AN INFINITE FAMILY OF PAIRS OF IMAGINARY QUADRATIC FIELDS WITH BOTH CLASS NUMBERS DIVISIBLE BY FIVE

MIHO AOKI AND YASUHIRO KISHI

ABSTRACT. We construct a new infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five. Let n be a positive integer that satisfy $n \equiv \pm 3 \pmod{500}$ and $n \not\equiv 0 \pmod{3}$. We prove that 5 divides the class numbers of both $\mathbb{Q}(\sqrt{2-F_n})$ and $\mathbb{Q}(\sqrt{5(2-F_n)})$, where F_n is the *n*th Fibonacci number.

1. INTRODUCTION

Some infinite families of quadratic fields with class numbers divisible by a fixed integer N were given by Nagell [15], Ankeny and Chowla [1], Yamamoto [19], Weinberger [18], Gross and Rohrich [5], Ichimura [6] and Louboutin [13]. In the case N = 5, some results are known due to Parry [16], Mestre [14], Sase [17] and Byeon [3]. One of the authors [10], by using the Fibonacci numbers F_n , gave an infinite family of imaginary quadratic fields with class numbers divisible by five: the $\mathbb{Q}(\sqrt{-F_n})$ with $n \equiv 25 \pmod{50}$.

Recently, Komatsu [11], [12] and Ito [9] (resp. Iizuka, Konomi and Nakano [7]) gave infinite families of pairs of quadratic fields with both class numbers divisible by 3 (resp. 3, 5 or 7). In the present article, by using the Fibonacci numbers F_n , we will give an infinite family of pairs of imaginary quadratic fields with both class numbers divisible by 5.

Theorem. For $n \in \mathcal{N} := \{n \in \mathbb{N} \mid n \equiv \pm 3 \pmod{500}, n \not\equiv 0 \pmod{3}\}$, the class numbers of both $\mathbb{Q}(\sqrt{2-F_n})$ and $\mathbb{Q}(\sqrt{5(2-F_n)})$ are divisible by 5. Moreover, the set of pairs $\{(\mathbb{Q}(\sqrt{2-F_n}), \mathbb{Q}(\sqrt{5(2-F_n)})) \mid n \in \mathcal{N}\}$ is infinite.

For an algebraic extension K/k, denote the norm map and the trace map of K/kby $N_{K/k}$ and $\operatorname{Tr}_{K/k}$, respectively. For simplicity, we denote N_K and Tr_K if the base field is $k = \mathbb{Q}$. For a prime number p and an integer m, we denote the greatest exponent μ of p such that $p^{\mu} \mid m$ by $v_p(m)$.

2. Certain parametric quartic polynomial

Let $k = \mathbb{Q}(\sqrt{5})$. For an algebraic integer $\alpha \in k$, we consider the polynomial

(2.1)
$$f(X) = f_{\alpha}(X) := X^4 - TX^3 + (N+2)X^2 - TX + 1 \in \mathbb{Z}[X],$$

where $T := \operatorname{Tr}_k(\alpha)$ and $N := N_k(\alpha)$. The discriminant of f(X) is $\operatorname{disc}(f) = d_1^2 d_2$ with $d_1 := T^2 - 4N$ and $d_2 := (N+4)^2 - 4T^2$. Let L be the minimal splitting field of f(X) over \mathbb{Q} . All four complex roots of f(X) are units of L and can be denoted by $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1}, |\varepsilon| \ge |\varepsilon^{-1}|, |\eta| \ge |\eta^{-1}|, \alpha = \varepsilon + \varepsilon^{-1}, \overline{\alpha} = \eta + \eta^{-1}$, where $\overline{\alpha}$ denotes the Galois conjugate of α ([2, Lemmas 2.2 and 2.3]). We assume $\alpha \notin \mathbb{Z}, \alpha^2 - 4 \notin \mathbb{Z}^2$,

¹⁹⁹¹ Mathematics Subject Classification. Primary 11R11, Secondary 11R16; 11R29.

Key words and phrases. Quadratic fields; Quartic fields; Class numbers.

 $d_2 \in 5\mathbb{Q}^2$ and $\alpha^2 - 4 > 0$. The assumptions $\alpha \notin \mathbb{Z}$ and $\alpha^2 - 4 \notin \mathbb{Z}^2$ imply that the polynomial f(X) is \mathbb{Q} -irreducible, and we have $\operatorname{Gal}(L/\mathbb{Q}) \simeq C_4$ from $d_2 \in 5\mathbb{Q}^2$ ([2, Proposition 2.1]). Furthermore, we have $\varepsilon, \eta \in \mathbb{R}$ by the assumption $\alpha^2 - 4 > 0$, $d_2 > 0$ and the factorization

(2.2)
$$f(X) = (X^2 - \alpha X + 1)(X^2 - \overline{\alpha}X + 1) = (X - \varepsilon)(X - \varepsilon^{-1})(X - \eta)(X - \eta^{-1})$$

