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ABSTRACT. Laxton introduced a group structure on the set of equivalence classes of linear
recurrence sequences of degree two. This result yields much information on the divisibilities of
such sequences. In this paper, we introduce other equivalence relations for the set of linear
recurrence sequences (Gn) which are defined by G0, G1 ∈ Z and Gn = TGn−1 − NGn−2 for
fixed integers T and N = ±1. The relations are given by certain congruences modulo p for a
fixed prime number p which are different from Laxton’s without modulo p equivalence relations.

We determine the initial terms G0, G1 of all the representatives of the equivalence classes (Gn)
satisfying p ∤ Gn for any integer n, and give the number of the equivalence classes. Furthermore,
we determine the representatives of Laxton’s without modulo p classes from our modulo p classes.

1. Introduction. Let f(X) = X2 − TX +N ∈ Z[X], N = ±1 be a polynomial whose roots θ1 and
θ2 are not roots of unity. Then θ1 and θ2 are units of a certain real quadratic field. Let d := T 2 − 4N
be the discriminant of f(X). We consider linear recurrence sequences G = (Gn)n∈Z defined by

(1.1) G0, G1 ∈ Z, Gn = TGn−1 −NGn−2.

If G0 = a,G1 = b, then we denote it by G = (G(a, b)). We call F = (Fn) = (G(0, 1)) and
L = (Ln) = (G(2, T )) the Lucas sequence and the companion Lucas sequence, respectively. We
fix a prime number p. It is well-known that the sequence (Gn mod p) is periodic for any G = (Gn)
defined by (1.1). Let r(p) be the rank of the Lucas sequence F = (Fn). Namely, it is the smallest
positive integer n satisfying p|Fn. We can easily check r(2) = 2 if T is even, and r(2) = 3 if T is odd.

If p ̸= 2, then E. Lucas ([7, §24, 25] or [5, Lemma 2, Theorem 12]) showed that r(p) divides p−
(

d
p

)
where (∗∗ ) is the Legendre symbol.

We define two relations ∼
p
and ∼

p

∗ for the set of linear recurrence sequences.

Definition. Let G = (Gn) and G′ = (G′
n) be linear recurrence sequences defined by (1.1).

(1) If the congruence G1G
′
0 ≡ G′

1G0 (mod p) holds, then we write G ∼
p
G′.

(2) If there are some integers m and n satisfying Gm+1G
′
n ≡ G′

n+1Gm (mod p), then we write
G∼

p

∗G′.

Define a set Xp(f) of linear recurrence sequences by

Xp(f) := {G | linear recurrence sequences defined by (1.1) with p ∤ G0 or p ∤ G1}.

We can easily show that the first relation ∼
p
is an equivalence relation for the set Xp(f). Furthermore,

we can show that the second relation ∼
p

∗ is also an equivalence relation for the set Xp(f) (cf. [2,

Lemma 9]) by using the following lemmas.

Lemma 1. Let G = (Gn) and G′ = (G′
n) be linear recurrence sequences defined by (1.1). If

Gm+1G
′
n ≡ G′

n+1Gm (mod p), then we have the following congruences.

Gm+2G
′
n+1 ≡ G′

n+2Gm+1 (mod p) and GmG
′
n−1 ≡ G′

nGm−1 (mod p).
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Lemma 2. Assume G = (Gn) ∈ Xp(f). If p|Gn, then we have p ∤ Gn−1 and p ∤ Gn+1.

These two lemmas follow from the recurrence formula in (1.1). Now, we consider the quotient sets
using these relations. We put

Xp(f) := Xp(f)/ ∼
p
, Yp(f) := {(Gn) ∈ Xp(f) | p ∤ Gn for any n ∈ Z},

X∗
p (f) := Xp(f)/∼

p

∗, Y ∗
p (f) := {(Gn) ∈ X∗

p (f) | p ∤ Gn for any n ∈ Z},

where (Gn) is the equivalence class which includes (Gn). The sets Yp and Y ∗
p are well-defined, that is,

we will show in §2, Lemma 4 that if (Gn) ∼
p
(G′

n) (or (Gn)∼
p

∗(G′
n)) and p ∤ Gn for any n ∈ Z, then

we have p ∤ G′
n for any n ∈ Z. For any G = (Gn) ∈ Xp(f) satisfying p|Gν for some ν ∈ Z, we have

F1Gν ≡ 0 ≡ Gν+1F0 (mod p). Therefore, we have G∼
p

∗F = (G(0, 1)) (the Lucas sequence) and get

the following lemma.

Lemma 3. We have Xp(f) = {(G(a, 1)) | a = 0, . . . , p− 1} ∪ {(G(1, 0))} and X∗
p (f) = F ∪ Y ∗

p (f).

For any integer G that is not divisible by p, we denote an inverse element modulo p by G−1 (∈ Z)
(i.e., GG−1 ≡ 1 (mod p)).

Definition. Assume G = (Gn) ∈ Xp(f). We define the sequence (gn)n∈Z (0 ≤ gn ≤ p− 1 or gn = ∞)
by

gn

{
≡ GnG

−1
n+1 (mod p) if p ∤ Gn+1,

= ∞ otherwise.

We call the sequence (gn) the second sequence of G. In particular, we denote the second sequence of
the Lucas sequence F by (fn).

We will show in §2, the second sequences (gn) have the periods which divide r(p) (Proposition 1).
In §3, we will show the following theorems by using Proposition 1. These theorems are generalizations
of our previous results in the case T = 1, N = −1 ([1], [2]).

Theorem 1. We have

Yp(f) = {(G(a, 1)) | 1 ≤ a ≤ p− 1, a ̸= f1, · · · , fr(p)−2}

and
|Yp(f)| = p+ 1− r(p).

