AN INFINITE FAMILY OF PAIRS OF IMAGINARY QUADRATIC
FIELDS WITH BOTH CLASS NUMBERS DIVISIBLE BY FIVE

MIHO AOKI AND YASUHIRO KISHI

ABSTRACT. We construct a new infinite family of pairs of imaginary quadratic
fields with both class numbers divisible by five. Let n be a positive integer that
satisfy n = +3 (mod 500) and n #Z 0 (mod 3). We prove that 5 divides the class
numbers of both Q(v/2 — F,,) and Q(1/5(2 — F},)), where F), is the nth Fibonacci

number.

1. INTRODUCTION

Some infinite families of quadratic fields with class numbers divisible by a fixed
integer N were given by Nagell [15], Ankeny and Chowla [1], Yamamoto [19], Wein-
berger [18], Gross and Rohrich [5], Ichimura [6] and Louboutin [13]. In the case
N =5, some results are known due to Parry [16], Mestre [14], Sase [17] and Byeon
[3]. One of the authors [10], by using the Fibonacci numbers F,,, gave an infinite fam-
ily of imaginary quadratic fields with class numbers divisible by five: the Q(v/—F},)
with n = 25 (mod 50).

Recently, Komatsu [11], [12] and Ito [9] (resp. lizuka, Konomi and Nakano [7])
gave infinite families of pairs of quadratic fields with both class numbers divisible
by 3 (resp. 3, 5 or 7). In the present article, by using the Fibonacci numbers F,,,
we will give an infinite family of pairs of imaginary quadratic fields with both class
numbers divisible by 5.

Theorem. Forn € N := {n € N|n = £+3 (mod 500),n # 0 (mod 3)}, the class
numbers of both Q(v/2 — F,,) and Q(\/5(2 — F,,)) are divisible by 5. Moreover, the

set of pairs {(Q(v2 — F,),Q(\/5(2 — F,,))) |n € N} is infinite.

For an algebraic extension K/k, denote the norm map and the trace map of K/k
by Ng and Trg, respectively. For simplicity, we denote Nk and Trg if the base
field is £ = Q. For a prime number p and an integer m, we denote the greatest
exponent g of p such that p* | m by v,(m).

2. CERTAIN PARAMETRIC QUARTIC POLYNOMIAL

Let k = Q(+/5). For an algebraic integer o € k, we consider the polynomial
(2.1) f(X)=fu(X)=X"-TX*+ (N+2)X*-TX + 1€ Z[X],
where T := Trj(a) and N := Ni(a). The discriminant of f(X) is disc(f) = dids
with dy :=T? — 4N and dy := (N +4)? — 4T?. Let L be the minimal splitting field
of f(X) over Q. All four complex roots of f(X) are units of L and can be denoted
by ,e=L,m 5 Jel 2 e, nl > g, @ = &+ e=1, @ = + 7, where @ denotes
the Galois conjugate of v ([2, Lemmas 2.2 and 2.3]). We assume o € Z, o> —4 ¢ 72,
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dy € 5Q? and o? — 4 > 0. The assumptions o € Z and o? — 4 ¢ Z? imply that the
polynomial f(X) is Q-irreducible, and we have Gal(L/Q) ~ Cy from dy € 5Q? (]2,
Proposition 2.1]). Furthermore, we have ,7 € R by the assumption a? — 4 > 0,
dy > 0 and the factorization

(22) f(X)=(X*—aX+1)(X*—aX+1)=(X—-e) (X - HX-n)X —n7")

(12, Lemma 2.7)). Set L = L((s) where (5 is a primitive fifth root of unity. Since

Gal(L/Q) 5 Gal(L/k) ~ C, x Cy and Gal(L/Q)/Gal(L/Q(G;)) ~ Gal(Q(Gs)/Q) ~

C4, we have Gal(L/Q) ~ C, x Cy. Therefore, Gal(L/Q) has three subgroups of
order 4. One of them is isomorphic to Cy x C5 that corresponds to the subfield k,
the others are isomorphic to Cy. Let us denote them by (1) (~ Cy) and (7') (~ Cy)

for some automorphisms 7,7’ € Gal(Z/ Q) of order 4. Note that (I # (s, (4, because
7 acts trivial on k = Q(v5) = Q((s + ¢5Y) if ¢ = ¢ or ¢ Likewise, we have
(' # (5,¢4. We may assume that (7 = (2 and ¢§ = 2.
Lemma 1. The actions of T and 7' on the roots e,e~1,n and n=1 of f(X) are as
follows:

T . €=M r—>5’1|—>77’1r—>5

ey lieetlen e
Proof. If e™ = ¢!, then we have a” = (¢ +&')” = a. This is a contradiction since
the restriction of 7 to L is a generator of Gal(L/Q) (~ Cy). Therefore, we have
e” # ¢!, and hence €7 = 1 or n~'. Similarly we have €7 =5 or n~'. Without loss
of generality, we can assume that e” = and ¢” = 5. Next, we will prove ™ = ¢ 1.