([2, Lemma 2.7]). Set $\widetilde{L} = L(\zeta_5)$ where ζ_5 is a primitive fifth root of unity. Since $\operatorname{Gal}(\widetilde{L}/\mathbb{Q}) \supset \operatorname{Gal}(\widetilde{L}/k) \simeq C_2 \times C_2$ and $\operatorname{Gal}(\widetilde{L}/\mathbb{Q})/\operatorname{Gal}(\widetilde{L}/\mathbb{Q}(\zeta_5)) \simeq \operatorname{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \simeq C_4$, we have $\operatorname{Gal}(\widetilde{L}/\mathbb{Q}) \simeq C_2 \times C_4$. Therefore, $\operatorname{Gal}(\widetilde{L}/\mathbb{Q})$ has three subgroups of order 4. One of them is isomorphic to $C_2 \times C_2$ that corresponds to the subfield k, the others are isomorphic to C_4 . Let us denote them by $\langle \tau \rangle (\simeq C_4)$ and $\langle \tau' \rangle (\simeq C_4)$ for some automorphisms $\tau, \tau' \in \operatorname{Gal}(\widetilde{L}/\mathbb{Q})$ of order 4. Note that $\zeta_5^{\tau} \neq \zeta_5, \zeta_5^4$, because τ acts trivial on $k = \mathbb{Q}(\sqrt{5}) = \mathbb{Q}(\zeta_5 + \zeta_5^{-1})$ if $\zeta_5^{\tau} = \zeta_5$ or ζ_5^4 . Likewise, we have $\zeta_5^{\tau'} \neq \zeta_5, \zeta_5^4$. We may assume that $\zeta_5^{\tau} = \zeta_5^2$ and $\zeta_5^{\tau'} = \zeta_5^2$.

Lemma 1. The actions of τ and τ' on the roots $\varepsilon, \varepsilon^{-1}, \eta$ and η^{-1} of f(X) are as follows:

$$\tau : \varepsilon \mapsto \eta \mapsto \varepsilon^{-1} \mapsto \eta^{-1} \mapsto \varepsilon$$

$$\tau' : \varepsilon \mapsto \eta^{-1} \mapsto \varepsilon^{-1} \mapsto \eta \mapsto \varepsilon$$

Proof. If $\varepsilon^{\tau} = \varepsilon^{-1}$, then we have $\alpha^{\tau} = (\varepsilon + \varepsilon^{-1})^{\tau} = \alpha$. This is a contradiction since the restriction of τ to L is a generator of $\operatorname{Gal}(L/\mathbb{Q}) (\simeq C_4)$. Therefore, we have $\varepsilon^{\tau} \neq \varepsilon^{-1}$, and hence $\varepsilon^{\tau} = \eta$ or η^{-1} . Similarly we have $\varepsilon^{\tau'} = \eta$ or η^{-1} . Without loss of generality, we can assume that $\varepsilon^{\tau} = \eta$ and $\varepsilon^{\tau'} = \eta^{-1}$. Next, we will prove $\eta^{\tau} = \varepsilon^{-1}$. We get $\eta^{\tau} \neq \eta^{-1}$ by the same argument as the proof of $\varepsilon^{\tau} \neq \varepsilon^{-1}$. If $\eta^{\tau} = \varepsilon$, then we have $(\varepsilon + \eta)^{\tau} = \varepsilon + \eta$, $(\varepsilon\eta)^{\tau} = \varepsilon\eta$, $(\varepsilon^{-1} + \eta^{-1})^{\tau} = \varepsilon^{-1} + \eta^{-1}$, $(\varepsilon^{-1}\eta^{-1})^{\tau} = \varepsilon^{-1}\eta^{-1}$, and hence $\varepsilon + \eta, \varepsilon\eta, \varepsilon^{-1} + \eta^{-1}, \varepsilon^{-1}\eta^{-1} \in \mathbb{Q}$. Noting (2.2), therefore, f(X) is factored in $\mathbb{Q}[X]$ as

$$f(X) = (X^2 - (\varepsilon + \eta)X + \varepsilon\eta)(X^2 - (\varepsilon^{-1} + \eta^{-1})X + \varepsilon^{-1}\eta^{-1})$$

However, this contradicts the assumption that f(X) is irreducible over \mathbb{Q} . We conclude $\eta^{\tau} \neq \varepsilon$ and hence $\eta^{\tau} = \varepsilon^{-1}$. Similarly we can get $(\eta^{-1})^{\tau'} = \varepsilon^{-1}$. The proof is complete.

Let K and K' denote the subfields of L correspond to $\langle \tau \rangle$ and $\langle \tau' \rangle$, respectively.

Lemma 2. We have

$$(\varepsilon - \varepsilon^{-1})(\eta - \eta^{-1}) = \begin{cases} \sqrt{d_2} & \text{if } N > 0, \\ -\sqrt{d_2} & \text{if } N < 0, \end{cases}$$

$$\varepsilon \eta + \varepsilon^{-1} \eta^{-1} = \begin{cases} \frac{N + \sqrt{d_2}}{2} & \text{if } N > 0, \\ \frac{N - \sqrt{d_2}}{2} & \text{if } N < 0 \end{cases} \quad \text{and} \quad \varepsilon \eta^{-1} + \varepsilon^{-1} \eta = \begin{cases} \frac{N - \sqrt{d_2}}{2} & \text{if } N > 0, \\ \frac{N + \sqrt{d_2}}{2} & \text{if } N < 0. \end{cases}$$

Proof. Put $\lambda := (\varepsilon - \varepsilon^{-1})(\eta - \eta^{-1})$. By using $N = \alpha \overline{\alpha} = (\varepsilon + \varepsilon^{-1})(\eta + \eta^{-1})$, we have $\varepsilon\eta + \varepsilon^{-1}\eta^{-1} = (N+\lambda)/2$ and $\varepsilon\eta^{-1} + \varepsilon^{-1}\eta = (N-\lambda)/2$. By direct calculation, we get $\lambda^2 = d_2$. Recall that $\varepsilon, \eta \in \mathbb{R}$. Since $\alpha = \varepsilon + \varepsilon^{-1}$ (resp. $\overline{\alpha} = \eta + \eta^{-1}$) is positive if and only if ε (resp. η) is positive, and $|\varepsilon| > |\varepsilon^{-1}|$ and $|\eta| > |\eta^{-1}|$, we have

$$N = \alpha \overline{\alpha} > 0 \iff \varepsilon \eta > 0 \iff \lambda = (\varepsilon - \varepsilon^{-1})(\eta - \eta^{-1}) > 0.$$

The proof is complete.