Theorem 2. Assume p ̸= 2 and put s(p) :=
p− (dp )

r(p)
. There exist integers αi (i = 1, . . . , s(p) +

(d/p), 1 ≤ αi ≤ p− 1) satisfying the following conditions.

(1) For the sequence (Gn) = (G(αi, 1)), we have p ∤ Gn for any n ∈ Z.
(2) Let Ai be the second sequence of (G(αi, 1)). Then we have

{a ∈ Z | 1 ≤ a ≤ p− 1, a ̸= f1, · · · , fr(p)−2} =

s(p)+(d/p)⨿
i=1

Ai (disjoint union).
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Theorem 3. Assume p ̸= 2. Let αi (i = 1, . . . , s(p) + (d/p)) be the integers in Theorem 2. We have

Y ∗
p (f) =

{
(G(αi, 1)) i = 1, . . . , s(p) +

(
d

p

)}
and

|Y ∗
p (f)| = s(p) +

(
d

p

)
.

In the case p = 2, we have

X2(f) = {(G(0, 1))(= F), (G(1, 1)), (G(1, 0))}, Y2(f) =

{
∅ if T is odd ,

(G(1, 1)) otherwise ,

X∗
2 (f) =

{
(G(0, 1)) if T is odd ,

(G(0, 1)), (G(1, 1)) otherwise ,
Y ∗
2 (f) =

{
∅ if T is odd ,

(G(1, 1)) otherwise .

In §4, we will explain the relation between our “modulo p” equivalence classes and Laxton’s “without
modulo p” equivalence classes [6]. He introduced a commutative group structure on certain sets of
equivalence classes G(f) and G∗(f). We will show that the certain subsets of Xp(f) and X

∗
p (f) have

the same group structures and isomorphic to finite quotient groups of G(f) and G∗(f) (Theorem 4).
From these facts, by using our theorems, we can give the representatives of Laxton’s quotient groups.
In §5, we give some examples.

2. Mod p Equivalence Classes.

Lemma 4. Assume G = (Gn),G′ = (G′
n) ∈ Xp(f). If G ∼

p
G′ (or G∼

p

∗G′) and p ∤ Gn for any n ∈ Z.

Then we have p ∤ G′
n for any n ∈ Z.

Proof. If G ∼
p
G′, then we have G1G

′
0 ≡ G′

1G0 (mod p). Assume that there exists an integer ℓ such

that p | G′
ℓ. Using Lemma 1, we have Gℓ+1G

′
ℓ ≡ G′

ℓ+1Gℓ (mod p). Since p divides G′
ℓ and does not

divide G′
ℓ+1 by Lemma 2, we get p | Gℓ. This contradicts the assumption. We can show similarly the

assertion for the case G∼
p

∗G′. □

From the above lemma, we know that the set Yp and Y ∗
p in §1 are well-defined. Next, we will show

that any second sequence has the period dividing r(p). Let G = (Gn) be a linear recurrence sequence
defined by (1.1). Then we have

(2.1) Gn =
(G1 −G0θ1)θ

n
2 − (G1 −G0θ2)θ

n
1

θ2 − θ1
(n ∈ Z).

Put
Λ(G) := (G1 −G0θ1)(G1 −G0θ2) = G2

1 − TG0G1 +NG2
0.

From (2.1), we can show the following lemma.

Lemma 5. Let G = (Gn) be a linear recurrence sequence defined by (1.1). For any n,m ∈ Z, we have

Gn+m = FmGn+1 −NFm−1Gn.
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Proof. Put B = G1 −G0θ1 and A = G1 −G0θ2. Then, we have

FmGn+1 −NFm−1Gn

=
(θm2 − θm1 )(Bθn+1

2 −Aθn+1
1 )−N(θm−1

2 − θm−1
1 )(Bθn2 −Aθn1 )

(θ2 − θ1)2

=
1

(θ2 − θ1)2
(
B(θm+n+1

2 −Nθm+n−1
2 ) +A(−θn+1

1 θm2 +Nθn1 θ
m−1
2 )

+B(−θm1 θn+1
2 +Nθm−1

1 θn2 ) +A(θm+n+1
1 −Nθm+n−1

1 )
)
.

Since N = θ1θ2, we have A(−θn+1
1 θm2 + Nθn1 θ

m−1
2 ) = 0. In the same way, we get B(−θm1 θn+1

2 +
Nθm−1

1 θn2 ) = 0. Furthermore, the equalities B(θm+n+1
2 − Nθm+n−1

2 ) = Bθm+n
2 (θ2 − Nθ−1

2 ) =
Bθm+n

2 (θ2− θ1) and A(θm+n+1
1 −Nθm+n−1

1 ) = Aθm+n
1 (θ1−Nθ−1

1 ) = Aθm+n
1 (θ1− θ2) hold. Therefore,

we have

FmGn+1 −NFm−1Gn =
Bθm+n

2 (θ2 − θ1) +Aθm+n
1 (θ1 − θ2)

(θ2 − θ1)2

=
Bθm+n

2 −Aθm+n
1

θ2 − θ1
= Gm+n.

□

We can show the following lemma by induction on n.

Lemma 6. Let G = (Gn) be a linear recurrence sequence defined by (1.1). For any n ∈ Z, we have

G2
n − TGn−1Gn +NG2

n−1 = N(G2
n+1 − TGnGn+1 +NG2

n).

Assume that G = (Gn) ∈ Xp(f) satisfies p|Gν for some ν ∈ Z. Since the sequence (Gn mod p)
is periodic, there exists the integer r(G, p) such that p|Gn if and only if r(G, p)|n − ν. We have the
following lemma easily.

