on the dependence of the elastic contri-
bution of the formation energy of loops [in Eq. (5)] and C15
clusters [in Eq. (13)] on the number of interstitials, we propose
a simple analytical expression in order to fit the formation
energies predicted by the discrete-continuum model, for the
loops,

Ef (n) = a0
√

n ln(n) + a1
√

n + a2, (14)

and of C15 clusters,

Ef (n) = a0n
2/3 + a1n + a2. (15)

It is worth noting that for sizes larger than 15 SIAs, these two
laws are a very good fit to the formation energies. In the case
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TABLE I. Best-fit parameters [Eqs. (14) and Eq. (15)] for the formation energies extrapolated using the discrete-continuum model for the
three types of clusters in three different bcc crystals. a0, a1, and a2 are expressed in eV.

a0 a1 a2

Element 1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15

Fe 1.60485 1.77677 0.453304 5.35226 7.15951 1.35469 −0.147319 −5.81801 9.35418
W 3.92996 4.84883 1.09667 7.92419 13.69844 3.32949 6.20090 −8.25849 44.68020
V 1.03029 1.53649 0.85406 1.34986 3.86213 −7.35361

of dislocation loops, the absolute error is lower than 1 eV.
The parameters of Eqs. (14) and (15) for Fe, V, and W are
given in Table I. For any subsequent use, it is recommended
to compute the formation energies using best-fit parameters
from Table I in Eqs. (14) and (15) for cluster sizes higher
than n = 15. For lower values of n, the formation energies of
various configurations are provided in Appendix B.

IV. CONCLUSIONS

In this paper, we investigated the formation energies of
SIA clusters in three bcc metals, namely Fe, W, and V.
The main result was the development and validation of a
discrete-continuum model that makes it possible to perform
ab initio accuracy-level calculations for clusters without any
size limitation. The model allows us to treat various cases of
interstitial dislocation loops and C15 clusters from clusters
containing a few SIAs to nanometer size.

From the interpretation of the present results, it can
be concluded that above ∼100 SIAs 1/2〈111〉 loops are
always the most stable family of SIA clusters—in agreement
with experimental observations of irradiation defects at low
temperature in bcc metals. However, these results are at
odds with calculations made using various EAM interatomic
potentials, which yield spurious predictions concerning the
relative stability of 〈100〉 and 1/2〈111〉 loops [21]. Future
developments of such potentials should consider the in-
formation provided in the present paper, and include the
appropriate additional fitting conditions on the potential
parameters.

Our study shows that in Fe, C15 clusters are the most
stable clusters of defects for sizes lower than 51 SIAs, which
is a size range not accessible to direct TEM observations.
Our model also supports the theory of formation for 〈100〉
loops proposed by Zhang et al. [23]. In the present work,
we do not include thermal effects and magnetic excitations.
As a consequence, our results are comparable only to low-
temperature experiments. The results obtained shed some
light on the absence of 〈100〉 loops in low-temperature
experiments, and they reconcile the Zhang mechanism with the
experimental evidence. However, in order to validate entirely
our expectations, further analysis is required.

Finally, our work makes it possible to establish scaling laws
for the formation energies of various types of clusters in various
materials, which is significant for multiscale simulations
such as kinetic Monte Carlo simulations [9,27,57–59], cluster
dynamics studies [60,61], or mean-field approximations [62],
where simple analytic laws are needed to model the energy
of large clusters. However, to enable the use of scaling laws
in multiscale simulations, the effects of temperature must

be accounted for. The present formulation of the discrete-
continuum model can be extended to address the formation
free energies, e.g., by including the temperature dependence
of elastic constants.
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APPENDIX A

Parametrization of the discrete part of the present ener-
getic model relies on the topology of cluster configurations.
The number of first or second nearest neighbors of each
dumbbell is an essential ingredient for the formation energy
calculations in Eq. (11). In this Appendix, we present the
constraints that we have imposed in the construction of
cluster geometries in order to set up correctly, from a
mathematical point of view, the fitting procedure of E(n1,n2)
parameters.