We get ™ # =1 by the same argument as the proof of e™ # =1, If n” = ¢, then we

have (e + )" = ¢ +n, (en)” = en, (7 + )" = e 47, (i) = ey,

and hence € +1,en, et +n71 eyt € Q. Noting (2.2), therefore, f(X) is factored
in Q[X] as

FX)=(X? = (e+mX +en(X* = (e +n )X +e 7).
However, this contradicts the assumption that f(X) is irreducible over Q. We
conclude 7 # € and hence ™ = e~*. Similarly we can get (=)™ = &~!. The proof
is complete. O

Let K and K’ denote the subfields of L correspond to (1) and (7'), respectively.

/L\
/\\\/
\\/

K (V5 (Gs)

Lemma 2. We have

-1 1y Vs if N >0,
(e—e)n—n )—{_\@ N <0,
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N ++/d N —+/d
1, -1 % N =0, 1 1 TQ N0,
en+e = and en +e n=
N —/d N ++/d
TZ if N <0 % if N <O.

Proof. Put A\ := (e —e7')(n—n1). By using N = aa = (e +& ) (n+n~'), we have
en+ent=(N+N)/2and en ! + &7y = (N — \)/2. By direct calculation, we
get A2 = dy. Recall that ,n7 € R. Since a = & + 7! (resp. @ = n+ n~!) is positive
if and only if & (resp. n) is positive, and |e| > |e™!| and || > |p7!|, we have

N=aa>0 < en>0 < A=(c—e n—-n"')>0.
The proof is complete. O

Lemma 3. Let i,j be integers which are not divisible by 5. If '/ € L°, then we
have e,m € L°.

Proof. We put Gal(L/k) =~ (o) x (¢/) (== Cy x Cy), where e” = e~ 1, 0% =1, =¢
and 07 = n~'. If ¢ € LP, then so are (e'/)” = e/, their ratio £* and their
product n?. Since ged(2i,5) = ged(25,5) = 1, we conclude that both & and 7 are
fiftth powers in L. O

3. FIBONACCI AND LUCAS SEQUENCES

Let (F,) and (L,) be the Fibonacci and Lucas sequences, respectively, defined
by Fl = 1, F2 = 1, Fn+2 = Fn+1 +Fn (n € Z) and Ll = 1, L2 = 3, Ln+2 =
Ly1+ L, (n € Z). Assertions (1) and (2) in the following lemma follow from the

explicit formulae for
"
F, = — and L, =w"+ ",

w—w
where w = (1++/5)/2 and @ = (1 — v/5)/2. We can prove (3) by direct calculation.

Lemma 4. For any n € Z, we have the following.

(1) L2 = 5F2 + (—1)"4.

(2) 5F2n_1 + Lgn_l + (—1)”4 = 2L721 and 5F2n_1 + Lgn_l — (—1)”4 = 1OF3

(3) (F,,) mod 5 is 500-periodic and F,, = 2 (mod 5%) if n = £+3 (mod 500).

From now on, we assume that n (> 3) is an odd integer and consider the polyno-
mial (2.1) for a = (L, + (F, — 2)v/5)/2. By (2.1) and Lemma 4 (1), we get
fX)=fu(X) =X - L, X*+ (5F, —4)X* - L, X +1,

and all four roots of f(X) are given by €,e71, 7,7~ which satisfy a = ¢ + 71,
a =n+n"t. Moreover, we see from d; = T? —4N = 5(F, —2)* and dy = (N +4)? —
47? = 5(F,, — 2)* that the discriminant of f(X) is disc(f) = d3dy = 53(F, — 2)S.
Furthermore, since o € Z, o® —4 ¢ 72, dy € 5Q% and o? — 4 > 0, the polyno-
mial f(X) is Q-irreducible, all the roots g,7%,n,n~! are real, and Gal(L/Q) ~ C,
(see §2). Next, we will prove that the three quadratic fields contained in L are

Q2= F),Q(v/52 — Fy)) and k = Q(v5).