Lemma 7. Let G = (Gn) ∈ Xp(f) which satisfies p|Gν for some ν ∈ Z. Then we have r(G, p) = r(p).

Lemma 8. Let G = (Gn) ∈ Xp(f) and assume that Λ(G) ≡ 0 (mod p). Then we have p ∤ Gn for any
n ∈ Z.

Proof. The assertion follows from the fact that p ∤ G0 or p ∤ G1 and Lemma 2, Lemma 6. □

The next proposition asserts that the second sequences (gn) have the periods which divide r(p).

Proposition 1. Let G = (Gn) ∈ Xp(f) and (gn) be the second sequence of G.

(1) If Λ(G) ̸≡ 0 (mod p), then we have gm = gn if and only if m ≡ n (mod r(p)).
(2) If Λ(G) ≡ 0 (mod p), then we have gn = g0 for any n ∈ Z.

Proof. (1) We will show the assertion for two cases. First, we assume that p ∤ Gn for any n ∈ Z. By
the definition of the second sequence, we have gn = gm if and only if GmGn+1 ≡ Gm+1Gn (mod p).
Since Gn+1 = Fn−m+1Gm+1 −NFn−mGm and Gn = Fn−mGm+1 −NFn−m−1Gm from Lemma 5, we
have gm = gn if and only if

(2.2) G2
m+1Fn−m −GmGm+1(Fn−m+1 +NFn−m−1) +NG2

mFn−m ≡ 0 (mod p).
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By the recurrence formula (1.1) and Lemma 6, we have

G2
m+1Fn−m −GmGm+1(Fn−m+1 +NFn−m−1) +NG2

mFn−m

≡ Fn−m(G2
m+1 − TGmGm+1 +NG2

m)

≡ Fn−mN
mΛ(G) (mod p).

By the assumption Λ(G) ̸≡ 0 (mod p), we conclude that gm ≡ gn if and only if m ≡ n (mod r(p)). We
get the proof of the case.

Secondly, we consider the case that p|Gν for some ν ∈ Z. We assume that gm = ∞ (that is, p|Gm+1).
Then we have gn = ∞ if and only if m ≡ n (mod r(G, p)). From now on, we assume that gm ̸= ∞
(that is, p ∤ Gm+1). We consider two subsequences of (Gn mod p):

Gm+1, Gm ≡ gmGm+1, Gm−1 ≡ (Tgm − 1)NGm+1, Gm−2 ≡ (T 2gm − T − gm)N2Gm+1, · · ·
Gn+1, Gn ≡ gnGn+1, Gn−1 ≡ (Tgn − 1)NGn+1, Gn−2 ≡ (T 2gn − T − gn)N

2Gn+1, · · ·(2.3)

Assume that gm = gn. Since gn ̸= ∞, we have p ∤ Gn+1. Therefore, from (2.3), we have Gm−k ≡ 0
(mod p) if and only if Gn−k ≡ 0 (mod p). We conclude that m ≡ n (mod r(G, p)).

Conversely, we assume that m ≡ n (mod r(G, p)). Since p ∤ Gm+1, we have p ∤ Gn+1. Let I = (In)
and J = (Jn) be the linear recurrence sequences defined by (1.1) with I0 = gm, J0 = gn and
I1 = J1 = 1. We can denote the above two subsequences (2.3) by

I1Gm+1, Gm ≡ I0Gm+1, Gm−1 ≡ I−1Gm+1, Gm−2 ≡ I−2Gm+1, · · ·
J1Gn+1, Gn ≡ J0Gn+1, Gn−1 ≡ J−1Gn+1, Gn−2 ≡ J−2Gn+1, · · ·(2.4)

For an integer k ≥ 0, by the assumption m ≡ n (mod r(G, p)), we have p|Gm−k if and only if p|Gn−k.
Hence the subsequences (2.4) imply p|I−k if and only if p|J−k. By Lemma 5, we have

I−k = F−kI1 −NF−k−1I0 ≡ F−k −NF−k−1gm (mod p)

and
J−k = F−kJ1 −NF−k−1J0 ≡ F−k −NF−k−1gn (mod p).

Hence we get

(2.5) F−k−1gm ≡ F−k−1gn (mod p)

for any integer k ≥ 0 such that I−k ≡ J−k ≡ 0 (mod p). Let ν be an integer satisfying p|Gν . Since
Gm−k ≡ I−kGm+1 ≡ 0 (mod p), we have m− k ≡ ν (mod r(G, p)). On the other hand, we know that
m+ 1 ̸≡ ν (mod r(G, p)) since p ∤ Gm+1. Therefore, we get k ̸≡ −1 (mod r(G, p)), and hence k ̸≡ −1
(mod r(p)) since r(G, p) = r(p). The congruence (2.5) implies gm ≡ gn (mod p), and hence gm = gn
since 0 ≤ gm, gn ≤ p− 1. By using lemma 7, we can prove the case.

(2) In this case, we have p ∤ Gn for any n ∈ Z from Lemma 8. Due to the periodicity of (Gn mod p),
it is sufficient to consider n ≥ 0. First, we will show that g1 ≡ g0 (mod p). We have

g1 ≡ G1G
−1
2

≡ G1(TG1 −NG0)
−1

≡ (T −NG0G
−1
1 )−1

≡ (T −Ng0)
−1 (mod p).



