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Introduction

Mathematical programming is a method to find the minimum value or a point
which gives the minimum value under certain condition. A function to minimize
is said to be an objective function, and a given condition is said to be a constraint.
In this paper, we treat the following mathematical programming problem:

(P)
minimize f(x)
subject to gi(x) ≤ 0, ∀i = 1, · · · ,m,

where f, g : Rn → R ∪ {+∞}. Functions gi are said to be constraint functions.
Mathematical programming problem is said to be a linear programming problem,
a convex programming problem when the objective function and the constraint
functions are affine functions, convex functions, respectively.

In order to calculate the minimum value of mathematical programming prob-
lems, we usually use duality problems. Especially in a convex programming
problem, the following Lagrange duality problem is famous:

max
λi≥0

inf
x∈Rn

{f(x) +
m∑
i=1

λigi(x)}.

In the duality problem, inf
x∈Rn

{f(x)+
m∑
i=1

λigi(x)} is a convex programming problem

which has no constraint. Therefore it is comparatively easy to solve the problem
by using subdifferential. Moreover, under some assumption, the optimal value of
the primal convex programming problem is equal to the optimal value of its La-
grange duality problem. This assumption is said to be a constraint qualification.
The Slater constraint qualification is the most famous. In 2008, M. A. Goberna,
V. Jeyakumar and M. A. Lopez show that the Farkas Minkowski property (FM,
in short) is a necessary and sufficient constraint qualification that the optimal
value of the primal convex programming problem is equal to its Lagrange duality
problem([4]).

The main content of this paper is to consider Lagrange-type duality in DC
programming problems. The function which is represented difference of two con-
vex functions is said to be a difference of convex functions (DC function, in
short). A mathematical programming problem whose the objective function and



the constraint functions are DC function is said to be a DC programming prob-
lem. Every function whose second partial derivatives are continuous everywhere
is a DC function. This fact shows every function in C2 is a DC function. There-
fore the class of DC functions is quite wide. DC programming problems are
represented as the following form:

(P)
minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0, ∀i = 1, · · · ,m.

J. E. Martinez-Legaz and M. Volle give constraint qualifications that the optimal
value of primal DC programming problem is equal to the optimal value of its
Lagrange-type duality problem([8]). However, these constraint qualifications are
not necessary and sufficient constraint qualifications. In this paper, we provide
new constraint qualifications for Lagrange-type duality.

The outline of the paper is as follows: In Section 1, we introduce definitions
and preliminary results of convex analysis, convex programming problems and
DC functions. In Section 2, we introduce previous constraint qualifications for
Lagrange-type duality in DC programming problem and canonical DC program-
ming problems. Moreover, we give a new constraint qualification for a Lagrange-
type duality theorem in a DC programming problem. In section 3, we give
another Lagrange-type duality theorem by using the following fact: Maximum
function of finitely many DC functions is also DC function. Finally, we compare
two Lagrange-type duality theorems which we provided.
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Chapter 1

Preliminaries

In this chapter, we introduce some notation and preliminaries.

1.1 Convex analysis

The n-dimensional real Euclidean space will be denoted by Rn. The inner product
of two vectors x and y in Rn will be denoted by ⟨x, y⟩.

Definition 1.1. Let A is a subset of Rn.

(i) A is said to be a convex set if (1 − α)x + αy ∈ A for all x, y ∈ A and
α ∈ (0, 1).

(ii) A is said to be a cone if A is nonempty and λx ∈ A for all x ∈ A and λ ≥ 0.

For a set A ⊆ Rn, we define the closure, convex hull and conical hull of A by

clA = {x ∈ Rn | ∃{xk} ⊆ A s.t. xk → x (k → ∞)},

coA =

x ∈ Rn

∣∣∣∣∣∣
∃m ∈ N, ∃xi ∈ A, ∃αi > 0 (i = 1, . . . ,m)

s.t. x =
m∑
i=1

αixi and
m∑
i=1

αi = 1

 and

coneA = {x ∈ Rm | ∃y ∈ A, ∃α ≥ 0 s.t. x = αy} ∪ {0},

respectively.

