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FIELDS WITH BOTH CLASS NUMBERS DIVISIBLE BY FIVE

MIHO AOKI AND YASUHIRO KISHI

Abstract. We construct a new infinite family of pairs of imaginary quadratic
fields with both class numbers divisible by five. Let n be a positive integer that
satisfy n ≡ ±3 (mod 500) and n ̸≡ 0 (mod 3). We prove that 5 divides the class

numbers of both Q(
√
2− Fn) and Q(

√
5(2− Fn)), where Fn is the nth Fibonacci

number.

1. Introduction

Some infinite families of quadratic fields with class numbers divisible by a fixed
integer N were given by Nagell [15], Ankeny and Chowla [1], Yamamoto [19], Wein-
berger [18], Gross and Rohrich [5], Ichimura [6] and Louboutin [13]. In the case
N = 5, some results are known due to Parry [16], Mestre [14], Sase [17] and Byeon
[3]. One of the authors [10], by using the Fibonacci numbers Fn, gave an infinite fam-
ily of imaginary quadratic fields with class numbers divisible by five: the Q(

√
−Fn)

with n ≡ 25 (mod 50).
Recently, Komatsu [11], [12] and Ito [9] (resp. Iizuka, Konomi and Nakano [7])

gave infinite families of pairs of quadratic fields with both class numbers divisible
by 3 (resp. 3, 5 or 7). In the present article, by using the Fibonacci numbers Fn,
we will give an infinite family of pairs of imaginary quadratic fields with both class
numbers divisible by 5.

Theorem. For n ∈ N := {n ∈ N |n ≡ ±3 (mod 500), n ̸≡ 0 (mod 3)}, the class

numbers of both Q(
√
2− Fn) and Q(

√
5(2− Fn)) are divisible by 5. Moreover, the

set of pairs {(Q(
√
2− Fn),Q(

√
5(2− Fn))) |n ∈ N} is infinite.

For an algebraic extension K/k, denote the norm map and the trace map of K/k
by NK/k and TrK/k, respectively. For simplicity, we denote NK and TrK if the base
field is k = Q. For a prime number p and an integer m, we denote the greatest
exponent µ of p such that pµ | m by vp(m).

2. Certain parametric quartic polynomial

Let k = Q(
√
5). For an algebraic integer α ∈ k, we consider the polynomial

(2.1) f(X) = fα(X) := X4 − TX3 + (N + 2)X2 − TX + 1 ∈ Z[X],

where T := Trk(α) and N := Nk(α). The discriminant of f(X) is disc(f) = d21d2
with d1 := T 2 − 4N and d2 := (N + 4)2 − 4T 2. Let L be the minimal splitting field
of f(X) over Q. All four complex roots of f(X) are units of L and can be denoted
by ε, ε−1, η, η−1, |ε| ≥ |ε−1|, |η| ≥ |η−1|, α = ε+ ε−1, α = η + η−1, where α denotes
the Galois conjugate of α ([2, Lemmas 2.2 and 2.3]). We assume α ̸∈ Z, α2−4 ̸∈ Z2,
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d2 ∈ 5Q2 and α2 − 4 > 0. The assumptions α ̸∈ Z and α2 − 4 ̸∈ Z2 imply that the
polynomial f(X) is Q-irreducible, and we have Gal(L/Q) ≃ C4 from d2 ∈ 5Q2 ([2,
Proposition 2.1]). Furthermore, we have ε, η ∈ R by the assumption α2 − 4 > 0,
d2 > 0 and the factorization

(2.2) f(X) = (X2 −αX +1)(X2 −αX +1) = (X − ε)(X − ε−1)(X − η)(X − η−1)

([2, Lemma 2.7]). Set L̃ = L(ζ5) where ζ5 is a primitive fifth root of unity. Since

Gal(L̃/Q) ⊃ Gal(L̃/k) ≃ C2 × C2 and Gal(L̃/Q)/Gal(L̃/Q(ζ5)) ≃ Gal(Q(ζ5)/Q) ≃
C4, we have Gal(L̃/Q) ≃ C2 × C4. Therefore, Gal(L̃/Q) has three subgroups of
order 4. One of them is isomorphic to C2 × C2 that corresponds to the subfield k,
the others are isomorphic to C4. Let us denote them by ⟨τ⟩ (≃ C4) and ⟨τ ′⟩ (≃ C4)

for some automorphisms τ, τ ′ ∈ Gal(L̃/Q) of order 4. Note that ζτ5 ̸= ζ5, ζ
4
5 , because

τ acts trivial on k = Q(
√
5) = Q(ζ5 + ζ−1

5 ) if ζτ5 = ζ5 or ζ45 . Likewise, we have
ζτ

′
5 ̸= ζ5, ζ

4
5 . We may assume that ζτ5 = ζ25 and ζτ

′
5 = ζ25 .