Lemma 5. Put o = (L, + (F,, — 2)V/5)/2 for an odd integer n > 3 and ¢ = (5. For
the roots €,m of fo(X), we have the following.

(1) &= (+e)C+C) ++n )+ ?) ={-La +5(F, - 2)}/2.
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(2) &= (e—e7)* (¢~ Cl) +(n 77‘1)2(62—C‘2) 2—5(F —2)(5F0 + L) /2.
(3) &=(e—e ) —n")C == C?) = =5(F, —2).

Proof. Set ¢ = ( + (' = (—1++/5)/2. Noting that e = e+ ' and @ =n+n",
we have & = ac+ a(c® — 2) and & = (o —4)(c* —4) + (@* — 4)(c — 2). The
assertions (1) and (2) follow by using Lemma 4 (1). From Lemma 2 and N > 0,
we have (¢ — e 1) (n —n~ ') = Vdy = (F, — 2)V/5. On the other hand, we have
(€= =% = —4c = —/5. Hence we get the assertion (3). O

Lemma 6. Under the same situation as in Lemma 5, we have the following.

(1) TTZ/K(go ={—L,+5(F,—2)+2£}/4, where € := (e —e )((—¢ )+ (n—
n)(¢* — (?) is such that

) —5%(F), — 2)F?L+1 ifn=1 (mod 4),
| -5(F, - 2)Ln+1 ifn =3 (mod 4).

(2) Trg)pei(eQ) = {—Ln + 5(F, — 2) + 26} /4, where § = (e — e )(( = (1) -
(n —n"Y)(¢% = (?) is such that

- —5(F, —2)L%,, ifn=1 (mod 4),
&= —5%(F, —2)F2,, ifn=3 (mod 4).

Proof. We prove only the assertion (1). By Lemma 1, we have
v =T p(eQ) =eC+n¢ +e7 ¢+ ¢
and
V=TI e e eI
Now v = {(y +77) + (v =77)}/2 with

. L, +5(F, —2
Y+ =6 = 2< )
and
i R e (e e B R (S I
5(F, —2)(5F,+ L, +4
— g 425, = 220 )
by Lemma 5. Therefore, we get the desired result, by Lemma 4 (2). O

By Lemma 6, we get the following proposition immediately.

Proposition 1. We have

QW2 —F,),Q(+/5(2—F,))) ifn=1 (mod 4),

(K,K/):{Q 52— F,)),Q(v2—F,)) ifn=3 (mod 4).
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4. CERTAIN PARAMETRIC QUINTIC POLYNOMIAL
For an element v € L, we define
Gy (X) := X = 10N (v)X* = BN (v) N Ty u(7) X
+ONL(YANL(Y) = NeTrow(y )X — Ne(7) N Trr (") € QX],
Gy (X) 1= X7 — 10NL(y)X? = BN (7) Ny Try (1) X
+ SNL(VANL(Y) = NeTrp (773X = No(n)NeTrp (7377 € QX.
Define subsets M, and M., of L = L((;) by
M, = {y € D |y#+msrs ¢ 7y,
M. ={y¢€ I |/y3+47'/+27',2+7'/3 ¢ Z5}
Proposition 2 ([8, Example 3.3|, [4, Chapter 5, Examples (2), p.253|). Let the

notation be as above. Assume v € M, N L (resp. v € My N L). Then the minimal
splitting field of g (resp. g.) over Q is a Ds-extension containing K (resp. K').

Recall dy € 5Q?% Let t be the positive integer so that dy = 5t?, and denote
a= (T +b/5)/2 (b€ Z). Now we calculate the coefficients of g, ,(X) and g, (X)
in the case v =¢,n.

Lemma 7. For v = e,n, we have the following.

(1) Np(v) =1.
NkTI"L/k( ) N

(2)
(3) Ny Trpn(v*7) = Ny Trp e (4477) = T2 — 2N — 4.
n {N(T? —2N) — 5btT}/2 — 3N if N >0,
{N(T? —2N) +5btT}/2 —3N if N <0,
{N(T? —2N) +5btT}/2 —3N if N >0,
{N(T? —2N) — 5btT}/2 —3N if N <O0.