Theorem 1.1. For x1, . . . , xm ∈ Rn, cone co{x1, . . . , xm} is a closed set.

The following separation theorem is a very important theorem in convex anal-
ysis.

Theorem 1.2. (separation theorem) For a nonempty convex set A ⊆ Rn and
x /∈ clA, the following holds:

∃a ∈ Rn \ {0}, ∃α ∈ R s.t. ∀y ∈ A, ⟨a, x⟩ < α ≤ ⟨a, y⟩ .

1
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In this article, we consider the extended real R∪{+∞,−∞}, where +∞ and
−∞ satisfy the following conditions:

(i) For all x ∈ R, x+ (+∞) = (+∞) + x = +∞.

(ii) For all x ∈ R, x+ (−∞) = (−∞) + x = −∞.

(iii) For all t > 0, t · (+∞) = +∞.

(iv) For all t < 0, t · (+∞) = −∞.

(v) (+∞) + (+∞) = +∞ and (−∞) + (−∞) = −∞.

(vi) For all x ∈ R, −∞ < x < +∞.

(vii) (+∞)− (+∞) = +∞.

(viii) 0 · (+∞) = 0 · (−∞) = 0.

Definition 1.2. Let {αk} be a sequence of R ∪ {+∞,−∞} and α, α ∈ R ∪
{+∞,−∞}. α is said to be the limit superior if the following condition holds:

(i) For each α ∈ R, where satisfy α > α, the cardinality of {k ∈ N | αk > α}
is finite.

(ii) For each α ∈ R, where satisfy α < α, the cardinality of {k ∈ N | αk > α}
is infinite.

Then we denote α = lim sup
k→∞

αk. In the same way, α is said to be the limit inferior

if the following condition holds:

(i) For each α ∈ R, where satisfy α < α, the cardinality of {k ∈ N | αk < α}
is finite.

(ii) For each α ∈ R, where satisfy α > α, the cardinality of {k ∈ N | αk < α}
is infinite.

Then we denote α = lim inf
k→∞

αk.

Let f : Rn → R ∪ {+∞,−∞}. We say that f is upper semi continuous if

f(x) ≥ lim sup
k→∞

f(xk)

for each x ∈ Rn and {xk} ⊆ Rn converges to x. In the same way, we say that f
is lower semi continuous if

f(x) ≤ lim inf
k→∞

f(xk)
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for each x ∈ Rn and {xk} ⊆ Rn converges to x. For α ∈ R,

{f ≤ α} = {x ∈ Rn | f(x) ≤ α}

is said to be the level set of f at α. It is well-known that f is lower semi continuous
if and only if {f ≤ α} are closed sets for all α ∈ R. For an extended real-valued
function f : Rn → R∪{+∞,−∞}, the domain and the epigraph of f are defined
by

dom f = {x ∈ Rn | f(x) < +∞},
epi f = {(x, r) ∈ Rn × R | x ∈ dom f, f(x) ≤ r}.

Definition 1.3. Let f : Rn → R ∪ {+∞,−∞}.

(i) f is said to be a convex function if epi f is a convex set.

(ii) f is said to be a closed function if epi f is a closed set.

(iii) f is said to be a proper function if dom f ̸= ∅ and f(x) > −∞ for each
x ∈ Rn.

Remark 1.1. It is well known that a function f : Rn → R ∪ {+∞} is a convex
function if and only if

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y), ∀x, y ∈ Rn, ∀α ∈ (0, 1).

Definition 1.4. A function f : Rn → R ∪ {+∞,−∞} is said to be a concave
function if −f is a convex function.

Theorem 1.3. Let f, fi : Rn → R be convex functions for each i = 1, . . . ,m and
α > 0. Then the following functions are convex functions:

(i)
m∑
i=1

fi.

(ii) αf .

(iii) max
i=1,...,m

fi.