Lemma 1. The actions of τ and τ ′ on the roots ε, ε−1, η and η−1 of f(X) are as
follows:

τ : ε 7→ η 7→ ε−1 7→ η−1 7→ ε

τ ′ : ε 7→ η−1 7→ ε−1 7→ η 7→ ε

Proof. If ετ = ε−1, then we have ατ = (ε+ ε−1)τ = α. This is a contradiction since
the restriction of τ to L is a generator of Gal(L/Q) (≃ C4). Therefore, we have
ετ ̸= ε−1, and hence ετ = η or η−1. Similarly we have ετ

′
= η or η−1. Without loss

of generality, we can assume that ετ = η and ετ
′
= η−1. Next, we will prove ητ = ε−1.

We get ητ ̸= η−1 by the same argument as the proof of ετ ̸= ε−1. If ητ = ε, then we
have (ε + η)τ = ε + η, (εη)τ = εη, (ε−1 + η−1)τ = ε−1 + η−1, (ε−1η−1)τ = ε−1η−1,
and hence ε+ η, εη, ε−1+ η−1, ε−1η−1 ∈ Q. Noting (2.2), therefore, f(X) is factored
in Q[X] as

f(X) = (X2 − (ε+ η)X + εη)(X2 − (ε−1 + η−1)X + ε−1η−1).

However, this contradicts the assumption that f(X) is irreducible over Q. We
conclude ητ ̸= ε and hence ητ = ε−1. Similarly we can get (η−1)τ

′
= ε−1. The proof

is complete. □
Let K and K ′ denote the subfields of L̃ correspond to ⟨τ⟩ and ⟨τ ′⟩, respectively.
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√
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Lemma 2. We have

(ε− ε−1)(η − η−1) =

{√
d2 if N > 0,

−
√
d2 if N < 0,
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εη+ ε−1η−1 =


N +

√
d2

2
if N > 0,

N −
√
d2

2
if N < 0

and εη−1 + ε−1η =


N −

√
d2

2
if N > 0,

N +
√
d2

2
if N < 0.

Proof. Put λ := (ε− ε−1)(η− η−1). By using N = αα = (ε+ ε−1)(η+ η−1), we have
εη + ε−1η−1 = (N + λ)/2 and εη−1 + ε−1η = (N − λ)/2. By direct calculation, we
get λ2 = d2. Recall that ε, η ∈ R. Since α = ε+ ε−1 (resp. α = η + η−1) is positive
if and only if ε (resp. η) is positive, and |ε| ≥ |ε−1| and |η| ≥ |η−1|, we have

N = αα > 0 ⇐⇒ εη > 0 ⇐⇒ λ = (ε− ε−1)(η − η−1) > 0.

The proof is complete. □
Lemma 3. Let i, j be integers which are not divisible by 5. If εiηj ∈ L5, then we
have ε, η ∈ L5.

Proof. We put Gal(L̃/k) ≃ ⟨σ⟩ × ⟨σ′⟩ (≃ C2 × C2), where εσ = ε−1, ησ = η, εσ
′
= ε

and ησ
′
= η−1. If εiηj ∈ L5, then so are (εiηj)σ = ε−iηj, their ratio ε2i and their

product η2j. Since gcd(2i, 5) = gcd(2j, 5) = 1, we conclude that both ε and η are
fifth powers in L. □

3. Fibonacci and Lucas sequences

Let (Fn) and (Ln) be the Fibonacci and Lucas sequences, respectively, defined
by F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn (n ∈ Z) and L1 = 1, L2 = 3, Ln+2 =
Ln+1 + Ln (n ∈ Z). Assertions (1) and (2) in the following lemma follow from the
explicit formulae for

Fn =
ωn − ωn

ω − ω
and Ln = ωn + ωn,

where ω = (1+
√
5)/2 and ω = (1−

√
5)/2. We can prove (3) by direct calculation.

Lemma 4. For any n ∈ Z, we have the following.

(1) L2
n = 5F 2

n + (−1)n4.
(2) 5F2n−1 + L2n−1 + (−1)n4 = 2L2

n and 5F2n−1 + L2n−1 − (−1)n4 = 10F 2
n .