The construction of the extrapolation database is based
on older studies of various authors [13,21,33,44,45] that
assert that closed-loop configurations, such as rectangles,
squares, or circles, are more stable than possible elongated
configurations for the same number of SIAs. Adhering to this
requirement, hundreds of configurations of 〈100〉 and 1/2〈111〉
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FIG. 9. Histograms showing the number of occurrence of pairs of dumbbells with respect to the type (n1,n2) for all (a) training (small
clusters) and (b) validation (small up to large clusters) 〈100〉 configurations, where n1 is the number of first nearest neighbors and n2 refers to
the number of second nearest neighbors. Possible (n1,n2) dumbbell pairs of the type (0,n), where n = 0–4 were not included due to absence
of such pairs in both training and validation configuration sets.

FIG. 10. Database configurations of 〈100〉 loop type. The cluster dumbbells are projected (and represented) in the {001} habit plane. The
color of each dumbbell is assigned according to the number of first and second neighbors, (n1,n2). The color assignment map is shown in Fig. 2.
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FIG. 11. Database configurations of 1/2〈111〉 loop type in {110} habit plane, projected in the {110} plane. The same color convention is
applied as in Fig. 10.

dislocation loop types were constructed for SIAs ranging from
2 to 1500. For all these configurations, we investigated the
local environment of each dumbbell. To facilitate a better
understanding of the neighborhood behavior in this set of
configurations, the occurrence of each (n1,n2) pair was plotted,
where n1 refers to the number of first nearest neighbors
and n2 refers to the number of second nearest neighbors.
The plotted histogram revealed that certain (n1,n2) pairs do

not occur while other pairs are overrepresented as shown in
Fig. 9.

The configurations contained in the training database of
the discrete-continuum model were built in keeping with the
selective dumbbell neighborhood behavior of large clusters
expressed above. These configurations were constructed such
that all the occurring (n1,n2) pairs appear in the database
as well so that each occurring pair is considered for fitting.

TABLE II. DFT formation energies (expressed in eV) of smallest interstitial clusters, up to 15 interstitials, as a function of size. In this
table, only the lowest formation energies are reported, at the same number of self-interstitial atoms, for the configurations used in the present
database.

Fe W V

Size C15 1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15 1/2〈111〉
1 4.90 5.31 10.48 12.96 2.78
2 8.03 8.63 8.33 23.71 18.40 21.31 7.99 4.80
3 11.31 11.54 12.73 27.33 25.01 28.76 9.78 6.86
4 11.28 14.48 14.32 34.35 30.79 34.81 10.75 8.00
5 14.39 17.28 17.22 42.11 36.39 41.23 13.22 9.63

6 15.85 19.80 19.70 45.34 41.52 46.59 13.71 10.86
7 17.96 21.65 21.79 53.04 45.25 53.33 16.15 11.34
8 18.76 24.22 23.74 56.29 50.44 57.26 16.59 12.87
9 20.77 26.61 27.01 62.20 55.09 62.86 18.37 13.97
10 21.70 28.29 28.96 65.96 58.49 67.89 19.04 14.49

11 22.71 30.27 30.64 69.88 62.95 72.84 19.84 15.69
12 25.55 31.77 32.70 76.84 66.23 76.83 22.04 16.20
13 26.67 35.08 35.85 80.82 73.85 84.80 22.84 18.85
14 28.55 35.09 38.37 86.13 73.64 89.21 24.16 17.84
15 29.18 37.28 39.46 90.12 77.81 92.93 25.74 18.97
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Due to the compact form of clusters, there are some extra
(n1,n2) pairs of neighbors that occur in the database. However,
this is not expected to pose a problem because they do not
contribute significantly in the extrapolation. The histogram
of the neighborhood of the training database is shown in
Fig. 9.

Database configurations were limited to 20 SIAs in 50
configurations and 22 SIAs in 31 configurations for 〈100〉
and 1/2〈111〉, respectively. All the training database configu-

rations for 〈100〉 and 1/2〈111〉 clusters are shown in Figs. 10
and 11.

APPENDIX B

The formation energies of the small interstitial clusters,
from our database, are given in Table II. The presented con-
figurations are not necessarily those with the lowest formation
energy. Moreover, it should be noted that in the case of iron, as
mentioned in Sec. I, the lowest-energy configurations of small
parallel clusters are 〈110〉 and not 〈111〉 or 〈100〉.
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Acta Mater. 61, 6958 (2013).

[57] T. Oppelstrup, V. V. Bulatov, A. Donev, M. H. Kalos, G. H.
Gilmer, and B. Sadigh, Phys. Rev. E 80, 066701 (2009).

[58] F. Soisson and C.-C. Fu, Phys. Rev. B 76, 214102 (2007).
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