Theorem 1.4. ([12]) Let fi : Rn → R be real-valued convex functions for each
i = 1, . . . ,m. Then,

epi( max
i=1,··· ,m

fi)
∗ = co

( m∪
i=1

epi f ∗
i

)
. (1.1)

Definition 1.5. Let f : Rn → R∪{+∞} be a proper convex function. Then the
conjugate function of f is defined by

f ∗(y) = sup
x∈Rn

{⟨x, y⟩ − f(x)}, ∀y ∈ Rn.
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It is well-known that f ∗ is a lower semi continuous proper convex function if f is
a proper convex function. Moreover f ∗∗ = f if f is lower semi continuous. The
indicator function of A ⊆ Rn is denoted by δA, i.e.

δA(x) =

{
0 (x ∈ A)
+∞ (x /∈ A).

Next, we view the relationship between a convex function and its gradient.

Definition 1.6. Let f : Rn → R ∪ {+∞} and x ∈ dom f .

∂f

∂xi

(x) = lim
t→0

f(x+ tei)− f(x)

t
(i = 1, . . . ,m)

is said to be a partial differential coefficient of f at x, where ei is the ith unit
vector, and

∇f(x) =

(
∂f

∂x1

(x), . . . ,
∂f

∂xn

(x)

)
is said to be the gradient of f at x. Moreover, f is said to be differentiable at x
if

lim
∥h∥→0

f(x+ h)− f(x)− ⟨∇f(x), h⟩
∥ h ∥

= 0.

Theorem 1.5. Let f : Rn → R ∪ {+∞} be a function, where dom f is an open
convex set. If f is differentiable on dom f , then the following statements are
equivalent:

(i) f is a convex function.

(ii) ⟨∇f(x), y − x⟩ ≤ f(y)− f(x) for each x, y ∈ dom f with x ̸= y.

Definition 1.7. For each x ∈ dom f , the subdifferential of the function f at x
is defined by

∂f(x) = {x∗ ∈ Rn | ⟨x∗, y − x⟩+ f(x) ≤ f(y), ∀y ∈ Rn}.

The function f is said to be subdifferentiable at x if ∂f(x) ̸= ∅. Moreover, We
say that f is subdifferentiable if ∂f(x) ̸= ∅ for each x ∈ dom f .

Theorem 1.6. Let f : Rn → R ∪ {+∞} be a proper convex function, x ∈
int dom f . Then the following statements are equivalent:

(i) f is differentiable at x.

(ii) ∃a ∈ Rn s.t. ∂f(x) = {a}.



DC programming and its Lagrange-type duality 5

Remark 1.2. In (ii) of Theorem 1.6, if f is differentiable at x, then ∂f(x) =
{∇f(x)}. From this fact, the subdifferential of a convex function is an extension
of its gradient.

The following theorem shows that the minimum value of a convex function
can be characterized by its subdifferential.

Theorem 1.7. Let f : Rn → R ∪ {+∞} be a proper convex function and
x ∈ dom f . Then the following statements are equivalent:

(i) f(x) = min
x∈Rn

f(x).

(ii) 0 ∈ ∂f(x).

About the subdifferential of the sum of two convex functions, the following
results hold:

Theorem 1.8. Let f, g : Rn → R ∪ {+∞} be a lower semi continuous convex
functions with dom f ∩ dom g ̸= ∅. Then the following statements hold:

(i) ∂f(x) + ∂g(x) ⊆ ∂(f + g)(x) for each x ∈ dom f ∩ dom g.

(ii) If epi f ∗ + epi g∗ is a closed set, then

∂(f + g)(x) = ∂f(x) + ∂g(x)

for all x ∈ dom f ∩ dom g.

In the proof of Theorem 1.8, the following Fenchel duality is used.