(3) (Fn) mod 53 is 500-periodic and Fn ≡ 2 (mod 53) if n ≡ ±3 (mod 500).

From now on, we assume that n (> 3) is an odd integer and consider the polyno-
mial (2.1) for α = (Ln + (Fn − 2)

√
5)/2. By (2.1) and Lemma 4 (1), we get

f(X) = fα(X) = X4 − LnX
3 + (5Fn − 4)X2 − LnX + 1,

and all four roots of f(X) are given by ε, ε−1, η, η−1 which satisfy α = ε + ε−1,
α = η+η−1. Moreover, we see from d1 = T 2−4N = 5(Fn−2)2 and d2 = (N +4)2−
4T 2 = 5(Fn − 2)2 that the discriminant of f(X) is disc(f) = d21d2 = 53(Fn − 2)6.
Furthermore, since α ̸∈ Z, α2 − 4 ̸∈ Z2, d2 ∈ 5Q2 and α2 − 4 > 0, the polyno-
mial f(X) is Q-irreducible, all the roots ε, ε−1, η, η−1 are real, and Gal(L/Q) ≃ C4

(see §2). Next, we will prove that the three quadratic fields contained in L̃ are

Q(
√
2− Fn),Q(

√
5(2− Fn)) and k = Q(

√
5).

Lemma 5. Put α = (Ln + (Fn − 2)
√
5)/2 for an odd integer n > 3 and ζ = ζ5. For

the roots ε, η of fα(X), we have the following.

(1) ξ1 := (ε+ ε−1)(ζ + ζ−1) + (η + η−1)(ζ2 + ζ−2) = {−Ln + 5(Fn − 2)}/2.
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(2) ξ2 := (ε− ε−1)2(ζ− ζ−1)2+(η− η−1)2(ζ2− ζ−2)2 = −5(Fn− 2)(5Fn+Ln)/2.
(3) ξ3 := (ε− ε−1)(η − η−1)(ζ − ζ−1)(ζ2 − ζ−2) = −5(Fn − 2).

Proof. Set c = ζ + ζ−1 = (−1 +
√
5)/2. Noting that α = ε + ε−1 and α = η + η−1,

we have ξ1 = αc + α(c2 − 2) and ξ2 = (α2 − 4)(c2 − 4) + (α2 − 4)(c − 2). The
assertions (1) and (2) follow by using Lemma 4 (1). From Lemma 2 and N > 0,
we have (ε − ε−1)(η − η−1) =

√
d2 = (Fn − 2)

√
5. On the other hand, we have

(ζ − ζ−1)(ζ2 − ζ−2) = c3 − 4c = −
√
5. Hence we get the assertion (3). □

Lemma 6. Under the same situation as in Lemma 5, we have the following.

(1) TrL̃/K(εζ) = {−Ln+5(Fn− 2)+2ξ}/4, where ξ := (ε− ε−1)(ζ − ζ−1)+ (η−
η−1)(ζ2 − ζ−2) is such that

ξ2 =

{
−52(Fn − 2)F 2

n+1
2

if n ≡ 1 (mod 4),

−5(Fn − 2)L2
n+1
2

if n ≡ 3 (mod 4).

(2) TrL̃/K′(εζ) = {−Ln + 5(Fn − 2) + 2ξ′}/4, where ξ′ := (ε − ε−1)(ζ − ζ−1) −
(η − η−1)(ζ2 − ζ−2) is such that

ξ′
2
=

{
−5(Fn − 2)L2

n+1
2

if n ≡ 1 (mod 4),

−52(Fn − 2)F 2
n+1
2

if n ≡ 3 (mod 4).

Proof. We prove only the assertion (1). By Lemma 1, we have

γ := TrL̃/K(εζ) = εζ + ηζ2 + ε−1ζ−1 + η−1ζ−2

and

γτ ′ = η−1ζ2 + εζ−1 + ηζ−2 + ε−1ζ.

Now γ = {(γ + γτ ′) + (γ − γτ ′)}/2 with

γ + γτ ′ = ξ1 =
−Ln + 5(Fn − 2)

2

and

(γ − γτ ′)2 = {(ε− ε−1)(ζ − ζ−1) + (η − η−1)(ζ2 − ζ−2)}2

= ξ2 + 2ξ3 = −5(Fn − 2)(5Fn + Ln + 4)

2

by Lemma 5. Therefore, we get the desired result, by Lemma 4 (2). □

By Lemma 6, we get the following proposition immediately.