Lemma 3. Let i, j be integers which are not divisible by 5. If $\varepsilon^i \eta^j \in L^5$, then we have $\varepsilon, \eta \in L^5$.

Proof. We put $\operatorname{Gal}(\widetilde{L}/k) \simeq \langle \sigma \rangle \times \langle \sigma' \rangle \ (\simeq C_2 \times C_2)$, where $\varepsilon^{\sigma} = \varepsilon^{-1}$, $\eta^{\sigma} = \eta$, $\varepsilon^{\sigma'} = \varepsilon$ and $\eta^{\sigma'} = \eta^{-1}$. If $\varepsilon^i \eta^j \in L^5$, then so are $(\varepsilon^i \eta^j)^{\sigma} = \varepsilon^{-i} \eta^j$, their ratio ε^{2i} and their product η^{2j} . Since gcd(2i,5) = gcd(2j,5) = 1, we conclude that both ε and η are fifth powers in L.

3. FIBONACCI AND LUCAS SEQUENCES

Let (F_n) and (L_n) be the Fibonacci and Lucas sequences, respectively, defined by $F_1 = 1$, $F_2 = 1$, $F_{n+2} = F_{n+1} + F_n$ $(n \in \mathbb{Z})$ and $L_1 = 1$, $L_2 = 3$, $L_{n+2} = 3$ $L_{n+1} + L_n$ $(n \in \mathbb{Z})$. Assertions (1) and (2) in the following lemma follow from the explicit formulae for

$$F_n = \frac{\omega^n - \overline{\omega}^n}{\omega - \overline{\omega}}$$
 and $L_n = \omega^n + \overline{\omega}^n$,

where $\omega = (1 + \sqrt{5})/2$ and $\overline{\omega} = (1 - \sqrt{5})/2$. We can prove (3) by direct calculation.

Lemma 4. For any $n \in \mathbb{Z}$, we have the following.

- (1) $L_n^2 = 5F_n^2 + (-1)^n 4.$ (2) $5F_{2n-1} + L_{2n-1} + (-1)^n 4 = 2L_n^2$ and $5F_{2n-1} + L_{2n-1} (-1)^n 4 = 10F_n^2.$ (3) $(F_n) \mod 5^3$ is 500-periodic and $F_n \equiv 2 \pmod{5^3}$ if $n \equiv \pm 3 \pmod{500}.$

From now on, we assume that n (> 3) is an odd integer and consider the polynomial (2.1) for $\alpha = (L_n + (F_n - 2)\sqrt{5})/2$. By (2.1) and Lemma 4 (1), we get

$$f(X) = f_{\alpha}(X) = X^{4} - L_{n}X^{3} + (5F_{n} - 4)X^{2} - L_{n}X + 1,$$

and all four roots of f(X) are given by $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1}$ which satisfy $\alpha = \varepsilon + \varepsilon^{-1}$, $\overline{\alpha} = \eta + \eta^{-1}$. Moreover, we see from $d_1 = T^2 - 4N = 5(F_n - 2)^2$ and $d_2 = (N+4)^2 - 4N = 5(F_n - 2)^2$ $4T^2 = 5(F_n - 2)^2$ that the discriminant of f(X) is disc $(f) = d_1^2 d_2 = 5^3(F_n - 2)^6$. Furthermore, since $\alpha \notin \mathbb{Z}$, $\alpha^2 - 4 \notin \mathbb{Z}^2$, $d_2 \in 5\mathbb{Q}^2$ and $\alpha^2 - 4 > 0$, the polynomial f(X) is \mathbb{Q} -irreducible, all the roots $\varepsilon, \varepsilon^{-1}, \eta, \eta^{-1}$ are real, and $\operatorname{Gal}(L/\mathbb{Q}) \simeq C_4$ (see §2). Next, we will prove that the three quadratic fields contained in \tilde{L} are $\mathbb{Q}(\sqrt{2-F_n}), \mathbb{Q}(\sqrt{5(2-F_n)})$ and $k = \mathbb{Q}(\sqrt{5}).$

Lemma 5. Put $\alpha = (L_n + (F_n - 2)\sqrt{5})/2$ for an odd integer n > 3 and $\zeta = \zeta_5$. For the roots ε, η of $f_{\alpha}(X)$, we have the following.