6 MIHO AOKI AND YUHO SAKAI

On the other hand, since Λ(G) ≡ 0 (mod p), we have

0 ≡ G2
1 − TG1G0 +NG2

0

≡ G2
1(1− TG0G

−1
1 +NG2

0G
−2
1 )

≡ G2
1(1− Tg0 +Ng20) (mod p),

and hence g0 ≡ (T −Ng0)
−1 (mod p). We get g1 ≡ g0 (mod p). Next, we assume that gk = g0 holds

for any positive integers k less than n+ 1. Then we have

gn+1 ≡ Gn+1G
−1
n+2

≡ (TGn −NGn−1)(TGn+1 −NGn)
−1

≡ (T −NGn−1G
−1
n )(TGn+1G

−1
n −N)−1

≡ (T −Ngn−1)(Tg
−1
n −N)−1

≡ (T −Ng0)(Tg
−1
0 −N)−1

≡ g0 (mod p).

Since 1 ≤ g0, gn+1 ≤ p− 1, we have gn+1 = g0. □

Definition. Let G ∈ Xp(f) and (gn) be the second sequence of G. We call the period r(G) of (gn) the
second period of G.

By Proposition 1, we have the following corollary.

Corollary 1. For G ∈ Xp(f), let r(G) be the second period of G. Then we have

r(G) =

{
r(p) if Λ(G) ̸≡ 0 (mod p),

1 if Λ(G) ≡ 0 (mod p).

3. Proofs of theorems. In this section, we prove theorems in §1. First, the following lemma follows
from Lemma 5.

Lemma 9. Let G = (Gn) ∈ Xp(f) with p ∤ G0, G1. We have p|Gn for some n ∈ Z if and only if

NG1G
−1
0 ≡ fm (mod p) for some m ∈ Z satisfying 1 ≤ m ≤ r(p)− 2.

We put
X ′

p(f) := {(Gn) ∈ Xp(f) | p ∤ G0, G1}.

This set is well-defined, that is, if (Gn) ∼
p

(G′
n) and p ∤ G0, G1, then we have p ∤ G′

0, G
′
1. Clearly,

Yp(f) ⊂ X ′
p(f) ⊂ Xp(f) and

X ′
p(f) = {(G(a, 1)) | a = 1, . . . , p− 1}.

Proof of Theorem 1. By Lemma 5, we have

0 ≡ Fr(p) = Fn+(r(p)−n) = Fr(p)−nFn+1 −NFr(p)−n−1Fn (mod p).
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Therefore, we have fn ≡ N f−1
r(p)−n−1 (mod p). From this congruence and Lemma 9, we have

{(Gn) ∈ X ′
p(f) | p|Gn for some n ∈ Z}

={(G(a, 1)) | 1 ≤ a ≤ p− 1, Na−1 ≡ fn (mod p) for some n (1 ≤ n ≤ r(p)− 2)}

={(G(a, 1)) | 1 ≤ a ≤ p− 1, a ≡ fr(p)−n−1 (mod p) for some n (1 ≤ n ≤ r(p)− 2)}

={(G(a, 1)) | a = f1, . . . , fr(p)−2}

Hence we conclude that

Yp(f) = X ′
p(f)− {(G(a, 1)) | a = f1, . . . , fr(p)−2} = {(G(a, 1)) | 1 ≤ a ≤ p− 1, a ̸= f1, . . . , fr(p)−2}.

The equality |Yp(f)| = p+ 1− r(p) follows from the first assertion and Proposition 1. □

Next, we will give the proof of Theorem 2. We get the following lemma by the definition of the
Legendre symbol.

Lemma 10. Let f(X) = X2 − TX +N ∈ Z[X], and d = T 2 − 4N . For any prime number p ( ̸= 2),
we have

|{β ∈ Z | 1 ≤ β ≤ p− 1, f(β−1) ≡ 0 (mod p)}| =
(
d

p

)
+ 1.

Lemma 11. Let G = (Gn),G′ = (G′
n) ∈ Xp(f), and (gn), (g

′
n) be the second sequences respectively.

Assume that p ∤ Gn, G
′
n for any n ∈ Z, and let r(G) be the second period of G. Then we have G∼

p

∗G′ if

and only if g′0 = gn for some n ∈ Z satisfying 1 ≤ n ≤ r(G).

Proof. By the definition of the second sequence, the equality g′0 = gn for some n ∈ Z implies G∼
p

∗G′.

Conversely, if G∼
p

∗G′, then there exist integers m and n such that Gm+1G
′
n ≡ G′

n+1Gm (mod p). By

Lemma 1, we have Gm−n+1G
′
0 ≡ G′

1Gm−n (mod p). Therefore, we have g′0 ≡ gm−n (mod p) and
hence g′0 = gm−n. Since the second period of G is r(G), there exists an integer ℓ satisfying g′0 = gℓ and
1 ≤ ℓ ≤ r(G). □

Proof of Theorem 2. Let α be an integer such that 1 ≤ α ≤ p−1 and α ̸= f1, . . . , fr(p)−2. We consider
the linear recurrence sequence G = (Gn) = (G(α, 1)) and its second sequence A = (gn). Assume that
G∼

p

∗F . Then by Lemma 1, there exists an integer n such that Fn ≡ G1Fn ≡ Fn+1G0 ≡ Fn+1α

(mod p). Since p ∤ α, we have n ̸≡ −1, 0 (mod r(p)), hence the congruence implies α = g0 = fm for
some m ∈ Z satisfying 1 ≤ m ≤ r(p)− 2. This is a contradiction. We conclude that G̸∼

p

∗F and hence

p ∤ Gn for any n ∈ Z from Lemma 3.