4 Nk:TrL/k (72+T> =

NyTrp(y%+7) =

Proof. Let T = 7|1, be the restriction of 7 to L. Then 7T is a generator of the cyclic
quartic Galois group Gal(L/Q), and 72 is the generator of Gal(L/k). We can show
the assertions (1), (2) and (3) by these facts and a = e +¢e ' and @ =n+n~! are
roots of X? — TX + N. Therefore, we will give a proof of the assertion (4) only for
Ny Trpx(e*™7) in the case N > 0 (we can prove the other assertions similarly). In
this case, we see from Lemmas 1 and 2 that

NkTI'L/k(€2+T) = NkTrL/k<€277) = Nk(€2?7 + 5727771>
= (n+e (e + 1 %)
=a’(en+e iy t) +a’(en” +e7ln) = 3N

N ++/ N —+/

_ —+2 d2 a2 + —d2 o’ — 3N
N

= —(a*+3%) — t\/_(oz > -a%) —3N.

2

Since a — @ = by/5, we have a? +a* = T2 — 2N, o® — @ = bT'v/5. Thus we get the
assertion. O
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Lemma 8. Put a = (L, + (F,, — 2)v/5)/2 for an odd integer n > 3. For the roots
v =¢€,n of fo(X), we have the following.

(
(3) NiTrpn(v147) = Ny Trp e (7177) = 5F2 — 10F,, + 4.

(4) (v?+7) = 5(F, — 2){(F, — 2)(5F, — L, +4) +10}/2 + 4,
N Trp . (v*7) = 5(F, — 2){(F,, — 2)(5F, + L, +4) + 10}/2 + 4.

Proof. The assertions (1), (2) and (3) follow from Lemma 7 and Lemma 4 (1). We
will prove the assertion (4). Since N = 5F,, — 6 > 0, we have from Lemma 7 (4) and
Lemma 4 (1) that
1
Ny Trpn(7*7) = 5{(5Fn —6)(L2 — 10F, +12) — 5L, (F, — 2)*} — 15F, + 18

1
=15k — 6)(5E7 — 10F, +8) — 5L, (F, — 2)*> — 30F, + 28} + 4

5(F, — 2
= %{(Fn —2)(bF, — L, +4)+10} + 4.
We can prove the equality for N, Try (v**7) similarly. O

Lemma 9. Put a = (L,+(F,—2)v/5)/2 for an odd integer n > 3. Ifn # 0 (mod 3),
then for the roots v = e,n of fo(X) and for any integers i, j which are not divisible
by 5, we have e’ & L°.

Proof. For any x € L°, since L C R, there exists only one y € L satisfying z = v°, we
denote it by /z. Suppose to the contrary that €7’ € L5. Then we have ¢, € L°
by Lemma 3. Recall that 72 is the generator of Gal(L/k), where T = 7|,. For
y = /e € L, we have
=2 =2 =2 .

(W)= = =

This equality yields (/2)7" = v/e~L. Therefore, we have
Bi=Trp(Ve) = Ve + (Vo) =¥e+ Vel ek

By direct calculation, we get 3° —53° + 58 =c+e ' =a = (L, + (F, — 2)V5)/2,
and h(f3) = 0, where

2
= X0 _10X%+35X%— L, X% —50X*+5L,X%+25X%_—5L,X +5F, —6.

2 _ 9)\2
h(X) = (X5—5X3+5X—ﬁ> —w

On the one hand, h(X) is reducible over Q because it has a root § € k = Q(+/5).
On the other hand, since

(4.1) F,=L,=1 (mod?2) ifn=1,2(mod 3),
we have that
R(X)=X" + X0+ X°+ X3+ X2 + X +1 (mod 2)

is irreducible over Fy. Hence h(X) is Q-irreducible. Since we obtain a contradiction,
the proof is complete. O
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5. PROOF OF OUR THEOREM

In this section, we will prove our main theorem in §1. The keys of the proof are
Proposition 2 and the following proposition.

Proposition 3 ([17, Proposition 2|). Let p (# 2) and q be prime numbers. Suppose
that the polynomial

p—2
Pp(X)=X"+> a;X7, a; €L
j=0

1s irreducible over Q and satisfies the condition
(5.1) ve(a;) <p—j for somej, 0 <j<p-—2.
Let 0 be a root of p(X).
(1) If q is different from p, then q is totally ramified in Q(0)/Q if and only if

vy(ao) < vy(ay)

0< < = foreveryj, 1 <j<p-—2.
p p—=17
(2) If neither
(5.2) 0< Up(0) < Up(aj,) forevery j, 1 <j<p—2
p p—17
nor
(5-3) vp(0V (~ag)) <p—j for somej, 0<j<p—1

holds, then p is not totally ramified in Q()/Q, where ¢\ (X) is the j-th
differential of p(X).