(1) $\xi_1 := (\varepsilon + \varepsilon^{-1})(\zeta + \zeta^{-1}) + (\eta + \eta^{-1})(\zeta^2 + \zeta^{-2}) = \{-L_n + 5(F_n - 2)\}/2.$

 \square

(2)
$$\xi_2 := (\varepsilon - \varepsilon^{-1})^2 (\zeta - \zeta^{-1})^2 + (\eta - \eta^{-1})^2 (\zeta^2 - \zeta^{-2})^2 = -5(F_n - 2)(5F_n + L_n)/2.$$

(3) $\xi_3 := (\varepsilon - \varepsilon^{-1})(\eta - \eta^{-1})(\zeta - \zeta^{-1})(\zeta^2 - \zeta^{-2}) = -5(F_n - 2).$

Proof. Set $c = \zeta + \zeta^{-1} = (-1 + \sqrt{5})/2$. Noting that $\alpha = \varepsilon + \varepsilon^{-1}$ and $\overline{\alpha} = \eta + \eta^{-1}$, we have $\xi_1 = \alpha c + \overline{\alpha}(c^2 - 2)$ and $\xi_2 = (\alpha^2 - 4)(c^2 - 4) + (\overline{\alpha}^2 - 4)(c - 2)$. The assertions (1) and (2) follow by using Lemma 4 (1). From Lemma 2 and N > 0, we have $(\varepsilon - \varepsilon^{-1})(\eta - \eta^{-1}) = \sqrt{d_2} = (F_n - 2)\sqrt{5}$. On the other hand, we have $(\zeta - \zeta^{-1})(\zeta^2 - \zeta^{-2}) = c^3 - 4c = -\sqrt{5}$. Hence we get the assertion (3).

Lemma 6. Under the same situation as in Lemma 5, we have the following.

(1)
$$\operatorname{Tr}_{\widetilde{L}/K}(\varepsilon\zeta) = \{-L_n + 5(F_n - 2) + 2\xi\}/4$$
, where $\xi := (\varepsilon - \varepsilon^{-1})(\zeta - \zeta^{-1}) + (\eta - \eta^{-1})(\zeta^2 - \zeta^{-2})$ is such that

$$\xi^{2} = \begin{cases} -5^{2}(F_{n}-2)F_{\frac{n+1}{2}}^{2} & \text{if } n \equiv 1 \pmod{4}, \\ -5(F_{n}-2)L_{\frac{n+1}{2}}^{2} & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

(2) $\operatorname{Tr}_{\tilde{L}/K'}(\varepsilon\zeta) = \{-L_n + 5(F_n - 2) + 2\xi'\}/4$, where $\xi' := (\varepsilon - \varepsilon^{-1})(\zeta - \zeta^{-1}) - (\eta - \eta^{-1})(\zeta^2 - \zeta^{-2})$ is such that

$${\xi'}^2 = \begin{cases} -5(F_n - 2)L_{\frac{n+1}{2}}^2 & \text{if } n \equiv 1 \pmod{4}, \\ -5^2(F_n - 2)F_{\frac{n+1}{2}}^2 & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Proof. We prove only the assertion (1). By Lemma 1, we have

$$\gamma := \operatorname{Tr}_{\widetilde{L}/K}(\varepsilon\zeta) = \varepsilon\zeta + \eta\zeta^2 + \varepsilon^{-1}\zeta^{-1} + \eta^{-1}\zeta^{-2}$$

and

$$\gamma^{\tau'} = \eta^{-1}\zeta^2 + \varepsilon\zeta^{-1} + \eta\zeta^{-2} + \varepsilon^{-1}\zeta.$$

Now $\gamma = \{(\gamma + \gamma^{\tau'}) + (\gamma - \gamma^{\tau'})\}/2$ with

$$\gamma + \gamma^{\tau'} = \xi_1 = \frac{-L_n + 5(F_n - 2)}{2}$$

and

$$(\gamma - \gamma^{\tau'})^2 = \{(\varepsilon - \varepsilon^{-1})(\zeta - \zeta^{-1}) + (\eta - \eta^{-1})(\zeta^2 - \zeta^{-2})\}^2$$
$$= \xi_2 + 2\xi_3 = -\frac{5(F_n - 2)(5F_n + L_n + 4)}{2}$$

by Lemma 5. Therefore, we get the desired result, by Lemma 4(2).

By Lemma 6, we get the following proposition immediately.

Proposition 1. We have

$$(K, K') = \begin{cases} (\mathbb{Q}(\sqrt{2-F_n}), \mathbb{Q}(\sqrt{5(2-F_n)})) & \text{if } n \equiv 1 \pmod{4}, \\ (\mathbb{Q}(\sqrt{5(2-F_n)}), \mathbb{Q}(\sqrt{2-F_n})) & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

4. Certain parametric quintic polynomial

For an element $\gamma \in L$, we define

$$g_{\gamma,\tau}(X) := X^5 - 10N_L(\gamma)X^3 - 5N_L(\gamma)N_k \operatorname{Tr}_{L/k}(\gamma)X^2 + 5N_L(\gamma)\{N_L(\gamma) - N_k \operatorname{Tr}_{L/k}(\gamma^{1+\tau})\}X - N_L(\gamma)N_k \operatorname{Tr}_{L/k}(\gamma^{2+\tau}) \in \mathbb{Q}[X], g_{\gamma,\tau'}(X) := X^5 - 10N_L(\gamma)X^3 - 5N_L(\gamma)N_k \operatorname{Tr}_{L/k}(\gamma)X^2 + 5N_L(\gamma)\{N_L(\gamma) - N_k \operatorname{Tr}_{L/k}(\gamma^{1+\tau'})\}X - N_L(\gamma)N_k \operatorname{Tr}_{L/k}(\gamma^{2+\tau'}) \in \mathbb{Q}[X].$$