Now, we choose another integer α′ satisfying 1 ≤ α′ ≤ p− 1, α′ ̸= f1, . . . , fr(p)−2 and α′ ̸∈ A = (gn).
For G′ = (G′

n) = (G(α′, 1)), and its second sequence A′ = (g′n), if gn = g′m for some n,m ∈ Z then we
have α′ = g′0 = gn−m from Lemma 1. This contradicts the assumption α′ ̸∈ A = (gn). Hence we have
A ∩A′ = ∅. By continuing this procedure, we can choose integers αi (i = 1, . . . , s) satisfying

(3.1) {a ∈ Z | 1 ≤ a ≤ p− 1, a ̸= f1, · · · , fr(p)−2} =
s⨿

i=1

Ai (disjoint union).

where Ai is the second sequence of (G(αi, 1)). Finally, we will prove that

s = s(p) +

(
d

p

)
=
p− (dp )

r(p)
+

(
d

p

)
.
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If β−1 (1 ≤ β ≤ p − 1) be a solution of f(X) = X2 − TX + N ≡ 0 (mod p), then the sequence
G = (gn) = (G(β, 1)) satisfies Λ(G) ≡ 0 (mod p). On the other hand, for the sequence G′ = (g′n) =
(G(fi, 1)) (i = 1, . . . , r(p) − 2), we have Λ(G′) = ±F−2

i+1Λ(F) ̸≡ 0 (mod p) from Lemma 6. Hence
we conclude that β ̸= f1, . . . , fr(p)−2. The cardinality of the second sequence of (G(β, 1)) is 1 from
Proposition 1. On the other hand, for any integer α sucn that 1 ≤ α ≤ p − 1, α ̸= f1, . . . , fr(p)−2 and

f(α−1) ̸≡ 0 (mod p), the cardinality of the second sequence of (G(α, 1)) is r(p). Then the equality
(3.1) and Lemma 10 yields

(p− 1)− (r(p)− 2) =

(
d

p

)
+ 1 +

{
s−

((
d

p

)
+ 1

)}
r(p).

From this equality, we get

s =
p− (dp )

r(p)
+

(
d

p

) (
= s(p) +

(
d

p

))
.

□

Finally, we will give the proof of Theorem 3.

Proof of Theorem 3. Let G = (G(a, 1)), G′ = (G(a′, 1)) ∈ Yp(f) (1 ≤ a, a′ ≤ p − 1, a, a′ ̸= f1, · · · ,
fr(p)−2), and A be the second sequence of G. By Lemma 11, we have G∼

p

∗G′ if and only if a′ ∈ A.

By Theorem 2 and its proof, since the set {αi | i = 1, . . . , s(p) + (d/p)} is the representatives of
Ai (i = 1, . . . , s(p)+(d/p)), we get the first assertion of the theorem. The equality |Y ∗

p (f)| = s(p)+(d/p)
follows from the first assertion. □

4. Relation to Laxton’s Equivalence Classes. In this section, we will explain the relation
between our modulo p equivalence classes and Laxton’s one [6]. We also recommend the book [3]
written by Ballot. We consider two relations ∼ and ∼∗ (without modulo p). Let G = (Gn) and
G′ = (G′

n) be linear recurrence sequences defined by (1.1).

Definition. (1) If there are some non-zero integers λ and µ satisfying λGn = µG′
n for any n ∈ Z,

then we write G ∼ G′.
(2) If there are some non-zero integers λ, µ and an integer ν satisfying λGn+ν = µG′

n for any n ∈ Z,
then we write G ∼∗ G′.

These two relations are equivalence relations for the set

F (f) := {G | linear recurrence sequences defined by (1.1) with G0 ̸= 0 or G1 ̸= 0}.

Note that the assumption G0 ̸= 0 or G1 ̸= 0 is equivalent to Λ(G) ̸= 0 by our assumptions of f(X).
Consider the quotient sets using the relations.

G(f) := F (f)/ ∼, G∗(f) := F (f)/ ∼∗ .

Laxton introduced a commutative group structure on G∗(f). For any G = (Gn),H = (Hn) ∈ F (f),
with

Gn :=
Bθn2 −Aθn1
θ2 − θ1

, Hn :=
Dθn2 − Cθn1
θ2 − θ1

,

where B = G1 −G0θ1, A = G1 −G0θ2, D = H1 −H0θ1 and C = H1 −H0θ2, he defined the product
G ×H = W = (Wn) ∈ F (f) by

(4.1) Wn =
BDθn2 −ACθn1

θ2 − θ1
(n ∈ Z).
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He showed that this product yields commutative group structures on G∗(f) with the identity F (the
class of Lucas sequence). Namely, for G,H ∈ G∗(f) their product is given by W. We consider not only
G∗(f) but also G(f) to correspond to our set Xp(f). Put

I(f, p) := {G ∈ G(f) | Λ(G) ̸≡ 0 (mod p) for some G ∈ G},
I∗(f, p) := {G ∈ G∗(f) | Λ(G) ̸≡ 0 (mod p) for some G ∈ G},
G(f, p) := {G ∈ G(f) | p|G0 for all G = (Gn) ∈ G},
G∗(f, p) := {G ∈ G∗(f) | p|Gn for all G = (Gn) ∈ G and some n ∈ Z}.

The sets I(f, p) and G(f, p) (resp. I∗(f, p) and G∗(f, p)) are subgroups of G(f) (resp. G∗(f)) [6,
Lemma 2.3 and Proposition 3.1].

For the exact sequence of groups

0 −−−−→ I∗(f, p)/G∗(f, p) −−−−→ G∗(f)/G∗(f, p) −−−−→ G∗(f)/I∗(f, p) −−−−→ 0,

if p ̸= 2, then Laxton [6, Theorem 3.7] showed the following.