Proposition 1. We have

(K,K ′) =

{
(Q(

√
2− Fn),Q(

√
5(2− Fn))) if n ≡ 1 (mod 4),

(Q(
√

5(2− Fn)),Q(
√
2− Fn)) if n ≡ 3 (mod 4).
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4. Certain parametric quintic polynomial

For an element γ ∈ L, we define

gγ,τ (X) := X5 − 10NL(γ)X
3 − 5NL(γ)NkTrL/k(γ)X

2

+ 5NL(γ){NL(γ)−NkTrL/k(γ
1+τ )}X −NL(γ)NkTrL/k(γ

2+τ ) ∈ Q[X],

gγ,τ ′(X) := X5 − 10NL(γ)X
3 − 5NL(γ)NkTrL/k(γ)X

2

+ 5NL(γ){NL(γ)−NkTrL/k(γ
1+τ ′)}X −NL(γ)NkTrL/k(γ

2+τ ′) ∈ Q[X].

Define subsets Mτ and Mτ ′ of L̃ = L(ζ5) by

Mτ := {γ ∈ L̃× | γ3+4τ+2τ2+τ3 ̸∈ L̃5},

Mτ ′ := {γ ∈ L̃× | γ3+4τ ′+2τ ′2+τ ′3 ̸∈ L̃5}.

Proposition 2 ([8, Example 3.3], [4, Chapter 5, Examples (2), p.253]). Let the
notation be as above. Assume γ ∈ Mτ ∩ L (resp. γ ∈ Mτ ′ ∩ L). Then the minimal
splitting field of gγ,τ (resp. gγ,τ ′) over Q is a D5-extension containing K (resp. K ′).

Recall d2 ∈ 5Q2. Let t be the positive integer so that d2 = 5t2, and denote
α = (T + b

√
5)/2 (b ∈ Z). Now we calculate the coefficients of gγ,τ (X) and gγ,τ ′(X)

in the case γ = ε, η.

Lemma 7. For γ = ε, η, we have the following.

(1) NL(γ) = 1.
(2) NkTrL/k(γ) = N .

(3) NkTrL/k(γ
1+τ ) = NkTrL/k(γ

1+τ ′) = T 2 − 2N − 4.

(4) NkTrL/k(γ
2+τ ) =

{
{N(T 2 − 2N)− 5btT}/2− 3N if N > 0,

{N(T 2 − 2N) + 5btT}/2− 3N if N < 0,

NkTrL/k(γ
2+τ ′) =

{
{N(T 2 − 2N) + 5btT}/2− 3N if N > 0,

{N(T 2 − 2N)− 5btT}/2− 3N if N < 0.

Proof. Let τ = τ |L be the restriction of τ to L. Then τ is a generator of the cyclic
quartic Galois group Gal(L/Q), and τ 2 is the generator of Gal(L/k). We can show
the assertions (1), (2) and (3) by these facts and α = ε + ε−1 and α = η + η−1 are
roots of X2 − TX +N . Therefore, we will give a proof of the assertion (4) only for
NkTrL/k(ε

2+τ ) in the case N > 0 (we can prove the other assertions similarly). In
this case, we see from Lemmas 1 and 2 that

NkTrL/k(ε
2+τ ) = NkTrL/k(ε

2η) = Nk(ε
2η + ε−2η−1)

= (ε2η + ε−2η−1)(η2ε−1 + η−2ε)

= α2(εη + ε−1η−1) + α2(εη−1 + ε−1η)− 3N

=
N +

√
d2

2
α2 +

N −
√
d2

2
α2 − 3N

=
N

2
(α2 + α2)− t

√
5

2
(α2 − α2)− 3N.

Since α− α = b
√
5, we have α2 + α2 = T 2 − 2N , α2 − α2 = bT

√
5. Thus we get the

assertion. □
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Lemma 8. Put α = (Ln + (Fn − 2)
√
5)/2 for an odd integer n > 3. For the roots

γ = ε, η of fα(X), we have the following.

(1) NL(γ) = 1.
(2) NkTrL/k(γ) = 5Fn − 6.

(3) NkTrL/k(γ
1+τ ) = NkTrL/k(γ

1+τ ′) = 5F 2
n − 10Fn + 4.

(4) NkTrL/k(γ
2+τ ) = 5(Fn − 2){(Fn − 2)(5Fn − Ln + 4) + 10}/2 + 4,

NkTrL/k(γ
2+τ ′) = 5(Fn − 2){(Fn − 2)(5Fn + Ln + 4) + 10}/2 + 4.