Define subsets \mathcal{M}_{τ} and $\mathcal{M}_{\tau'}$ of $\widetilde{L} = L(\zeta_5)$ by

$$\mathcal{M}_{\tau} := \{ \gamma \in \widetilde{L}^{\times} \mid \gamma^{3+4\tau+2\tau^2+\tau^3} \notin \widetilde{L}^5 \},$$
$$\mathcal{M}_{\tau'} := \{ \gamma \in \widetilde{L}^{\times} \mid \gamma^{3+4\tau'+2{\tau'}^2+{\tau'}^3} \notin \widetilde{L}^5 \}.$$

Proposition 2 ([8, Example 3.3], [4, Chapter 5, Examples (2), p.253]). Let the notation be as above. Assume $\gamma \in \mathcal{M}_{\tau} \cap L$ (resp. $\gamma \in \mathcal{M}_{\tau'} \cap L$). Then the minimal splitting field of $g_{\gamma,\tau}$ (resp. $g_{\gamma,\tau'}$) over \mathbb{Q} is a D₅-extension containing K (resp. K').

Recall $d_2 \in 5\mathbb{Q}^2$. Let t be the positive integer so that $d_2 = 5t^2$, and denote $\alpha = (T + b\sqrt{5})/2$ ($b \in \mathbb{Z}$). Now we calculate the coefficients of $g_{\gamma,\tau}(X)$ and $g_{\gamma,\tau'}(X)$ in the case $\gamma = \varepsilon, \eta$.

Lemma 7. For $\gamma = \varepsilon, \eta$, we have the following.

$$\begin{array}{l} (1) \ N_{L}(\gamma) = 1. \\ (2) \ N_{k} \mathrm{Tr}_{L/k}(\gamma) = N. \\ (3) \ N_{k} \mathrm{Tr}_{L/k}(\gamma^{1+\tau}) = N_{k} \mathrm{Tr}_{L/k}(\gamma^{1+\tau'}) = T^{2} - 2N - 4. \\ (4) \ N_{k} \mathrm{Tr}_{L/k}(\gamma^{2+\tau}) = \begin{cases} \{N(T^{2} - 2N) - 5btT\}/2 - 3N & \text{if } N > 0, \\ \{N(T^{2} - 2N) + 5btT\}/2 - 3N & \text{if } N < 0, \end{cases} \\ N_{k} \mathrm{Tr}_{L/k}(\gamma^{2+\tau'}) = \begin{cases} \{N(T^{2} - 2N) + 5btT\}/2 - 3N & \text{if } N > 0, \\ \{N(T^{2} - 2N) + 5btT\}/2 - 3N & \text{if } N > 0, \\ \{N(T^{2} - 2N) - 5btT\}/2 - 3N & \text{if } N > 0. \end{cases}$$

Proof. Let $\overline{\tau} = \tau|_L$ be the restriction of τ to L. Then $\overline{\tau}$ is a generator of the cyclic quartic Galois group $\operatorname{Gal}(L/\mathbb{Q})$, and $\overline{\tau}^2$ is the generator of $\operatorname{Gal}(L/k)$. We can show the assertions (1), (2) and (3) by these facts and $\alpha = \varepsilon + \varepsilon^{-1}$ and $\overline{\alpha} = \eta + \eta^{-1}$ are roots of $X^2 - TX + N$. Therefore, we will give a proof of the assertion (4) only for $N_k \operatorname{Tr}_{L/k}(\varepsilon^{2+\tau})$ in the case N > 0 (we can prove the other assertions similarly). In this case, we see from Lemmas 1 and 2 that

$$N_k \operatorname{Tr}_{L/k}(\varepsilon^{2+\tau}) = N_k \operatorname{Tr}_{L/k}(\varepsilon^2 \eta) = N_k(\varepsilon^2 \eta + \varepsilon^{-2} \eta^{-1})$$

$$= (\varepsilon^2 \eta + \varepsilon^{-2} \eta^{-1})(\eta^2 \varepsilon^{-1} + \eta^{-2} \varepsilon)$$

$$= \overline{\alpha}^2 (\varepsilon \eta + \varepsilon^{-1} \eta^{-1}) + \alpha^2 (\varepsilon \eta^{-1} + \varepsilon^{-1} \eta) - 3N$$

$$= \frac{N + \sqrt{d_2}}{2} \overline{\alpha}^2 + \frac{N - \sqrt{d_2}}{2} \alpha^2 - 3N$$

$$= \frac{N}{2} (\alpha^2 + \overline{\alpha}^2) - \frac{t\sqrt{5}}{2} (\alpha^2 - \overline{\alpha}^2) - 3N.$$

Since $\alpha - \overline{\alpha} = b\sqrt{5}$, we have $\alpha^2 + \overline{\alpha}^2 = T^2 - 2N$, $\alpha^2 - \overline{\alpha}^2 = bT\sqrt{5}$. Thus we get the assertion.

Lemma 8. Put $\alpha = (L_n + (F_n - 2)\sqrt{5})/2$ for an odd integer n > 3. For the roots $\gamma = \varepsilon, \eta$ of $f_{\alpha}(X)$, we have the following.