I∗(f, p)/G∗(f, p) ≃

{
Z/s(p)Z if (d/p) = ±1,

0 if (d/p) = 0,

and

G∗(f)/I∗(f, p) ≃

{
Z

1+(d/p)
2 if (d/p) = ±1,

Z/2Z if (d/p) = 0,

where s(p) =
p− (d/p)

r(p)
. On the other hand, let Xp(f) be the set in §1. For any G = (Gn),H =

(Hn) ∈ Xp(f), the product W = G × H (4.1) is not always in Xp(f) (for example, in the case
1 + N − T ≡ 0 (mod p), if G0 ≡ G1 ̸≡ 0 (mod p) and H1 ≡ NH0 ̸≡ 0 (mod p), then we have
G = (Gn),H = (Hn) ∈ Xp(f) but the product sequence W = (Wn) ̸∈ Xp(f) since W0 ≡ W1 ≡ 0
(mod p) (see [3, p15 (2.6)]). However, we will prove that certain subsets Zp(f) and Z∗

p (f) of Xp(f)
and X∗

p (f) respectively have group structures defined by (4.1).

Lemma 12. Let G = (Gn),G′ = (G′
n) ∈ Xp(f) and assume that Λ(G) ̸≡ 0 (mod p).

(1) If G ∼
p
G′, then we have Λ(G′) ̸≡ 0 (mod p).

(2) If G∼
p

∗G′, then we have Λ(G′) ̸≡ 0 (mod p).

Proof. We only give the proof for (2). Since G∼
p

∗G′, there exist integers m and n satisfying

Gm+1G
′
n ≡ G′

n+1Gm (mod p). If p|G′
n or p|G′

n+1, then we have Λ(G′) ̸≡ 0 (mod p) from Lemma
8. If p ∤ G′

n, G
′
n+1, then we have p ∤ Gm, Gm+1. By Lemma 6 and the congruence Gm+1G

′
n ≡ G′

n+1Gm

(mod p), we have Λ(G′) ≡ ±G′2
n+1G

−2
m+1Λ(G) ̸≡ 0 (mod p). □

From Lemma 12, the following sets

Zp(f) := {G ∈ Xp(f) | Λ(G) ̸≡ 0 (mod p)}, Z∗
p (f) := {G ∈ X∗

p (f) | Λ(G) ̸≡ 0 (mod p)}

are well-defined. The next lemmas show that the product (4.1) on Zp(f), Z
∗
p (f) are well-defined.

Lemma 13. Let G = (Gn),H = (Hn) ∈ Xp(f). For fixed integer ν, let Z = (Zn) ∈ Xp(f) be the
sequence defined by Zn = Hn+ν (n ∈ Z). Then we have G ×H∼

p

∗G × Z.
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Proof. Put

Gn =
Bθn2 −Aθn1
θ2 − θ1

, Hn =
Dθn2 − Cθn1
θ2 − θ1

, Zn =
Eθn2 − Fθn1
θ2 − θ1

,

then we have E = Dθν2 , F = Cθν1 . Hence the nth term of G × Z is the (n + ν)th term of G × H, and
we get G ×H∼

p

∗G × Z. □

Lemma 14. Let G = (Gn),G′ = (G′
n),H = (Hn),H′ = (H ′

n) ∈ Xp(f).

(1) If G ∼
p
G′ and H ∼

p
H′, then we have G ×H ∼

p
G′ ×H′.

(2) If G∼
p

∗G′ and H∼
p

∗H′, then we have G ×H∼
p

∗G′ ×H′.

Proof. We only give the proof for (2). It is enough to show G×H∼
p

∗G′×H since the product (4.1) is

commutative and ∼
p

∗ is an equivalence relation. By the assumption G∼
p

∗G′, using Lemma 1, there exists

an integer ν satisfying G1G
′
ν ≡ G0G

′
ν+1 (mod p). Let Z = (Zn) ∈ Xp(f) be the sequence defined by

Zn = G′
n+ν (n ∈ Z), then we have G1Z0 ≡ G0Z1 (mod p). By Lemma 13, it is enough to show that

G ×H∼
p

∗Z ×H. Put G ×H = (Wn) and Z ×H = (Yn), then we have

(4.2)

{
W0 = G1H0 +G0H1 − TG0H0,

W1 = G1H1 −NG0H0,

{
Y0 = Z1H0 + Z0H1 − TZ0H0,

Y1 = Z1H1 −NZ0H0,

(see [3, p15 (2.6)]). Assume that p|G0, then we have p|Z0 since G1Z0 ≡ G0Z1 (mod p). From (4.2),
we have Y1W0 ≡ G1H0Z1H1 ≡ W1Y0 (mod p), and hence we have G × H∼

p

∗Z × H. Next, assume

that p ∤ G0, then we have p ∤ Z0. From (4.2) and the congruence G1Z0 ≡ G0Z1 (mod p), we have
W0 ≡ G0Z

−1
0 Y0 (mod p) and W1 ≡ G0Z

−1
0 Y1 (mod p), and we conclude that W0Y1 ≡ Y0W1 (mod p),

and hence G ×H∼
p

∗Z ×H. □

By Lemma 14, we know that the products (4.1) on Zp(f) and Z∗
p (f) are well-defined. The sets

Zp(f) and Z∗
p are commutative groups with identity F . For G ∈ Zp(f) (or Z∗

p (f)), G = (Gn) with

Gn =
Bθn2 −Aθn1
θ2 − θ1

, the inverse element of G is given by G′ ∈ Zp(f),G′ = (G′
n) with G

′
n =

Aθn2 −Bθn1
θ2 − θ1

.