Proof of Theorem. Let n be in M. First, we will show e € M,NL ande € M. NL,
where M, and M. are defined in §4. By Lemma 1, we have

(5.4) €3+4T+2T2+T3 _ 537745*277*1 _ 57)3.

If en® € L5, then we have e2p® = N; /L(6n3) € L5, which contradicts Lemma 9.

Hence we have en’ & L5. From (5.4), therefore, we get ¢ € M N L. Similarly, we
can see that

€3+4T'+27'2+T’3 — 3y iely = en? ¢ 55’
and so ¢ € My N L. Let g..(X) and g.~(X) be the polynomials defined in §4.
From Lemma 8, we have

g-r(X) = X° —10X? — 5(5F, — 6)X* — 5(5F2 — 10F,, + 3)X

F,—2
- %{(Fn C)(5F, — Ly +4) + 10} — 4,
Ger(X) = X° —10X? - 5(5F, — 6)X* -~ 5(5F2 — 10F, + 3)X
F,—2
_ %{(Fn —)(5F, + Ly, + 4) + 10} — 4.

By Proposition 2, the minimal splitting fields Splg(g.,r) of g.-(X) and Splgy(ge )
of g. (X)) are Ds-extensions containing K and K, respectively, and the quadratic
fields K and K’ are given by Proposition 1. Therefore, it is enough to prove that
both Cs-extensions Sply(ge,7)/K and Sply(ge)/ K’ are unramified. We will prove
only for Splg(ge,-)/K (we can prove similarly for Sply(ge)/K’).
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Let 6 be a root of g. ,(X) and consider the quintic extension Q(¢)/Q. For a prime
number ¢, a prime ideal of K above ¢ is ramified in Sply(ge,)/K if and only if ¢ is
totally ramified in Q(¢)/Q because [Splg(ge-) : K] =5 and [K : Q] = 2. Hence we
prove that no prime number ¢ is totally ramified in Q(6)/Q by using Proposition 3.
We denote the coefficient of X7 of g. (X ) by a;. First, g. - (X) satisfies the condition
(5.1) because v,(az) < 5 — 3 = 2 for any prime number ¢. From Proposition 3 (1),
we see that no prime ¢ # 5 is totally ramified in Q(0)/Q since v,(a3) = 0 if ¢ # 2
and wve(az) = 0 by (4.1). We will show, therefore, that 5 is not totally ramified
in Q(0)/Q. Since ap = —4 (mod 5) is not divisible by 5, (5.2) does not hold.
Furthermore, by the assumption n = 4+3 (mod 500) and Lemma 4 (3), we have
F,—2=0 (mod 5*), —ag = 4 (mod 5°), 5F, — 6 = 5(F, —2) + 4 = 4 (mod 5%),
5F? —10F, + 3 =5F,(F, —2) + 3 = 3 (mod 5), and hence

Ger(—ag) =4°—10-4>-5-4-4*-5.3-4—4=0 (mod 5°),

gt (—ag) =5-4*—30-4>—10-4-4—5-3=625=0 (mod 5%),

<_
92 (—ag) =20-4* - 604 —10-4 = 1000 = 0 (mod 5°),
<_

93 (—a) = 60 - 4> — 60 = 900 = 0 (mod 5%),

gg)(—ao) =120-4 =0 (mod 5).

Then (5.3) does not hold. Hence 5 is not totally ramified in Q(6)/Q.

Finally, we prove that the set {(Q(v/2 — F,,),Q(/5(2 — F,,))) | n € N'} is infinite.
For an integer m, let s(m) denote the square free integer satisfying m = s(m)A?
for some A € N, and assume that {(Q(v/2 — F,,),Q(1/5(2 — F,))) |n € N} is finite.
Then the set {s(F, — 2)|n € N} is finite. Since N is infinite, there exists k > 1
such that Ny := {n € N'|s(F, —2) = k} is infinite. For any integer n € N, let
F, —2 = FkA2. Then by Lemma 4 (1), we have

Ly =5F; =4 =5(kA7 +2)* — 4 = 5k A, + 20k A} + 16.
This implies that infinitely many pairs (A,, L,,) are integer solutions of the equation
V% = 5K2X* + 20k X + 16.

However, the equation has only finitely many integer solutions by Siegel’s theorem.
This is a contradiction. Hence the proof is complete. O
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