(1) $N_L(\gamma) = 1.$ (2) $N_k \operatorname{Tr}_{L/k}(\gamma) = 5F_n - 6.$ (3) $N_k \operatorname{Tr}_{L/k}(\gamma^{1+\tau}) = N_k \operatorname{Tr}_{L/k}(\gamma^{1+\tau'}) = 5F_n^2 - 10F_n + 4.$ (4) $N_k \operatorname{Tr}_{L/k}(\gamma^{2+\tau}) = 5(F_n - 2)\{(F_n - 2)(5F_n - L_n + 4) + 10\}/2 + 4.$ $N_k \operatorname{Tr}_{L/k}(\gamma^{2+\tau'}) = 5(F_n - 2)\{(F_n - 2)(5F_n + L_n + 4) + 10\}/2 + 4.$

Proof. The assertions (1), (2) and (3) follow from Lemma 7 and Lemma 4 (1). We will prove the assertion (4). Since $N = 5F_n - 6 > 0$, we have from Lemma 7 (4) and Lemma 4 (1) that

$$N_k \operatorname{Tr}_{L/k}(\gamma^{2+\tau}) = \frac{1}{2} \{ (5F_n - 6)(L_n^2 - 10F_n + 12) - 5L_n(F_n - 2)^2 \} - 15F_n + 18$$

= $\frac{1}{2} \{ (5F_n - 6)(5F_n^2 - 10F_n + 8) - 5L_n(F_n - 2)^2 - 30F_n + 28 \} + 4$
= $\frac{5(F_n - 2)}{2} \{ (F_n - 2)(5F_n - L_n + 4) + 10 \} + 4.$

We can prove the equality for $N_k \operatorname{Tr}_{L/k}(\gamma^{2+\tau'})$ similarly.

Lemma 9. Put $\alpha = (L_n + (F_n - 2)\sqrt{5})/2$ for an odd integer n > 3. If $n \not\equiv 0 \pmod{3}$, then for the roots $\gamma = \varepsilon, \eta$ of $f_{\alpha}(X)$ and for any integers i, j which are not divisible by 5, we have $\varepsilon^i \eta^j \notin L^5$.

Proof. For any $x \in L^5$, since $L \subset \mathbb{R}$, there exists only one $y \in L$ satisfying $x = y^5$, we denote it by $\sqrt[5]{x}$. Suppose to the contrary that $\varepsilon^i \eta^j \in L^5$. Then we have $\varepsilon, \eta \in L^5$ by Lemma 3. Recall that $\overline{\tau}^2$ is the generator of $\operatorname{Gal}(L/k)$, where $\overline{\tau} = \tau|_L$. For $y = \sqrt[5]{\varepsilon} \in L$, we have

$$(y^{\overline{\tau}^{2}})^{5} = (y^{5})^{\overline{\tau}^{2}} = \varepsilon^{\overline{\tau}^{2}} = \varepsilon^{-1}.$$

This equality yields $(\sqrt[5]{\varepsilon})^{\overline{\tau}^2} = \sqrt[5]{\varepsilon^{-1}}$. Therefore, we have

$$\beta := \operatorname{Tr}_{L/k}(\sqrt[5]{\varepsilon}) = \sqrt[5]{\varepsilon} + (\sqrt[5]{\varepsilon})^{\overline{\tau}^2} = \sqrt[5]{\varepsilon} + \sqrt[5]{\varepsilon^{-1}} \in k.$$

By direct calculation, we get $\beta^5 - 5\beta^3 + 5\beta = \varepsilon + \varepsilon^{-1} = \alpha = (L_n + (F_n - 2)\sqrt{5})/2$, and $h(\beta) = 0$, where

$$h(X) := \left(X^5 - 5X^3 + 5X - \frac{L_n}{2}\right)^2 - \frac{5(F_n - 2)^2}{4}$$
$$= X^{10} - 10X^8 + 35X^6 - L_n X^5 - 50X^4 + 5L_n X^3 + 25X^2 - 5L_n X + 5F_n - 6.$$

On the one hand, h(X) is reducible over \mathbb{Q} because it has a root $\beta \in k = \mathbb{Q}(\sqrt{5})$. On the other hand, since

(4.1)
$$F_n \equiv L_n \equiv 1 \pmod{2} \quad \text{if } n \equiv 1, 2 \pmod{3},$$

we have that

$$h(X) \equiv X^{10} + X^6 + X^5 + X^3 + X^2 + X + 1 \pmod{2}$$

is irreducible over \mathbb{F}_2 . Hence h(X) is \mathbb{Q} -irreducible. Since we obtain a contradiction, the proof is complete.

5. Proof of our theorem

In this section, we will prove our main theorem in §1. The keys of the proof are Proposition 2 and the following proposition.

Proposition 3 ([17, Proposition 2]). Let $p \neq 2$ and q be prime numbers. Suppose that the polynomial

$$\varphi(X) = X^p + \sum_{j=0}^{p-2} a_j X^j, \quad a_j \in \mathbb{Z}$$

is irreducible over \mathbb{Q} and satisfies the condition

(5.1)
$$v_q(a_j)$$

Let θ be a root of $\varphi(X)$.