Theorem 4. There exist natural group homomorphisms

I(f, p)/G(f, p) ≃ Zp(f) and I∗(f, p)/G∗(f, p) ≃ Z∗
p (f).

Proof. Consider the following maps.

ψp : I(f, p) → Zp(f), ψp(G) = Gp,

ψ∗
p : I∗(f, p) → Z∗

p (f), ψ∗
p(G) = Gp,

where Gp := {G = (Gn) ∈ G | p ∤ G0 or p ∤ G1}. By the definitions of relations ∼,∼∗,∼
p
and ∼

p

∗, these

maps ψ and ψ∗ are well-defined group homomorphisms. Furthermore, both ψp and ψ∗
p are surjective

with kernels Ker(ψp) = G(f, p) and Ker(ψ∗
p) = G∗(f, p) by Lemma 3. □

Put F = Q(θ1) and let OF be the ring of integers of F . For any prime ideal p of F which is above
p, let K1 := OF /p and K2 := Z/pZ be the residue fields. Assume p ̸= 2. From the isomorphisms ψp

and ψ∗
p and the group strctures given by Laxton [6, Theorem 3.7 and its proof], we get the following

commutative diagrams. Note that (G(f0, 1)) = (G(0, 1)) = F .
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(I) In the case

(
d

p

)
= 1.

0 −−−−→ Ker(ι) −−−−→ I(f, p)/G(f, p)
ι−−−−→ I∗(f, p)/G∗(f, p) −−−−→ 0

↓≀ ψp ↓≀ ψ∗
p ↓≀

0 −−−−→ {(G(fi, 1)) | i = 0, . . . , −−−−→ Zp(f) −−−−→ Z∗
p (f) −−−−→ 0

r(p)− 2} ∪ {(G(1, 0))}

↓≀ φ+
p ↓≀ ↓≀

0 −−−−→ ⟨θ2/θ1⟩ −−−−→ K∗
1 −−−−→ K∗

1/⟨θ2/θ1⟩ −−−−→ 0

where ι is the natural surjection, the map φ+
p is given by φ+

p (G) = (G1−G0θ1)/(G1−G0θ2), (G = (Gn)),
and each row is an exact sequence.

(II) In the case

(
d

p

)
= −1.

0 −−−−→ Ker(ι) −−−−→ I(f, p)/G(f, p)
ι−−−−→ I∗(f, p)/G∗(f, p) −−−−→ 0

↓≀ ψp ↓≀ ψ∗
p ↓≀

0 −−−−→ {(G(fi, 1)) | i = 0, . . . , −−−−→ Zp(f) −−−−→ Z∗
p (f) −−−−→ 0

r(p)− 2} ∪ {(G(1, 0))}

↓≀ φ−
p ↓≀ ↓≀

0 −−−−→ K∗
2 ⟨θ1⟩/K∗

2 −−−−→ K∗
1/K

∗
2 −−−−→ K∗

1/K
∗
2 ⟨θ1⟩ −−−−→ 0

where ι is the natural surjection, the map φ−
p is given by φ−

p (G) = G1 − G0θ2, (G = (Gn)), and each
row is an exact sequence.

(III) In the case

(
d

p

)
= 0.

ψ∗
p

I∗(f, p)/G∗(f, p) ≃ Z∗
p (f) ≃ 0

and
Zp(f) = {(G(fi, 1)) | i = 0, . . . , r(p)− 2} ∪ {(G(1, 0))}

= {(G(Fi,Fi+1)) | i = 0, . . . , r(p)− 1} ∼→ Z/pZ
φ0
p

where the map φ0
p is given by φ0

p((G(Fi,Fi+1))) = i. We can know that the map φ0
p is a group

homomorphism since for Gi = (G(Fi,Fi+1)), Gj = (G(Fj ,Fj+1)), the product Gi ×Gj = W = (Wn) is
given by

W0 = Fi+1Fj + Fi(Fj+1 − TFj) = Fi+1Fj −NFiFj−1 = Fi+j ,

W1 = Fi+1Fj+1 −NFiFj = Fi+j+1,

by using Lemma 5 and explicit formulas for W0 and W1 ([3, p15 (2.6)]).

From the diagrams, Lemma 3, Theorem 1 and Theorem 3, we get the following corollary.
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Corollary 2. (1) All the classes of Zp(f) and I(f, p)/G(f, p) are given by

{(G(a, 1)) | 0 ≤ a ≤ p− 1, f(a−1) ̸≡ 0 (mod p)} ∪ {(G(1, 0))}.

(2) Let αi (i = 1, . . . , s(p) + (d/p)) be the integers in Theorem 2, then all the classes of Z∗
p (f) and

I∗(f, p)/G∗(f, p) are given by

{(G(αi, 1)) | i = 1, . . . , s(p) + (d/p), f(α−1
i ) ̸≡ 0 (mod p)} ∪ {F}.