Proof. The assertions (1), (2) and (3) follow from Lemma 7 and Lemma 4 (1). We
will prove the assertion (4). Since N = 5Fn−6 > 0, we have from Lemma 7 (4) and
Lemma 4 (1) that

NkTrL/k(γ
2+τ ) =

1

2
{(5Fn − 6)(L2

n − 10Fn + 12)− 5Ln(Fn − 2)2} − 15Fn + 18

=
1

2
{(5Fn − 6)(5F 2

n − 10Fn + 8)− 5Ln(Fn − 2)2 − 30Fn + 28}+ 4

=
5(Fn − 2)

2
{(Fn − 2)(5Fn − Ln + 4) + 10}+ 4.

We can prove the equality for NkTrL/k(γ
2+τ ′) similarly. □

Lemma 9. Put α = (Ln+(Fn−2)
√
5)/2 for an odd integer n > 3. If n ̸≡ 0 (mod 3),

then for the roots γ = ε, η of fα(X) and for any integers i, j which are not divisible
by 5, we have εiηj ̸∈ L5.

Proof. For any x ∈ L5, since L ⊂ R, there exists only one y ∈ L satisfying x = y5, we
denote it by 5

√
x. Suppose to the contrary that εiηj ∈ L5. Then we have ε, η ∈ L5

by Lemma 3. Recall that τ 2 is the generator of Gal(L/k), where τ = τ |L. For
y = 5

√
ε ∈ L, we have

(yτ
2

)5 = (y5)τ
2

= ετ
2

= ε−1.

This equality yields ( 5
√
ε)τ

2
=

5
√
ε−1. Therefore, we have

β := TrL/k(
5
√
ε) = 5

√
ε+ ( 5

√
ε)τ

2

= 5
√
ε+

5
√
ε−1 ∈ k.

By direct calculation, we get β5 − 5β3 + 5β = ε+ ε−1 = α = (Ln + (Fn − 2)
√
5)/2,

and h(β) = 0, where

h(X) :=

(
X5 − 5X3 + 5X − Ln

2

)2

− 5(Fn − 2)2

4

= X10 − 10X8 + 35X6 − LnX
5 − 50X4 + 5LnX

3 + 25X2 − 5LnX + 5Fn − 6.

On the one hand, h(X) is reducible over Q because it has a root β ∈ k = Q(
√
5).

On the other hand, since

(4.1) Fn ≡ Ln ≡ 1 (mod 2) if n ≡ 1, 2 (mod 3),

we have that

h(X) ≡ X10 +X6 +X5 +X3 +X2 +X + 1 (mod 2)

is irreducible over F2. Hence h(X) is Q-irreducible. Since we obtain a contradiction,
the proof is complete. □
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5. Proof of our theorem

In this section, we will prove our main theorem in §1. The keys of the proof are
Proposition 2 and the following proposition.

Proposition 3 ([17, Proposition 2]). Let p ( ̸= 2) and q be prime numbers. Suppose
that the polynomial

φ(X) = Xp +

p−2∑
j=0

ajX
j, aj ∈ Z

is irreducible over Q and satisfies the condition

(5.1) vq(aj) < p− j for some j, 0 ≤ j ≤ p− 2.

Let θ be a root of φ(X).

(1) If q is different from p, then q is totally ramified in Q(θ)/Q if and only if

0 <
vq(a0)

p
≤ vq(aj)

p− j
for every j, 1 ≤ j ≤ p− 2.

(2) If neither

(5.2) 0 <
vp(a0)

p
≤ vp(aj)

p− j
for every j, 1 ≤ j ≤ p− 2

nor

(5.3) vp(φ
(j)(−a0)) < p− j for some j, 0 ≤ j ≤ p− 1

holds, then p is not totally ramified in Q(θ)/Q, where φ(j)(X) is the j-th
differential of φ(X).

Proof of Theorem. Let n be in N . First, we will show ε ∈ Mτ ∩L and ε ∈ Mτ ′ ∩L,
where Mτ and Mτ ′ are defined in §4. By Lemma 1, we have

(5.4) ε3+4τ+2τ2+τ3 = ε3η4ε−2η−1 = εη3.

If εη3 ∈ L̃5, then we have ε2η6 = NL̃/L(εη
3) ∈ L5, which contradicts Lemma 9.