(1) If q is different from p, then q is totally ramified in $\mathbb{Q}(\theta)/\mathbb{Q}$ if and only if

$$0 < \frac{v_q(a_0)}{p} \le \frac{v_q(a_j)}{p-j} \quad for \ every \ j, \ 1 \le j \le p-2.$$

(2) If neither

(5.2)
$$0 < \frac{v_p(a_0)}{p} \le \frac{v_p(a_j)}{p-j} \quad for \ every \ j, \ 1 \le j \le p-2$$

nor

(5.3)

$$v_p(\varphi^{(j)}(-a_0)) < p-j \quad for \ some \ j, \ 0 \le j \le p-1$$

holds, then p is not totally ramified in $\mathbb{Q}(\theta)/\mathbb{Q}$, where $\varphi^{(j)}(X)$ is the j-th differential of $\varphi(X)$.

Proof of Theorem. Let n be in \mathcal{N} . First, we will show $\varepsilon \in \mathcal{M}_{\tau} \cap L$ and $\varepsilon \in \mathcal{M}_{\tau'} \cap L$, where \mathcal{M}_{τ} and $\mathcal{M}_{\tau'}$ are defined in §4. By Lemma 1, we have

(5.4)
$$\varepsilon^{3+4\tau+2\tau^2+\tau^3} = \varepsilon^3 \eta^4 \varepsilon^{-2} \eta^{-1} = \varepsilon \eta^3.$$

If $\varepsilon \eta^3 \in \widetilde{L}^5$, then we have $\varepsilon^2 \eta^6 = N_{\widetilde{L}/L}(\varepsilon \eta^3) \in L^5$, which contradicts Lemma 9. Hence we have $\varepsilon \eta^3 \notin \widetilde{L}^5$. From (5.4), therefore, we get $\varepsilon \in \mathcal{M} \cap L$. Similarly, we can see that

$$\varepsilon^{3+4\tau'+2\tau'^2+\tau'^3} = \varepsilon^3 \eta^{-4} \varepsilon^{-2} \eta = \varepsilon \eta^{-3} \notin \widetilde{L}^5,$$

and so $\varepsilon \in \mathcal{M}_{\tau'} \cap L$. Let $g_{\varepsilon,\tau}(X)$ and $g_{\varepsilon,\tau'}(X)$ be the polynomials defined in §4. From Lemma 8, we have

$$g_{\varepsilon,\tau}(X) = X^5 - 10X^3 - 5(5F_n - 6)X^2 - 5(5F_n^2 - 10F_n + 3)X$$
$$-\frac{5(F_n - 2)}{2}\{(F_n - 2)(5F_n - L_n + 4) + 10\} - 4,$$
$$g_{\varepsilon,\tau'}(X) = X^5 - 10X^3 - 5(5F_n - 6)X^2 - 5(5F_n^2 - 10F_n + 3)X$$
$$-\frac{5(F_n - 2)}{2}\{(F_n - 2)(5F_n + L_n + 4) + 10\} - 4.$$

By Proposition 2, the minimal splitting fields $\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau})$ of $g_{\varepsilon,\tau}(X)$ and $\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau'})$ of $g_{\varepsilon,\tau'}(X)$ are D_5 -extensions containing K and K', respectively, and the quadratic fields K and K' are given by Proposition 1. Therefore, it is enough to prove that both C_5 -extensions $\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau})/K$ and $\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau'})/K'$ are unramified. We will prove only for $\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau})/K$ (we can prove similarly for $\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau'})/K'$). Let θ be a root of $g_{\varepsilon,\tau}(X)$ and consider the quintic extension $\mathbb{Q}(\theta)/\mathbb{Q}$. For a prime number q, a prime ideal of K above q is ramified in $\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau})/K$ if and only if q is totally ramified in $\mathbb{Q}(\theta)/\mathbb{Q}$ because $[\operatorname{Spl}_{\mathbb{Q}}(g_{\varepsilon,\tau}):K] = 5$ and $[K:\mathbb{Q}] = 2$. Hence we prove that no prime number q is totally ramified in $\mathbb{Q}(\theta)/\mathbb{Q}$ by using Proposition 3. We denote the coefficient of X^j of $g_{\varepsilon,\tau}(X)$ by a_j . First, $g_{\varepsilon,\tau}(X)$ satisfies the condition (5.1) because $v_q(a_3) < 5 - 3 = 2$ for any prime number q. From Proposition 3 (1), we see that no prime $q \neq 5$ is totally ramified in $\mathbb{Q}(\theta)/\mathbb{Q}$ since $v_q(a_3) = 0$ if $q \neq 2$ and $v_2(a_2) = 0$ by (4.1). We will show, therefore, that 5 is not totally ramified in $\mathbb{Q}(\theta)/\mathbb{Q}$. Since $a_0 \equiv -4 \pmod{5}$ is not divisible by 5, (5.2) does not hold. Furthermore, by the assumption $n \equiv \pm 3 \pmod{500}$ and Lemma 4 (3), we have $F_n - 2 \equiv 0 \pmod{5^3}$, $-a_0 \equiv 4 \pmod{5^5}$, $5F_n - 6 = 5(F_n - 2) + 4 \equiv 4 \pmod{5^4}$, $5F_n^2 - 10F_n + 3 = 5F_n(F_n - 2) + 3 \equiv 3 \pmod{5^4}$, and hence

$$g_{\varepsilon,\tau}(-a_0) \equiv 4^5 - 10 \cdot 4^3 - 5 \cdot 4 \cdot 4^2 - 5 \cdot 3 \cdot 4 - 4 \equiv 0 \pmod{5^5},$$