5. Examples. We give examples for the case T = 1, N = −1 and T = 6, N = 1. If T = 1 and
N = −1, then (G(0, 1)) is the original Fibonacci numbers and (G(2, 1)) is the original Lucas numbers.
If T = 6 and N = 1, then (G(0, 1)) is the balancing numbers and (G(1, 3)) is the Lucas balancing
numbers ([4]). The numbers a∗ with an asterisk in the tables means that a satisfies f(a−1) ≡ 0
(mod p).

p r(p) s(p) (dp ) Ai Y ∗
p (f) Z∗

p (f)

(i = 1, . . . , s(p) + (dp )) (I∗(f, p)/G∗(f, p))

3 4 1 −1 ∅ ∅ F
5 5 1 0 {2∗} (G(2, 1)) F
7 8 1 −1 ∅ ∅ F

(G(3, 1)),

11 10 1 1 {3∗}, {7∗} (G(7, 1)) F
13 7 2 −1 {2, 3, 4, 6, 8, 9, 10} (G(2, 1)) F , (G(2, 1))
17 9 2 −1 {2, 3, 5, 6, 8, 10, 11, 13, 14} (G(2, 1)) F , (G(2, 1))

(G(4, 1)),

19 18 1 1 {4∗}, {14∗} (G(14, 1)) F
23 24 1 −1 ∅ ∅ F

(G(3, 1)),

{5∗}, {23∗}, {3, 4, 6, 7, 9, 11, (G(5, 1)),

29 14 2 1 12, 16, 17, 19, 21, 22, 24, 25} (G(23, 1)) F , (G(3, 1))
(G(12, 1)),

31 30 1 1 {12∗}, {18∗} (G(18, 1)) F
{2, 4, 5, 7, 9, 10, 11, 14, 15,
18, 21, 22, 25, 26, 27, 29, 31,

37 19 2 −1 32, 34} (G(2, 1)) F , (G(2, 1))
{6∗}, {34∗}, {3, 4, 5, 7, 8, 9, (G(3, 1)),

10, 13, 15, 18, 22, 25, 27, 30, (G(6, 1)),

41 20 2 1 31, 32, 33, 35, 36, 37} (G(34, 1)) F , (G(3, 1))
43 44 1 −1 ∅ ∅ F

{3, 4, 5, 8, 9, 11, 12, 15, 18,
19, 20, 21, 29, 33, 39, 40},
{6, 7, 13, 17, 25, 26, 27, 28, (G(3, 1)), F , (G(3, 1)),

47 16 3 −1 31, 34, 35, 37, 38, 41, 42, 43} (G(6, 1)) (G(6, 1))
Table 1. T = 1, N = −1
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p r(p) s(p) (dp ) Ai Y ∗
p (f) Z∗

p (f)

(i = 1, . . . , s(p) + (dp )) (I∗(f, p)/G∗(f, p))

3 2 2 −1 {1, 2} (G(1, 1)) F , (G(1, 1))
5 3 2 −1 {2, 3, 4} (G(2, 1)) F , (G(2, 1))

(G(1, 1)),

(G(2, 1)),

7 3 2 1 {2∗}, {4∗}, {1, 3, 5} (G(4, 1)) F , (G(1, 1))
11 6 2 −1 {1, 5, 7, 8, 9, 10} (G(1, 1)) F , (G(1, 1))
13 7 2 −1 {2, 3, 4, 7, 9, 10, 12} (G(2, 1)) F , (G(2, 1))

(G(1, 1)),

(G(2, 1))

(G(4, 1)),

{8∗}, {15∗}, {1, 5, 7, 16} (G(8, 1)), F , (G(1, 1))
17 4 4 1 {2, 12, 13, 14}, {4, 9, 10, 11} (G(15, 1)) (G(2, 1)), (G(4, 1))
19 10 2 −1 {1, 2, 4, 5, 7, 10, 11, 14, 15, 18} (G(1, 1)) F , (G(1, 1))

(G(1, 1)),

{13∗}, {16∗}, {1, 3, 5, 8, 9, (G(13, 1)),

23 11 2 1 11, 14, 15, 18, 20, 21} (G(16, 1)) F , (G(1, 1))
(G(2, 1)),

{2, 9, 19, 20, 22}, {3, 7, 10, (G(3, 1)),

25, 28}, {4, 13, 15, 16, 26}, (G(4, 1)), F , (G(2, 1)),
{8, 12, 14, 18, 24}, {11, 17, (G(8, 1)), (G(3, 1)), (G(4, 1)),

29 5 6 −1 21, 23, 27} (G(11, 1)) (G(8, 1)), (G(11, 1))
{18∗}, {19∗}, {1, 2, 3, 4, 5, (G(1, 1)),

8, 12, 13, 15, 16, 21, 22, 24, (G(18, 1)),

31 15 2 1 25, 29} (G(19, 1)) F , (G(1, 1))
{3, 7, 8, 11, 13, 14, 16, 18,
20, 21, 22, 23, 25, 27, 29,

37 19 2 −1 30, 32, 35, 36} (G(3, 1)) F , (G(3, 1))
(G(1, 1)),

(G(2, 1)),

(G(4, 1)),

(G(8, 1)),

{10∗}, {37∗}, {1, 3, 5, 14, 33}, (G(9, 1)),

{2, 17, 18, 26, 31}, {4, 16, 21, (G(10, 1)), F , (G(1, 1)),
29, 30}, {8, 11, 20, 32, 38}, (G(12, 1)), (G(2, 1)), (G(4, 1)),

{12, 19, 22, 23, 34}, {9, 15, 27, (G(13, 1)), (G(8, 1)), (G(9, 1)),

41 5 8 1 36, 39}, {13, 24, 25, 28, 35} (G(37, 1)) (G(12, 1)), (G(13, 1))
{1, 5, 7, 9, 12, 14, 15, 16, 18,
19, 23, 24, 25, 26, 30, 31, 33,

43 22 2 −1 34, 35, 37, 40, 42} (G(1, 1)) F , (G(1, 1))
{17∗}, {36∗}, {1, 2, 3, 4, 5, 10, (G(1, 1)),

12, 13, 14, 16, 18, 19, 20, 24, 29, (G(17, 1)),

47 23 2 1 33, 34, 35, 37, 39, 40, 41, 43} (G(36, 1)) F , (G(1, 1))
Table 2. T = 6, N = 1
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