Hence we have εη3 ̸∈ L̃5. From (5.4), therefore, we get ε ∈ M ∩ L. Similarly, we
can see that

ε3+4τ ′+2τ ′2+τ ′3 = ε3η−4ε−2η = εη−3 ̸∈ L̃5,

and so ε ∈ Mτ ′ ∩ L. Let gε,τ (X) and gε,τ ′(X) be the polynomials defined in §4.
From Lemma 8, we have

gε,τ (X) = X5 − 10X3 − 5(5Fn − 6)X2 − 5(5F 2
n − 10Fn + 3)X

− 5(Fn − 2)

2
{(Fn − 2)(5Fn − Ln + 4) + 10} − 4,

gε,τ ′(X) = X5 − 10X3 − 5(5Fn − 6)X2 − 5(5F 2
n − 10Fn + 3)X

− 5(Fn − 2)

2
{(Fn − 2)(5Fn + Ln + 4) + 10} − 4.

By Proposition 2, the minimal splitting fields SplQ(gε,τ ) of gε,τ (X) and SplQ(gε,τ ′)
of gε,τ ′(X) are D5-extensions containing K and K ′, respectively, and the quadratic
fields K and K ′ are given by Proposition 1. Therefore, it is enough to prove that
both C5-extensions SplQ(gε,τ )/K and SplQ(gε,τ ′)/K

′ are unramified. We will prove
only for SplQ(gε,τ )/K (we can prove similarly for SplQ(gε,τ ′)/K

′).
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Let θ be a root of gε,τ (X) and consider the quintic extension Q(θ)/Q. For a prime
number q, a prime ideal of K above q is ramified in SplQ(gε,τ )/K if and only if q is
totally ramified in Q(θ)/Q because [SplQ(gε,τ ) : K] = 5 and [K : Q] = 2. Hence we
prove that no prime number q is totally ramified in Q(θ)/Q by using Proposition 3.
We denote the coefficient of Xj of gε,τ (X) by aj. First, gε,τ (X) satisfies the condition
(5.1) because vq(a3) < 5 − 3 = 2 for any prime number q. From Proposition 3 (1),
we see that no prime q ≠ 5 is totally ramified in Q(θ)/Q since vq(a3) = 0 if q ̸= 2
and v2(a2) = 0 by (4.1). We will show, therefore, that 5 is not totally ramified
in Q(θ)/Q. Since a0 ≡ −4 (mod 5) is not divisible by 5, (5.2) does not hold.
Furthermore, by the assumption n ≡ ±3 (mod 500) and Lemma 4 (3), we have
Fn − 2 ≡ 0 (mod 53), −a0 ≡ 4 (mod 55), 5Fn − 6 = 5(Fn − 2) + 4 ≡ 4 (mod 54),
5F 2

n − 10Fn + 3 = 5Fn(Fn − 2) + 3 ≡ 3 (mod 54), and hence

gε,τ (−a0) ≡ 45 − 10 · 43 − 5 · 4 · 42 − 5 · 3 · 4− 4 = 0 (mod 55),

g(1)ε,τ (−a0) ≡ 5 · 44 − 30 · 42 − 10 · 4 · 4− 5 · 3 = 625 ≡ 0 (mod 54),

g(2)ε,τ (−a0) ≡ 20 · 43 − 60 · 4− 10 · 4 = 1000 ≡ 0 (mod 53),

g(3)ε,τ (−a0) ≡ 60 · 42 − 60 = 900 ≡ 0 (mod 52),

g(4)ε,τ (−a0) ≡ 120 · 4 ≡ 0 (mod 5).

Then (5.3) does not hold. Hence 5 is not totally ramified in Q(θ)/Q.

Finally, we prove that the set {(Q(
√
2− Fn),Q(

√
5(2− Fn))) |n ∈ N} is infinite.

For an integer m, let s(m) denote the square free integer satisfying m = s(m)A2

for some A ∈ N, and assume that {(Q(
√
2− Fn),Q(

√
5(2− Fn))) |n ∈ N} is finite.

Then the set {s(Fn − 2) |n ∈ N} is finite. Since N is infinite, there exists k ≥ 1
such that Nk := {n ∈ N | s(Fn − 2) = k} is infinite. For any integer n ∈ Nk, let
Fn − 2 = kA2

n. Then by Lemma 4 (1), we have

L2
n = 5F 2

n − 4 = 5(kA2
n + 2)2 − 4 = 5k2A4

n + 20kA2
n + 16.

This implies that infinitely many pairs (An, Ln) are integer solutions of the equation

Y 2 = 5k2X4 + 20kX2 + 16.

However, the equation has only finitely many integer solutions by Siegel’s theorem.
This is a contradiction. Hence the proof is complete. □
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