$$g_{\varepsilon,\tau}^{(1)}(-a_0) \equiv 5 \cdot 4^4 - 30 \cdot 4^2 - 10 \cdot 4 \cdot 4 - 5 \cdot 3 \equiv 625 \equiv 0 \pmod{5^4},$$

$$g_{\varepsilon,\tau}^{(2)}(-a_0) \equiv 20 \cdot 4^3 - 60 \cdot 4 - 10 \cdot 4 \equiv 1000 \equiv 0 \pmod{5^3},$$

$$g_{\varepsilon,\tau}^{(3)}(-a_0) \equiv 60 \cdot 4^2 - 60 \equiv 900 \equiv 0 \pmod{5^2},$$

$$g_{\varepsilon,\tau}^{(4)}(-a_0) \equiv 120 \cdot 4 \equiv 0 \pmod{5}.$$

Then (5.3) does not hold. Hence 5 is not totally ramified in $\mathbb{Q}(\theta)/\mathbb{Q}$.

Finally, we prove that the set $\{(\mathbb{Q}(\sqrt{2-F_n}), \mathbb{Q}(\sqrt{5(2-F_n)})) \mid n \in \mathcal{N}\}$ is infinite. For an integer m, let s(m) denote the square free integer satisfying $m = s(m)A^2$ for some $A \in \mathbb{N}$, and assume that $\{(\mathbb{Q}(\sqrt{2-F_n}), \mathbb{Q}(\sqrt{5(2-F_n)})) \mid n \in \mathcal{N}\}$ is finite. Then the set $\{s(F_n-2) \mid n \in \mathcal{N}\}$ is finite. Since \mathcal{N} is infinite, there exists $k \geq 1$ such that $\mathcal{N}_k := \{n \in \mathcal{N} \mid s(F_n-2) = k\}$ is infinite. For any integer $n \in \mathcal{N}_k$, let $F_n - 2 = kA_n^2$. Then by Lemma 4 (1), we have

$$L_n^2 = 5F_n^2 - 4 = 5(kA_n^2 + 2)^2 - 4 = 5k^2A_n^4 + 20kA_n^2 + 16.$$

This implies that infinitely many pairs (A_n, L_n) are integer solutions of the equation

$$Y^2 = 5k^2X^4 + 20kX^2 + 16.$$

However, the equation has only finitely many integer solutions by Siegel's theorem. This is a contradiction. Hence the proof is complete. $\hfill \Box$

References

- N. C. Ankeny and S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321–324.
- [2] M. Aoki and Y. Kishi, On systems of fundamental units of certain quadratic fields, Int. J. Number Theory 11 (2015), 2019–2035.
- [3] D. Byeon, Real quadratic fields with class number divisible by 5 or 7, Manuscripta Math. 120 (2006), 211–215.
- [4] H. Cohen, "Advanced topics in computational number theory," GTM 193, Springer-Verlag, New York, 2000.
- [5] B. H. Gross and D. E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201–224.
- [6] H. Ichimura, Note on the class numbers of certain real quadratic fields, Abh. Math. Sem. Univ. Hamburg 73 (2003), 281–288.
- [7] Y. Iizuka, Y. Konomi and S. Nakano, On the class number divisibility of pairs of quadratic fields obtained from points on elliptic curves, J. Math. Soc. Japan **68** (2016), 899–915.

- [8] M. Imaoka and Y. Kishi, On dihedral extensions and Frobenius extensions, in Galois Theory and Modular Forms, Dev. Math. 11, Kluwer Acad. Publ., Boston, MA, (2004), 195–220.
- [9] A. Ito, Existence of an infinite family of pairs of quadratic fields $\mathbb{Q}(\sqrt{m_1D})$ and $\mathbb{Q}(\sqrt{m_2D})$ whose class numbers are both divisible by 3 or both indivisible by 3, Funct. Approx. Comment. Math. **49** (2013), 111–135.
- Y. Kishi, A new family of imaginary quadratic fields whose class number is divisible by five, J. Number Theory 128 (2008), 2450–2458.
- [11] T. Komatsu, A family of infinite pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-D})$ whose class numbers are both divisible by 3, Acta Arith. **96** (2001), 213–221.
- [12] T. Komatsu, An infinite family of pairs of quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{mD})$ whose class numbers are both divisible by 3, Acta Arith. **104** (2002), 129–136.
- [13] S. R. Louboutin, On the divisibility of the class number of imaginary quadratic number fields, Proc. Amer. Math. Soc. 137 (2009), 4025–4028.
- [14] J.-F. Mestre, Courbes elliptiques et groupes de classes d'idéaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), 23–35.
- [15] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlköper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140–150.
- [16] C. J. Parry, On the class number of relative quadratic fields, Math. Comp. 32 (1978), 1261– 1270.
- [17] M. Sase, On a family of quadratic fields whose class numbers are divisible by five, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998) 120–123.
- [18] P. J. Weinberger, Real quadratic fields with class numbers divisible by n, J. Number Theory 5 (1973), 237–241.
- [19] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76.

DEPARTMENT OF MATHEMATICS, INTERDISCIPLINARY FACULTY OF SCIENCE AND ENGINEER-ING, SHIMANE UNIVERSITY, MATSUE, SHIMANE, 690-8504, JAPAN

E-mail address: aoki@riko.shimane-u.ac.jp

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, AICHI UNIVERSITY OF EDUCA-TION, KARIYA, AICHI, 448-8542, JAPAN

E-mail address: ykishi@auecc.aichi-edu.ac.jp