Theorem 1.9. (Fenchel duality) Let f, g : Rn → R ∪ {+∞} be lower semi
continuous proper convex functions with dom f ∩ dom g ̸= ∅. If epi f ∗ + epi g∗ is
a closed set, then

inf
x∈Rn

{f(x) + g(x)} = max
x∗∈Rn

{−f ∗(x∗)− g∗(−x∗)}.

If x ∈ dom f , then f(x)+ f ∗(y) ≥ ⟨y, x⟩ (the Young-Fenchel inequality) holds
for each y ∈ Rn and

f(x) + f ∗(y) = ⟨y, x⟩ ⇔ y ∈ ∂f(x).

Next, we define the tangent cone and the normal cone.

Definition 1.8. For a set A ⊆ Rn,

A∗ = {y ∈ Rn | ⟨y, x⟩ ≤ 0, ∀x ∈ A}

is said to be the polar cone of A.
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Definition 1.9. Let S ⊆ Rn and x̄ ∈ S.

TS(x̄) =

{
y ∈ Rn

∣∣∣∣∣ ∃{αk} ⊆ [0,+∞), ∃{xk} ⊆ S
s.t. lim

k→+∞
αk(xk − x̄) = y, lim

k→+∞
xk = x̄

}

is said to be the tangent cone of S at x̄. Moreover,

NS(x̄) = (TS(x̄))
∗

is said to be the normal cone of S at x̄, i.e.

NS(x̄) = {x∗ ∈ Rn | ⟨x∗, y⟩ ≤ 0, ∀y ∈ TS(x̄)}.

Theorem 1.10. Let S ⊆ Rn be a convex set and x̄ ∈ S. Then the following
statements hold:

(i) NS(x̄) = {x∗ ∈ Rn | ⟨x∗, x− x̄⟩ ≤ 0, ∀x ∈ S}.

(ii) ∂δS(x̄) = NS(x̄).

(iii) NS(x̄) = {x∗ ∈ Rn | δ∗S(x∗) = ⟨x∗, x̄⟩}.

Theorem 1.11. Let f : Rn → R ∪ {+∞} be a proper convex function, S ⊆ Rn

be a nonempty set and x̄ ∈ S. If epi f ∗ +epi δ∗S is a closed set, then the following
statements are equivalent:

(i) f(x̄) = min
x∈S

f(x).

(ii) 0 ∈ ∂f(x̄) +NS(x̄).

Definition 1.10. For two extended real-valued functions f, g : Rn → R∪{+∞},
the infimal convolution of f and g is defined by

(f ⊕ g)(x) = inf
x1+x2=x

{f(x1) + g(x2)}, ∀x ∈ Rn.

From Theorem 1.8, for extended real-valued convex functions fi : Rn →
R ∪ {+∞}, i = 1, . . . ,m, if

m∩
i=1

dom fi ̸= ∅, then

∂(f1 + · · ·+ fm)(x) = ∂f1(x) + · · ·+ ∂fm(x) (1.2)

for all x ∈
m∩
i=1

dom fi. Moreover the following statements hold:

Theorem 1.12. ([9]) Let fi : Rn → R ∪ {+∞} for each i = 1, . . . ,m. If
m∩
i=1

dom fi ̸= ∅, then the following statements holds:
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(i) For each y ∈ ∂(f1 + · · · + fm)(x), there exists yi ∈ ∂fi(x) (i = 1, . . . ,m)
such that

(f1 + · · ·+ fm)
∗(y) = f ∗

1 (y1) + · · ·+ f ∗
m(ym). (1.3)

(ii) For each y ∈ ∂(f1 + · · ·+ fm)(x),

(f1 + · · ·+ fm)
∗(y) = (f ∗

1 ⊕ · · · ⊕ f ∗
m)(y), (1.4)

and the infimal convolution is attained for all y.

(iii) If (1.4) hold, then

epi(f1 + · · ·+ fm)
∗ = epi f ∗

1 + · · ·+ epi f ∗
m. (1.5)

1.2 Convex programming problem

In this section, we consider the following convex programming problem:

minimize f(x)
s.t. gi(x) ≤ 0, i ∈ I,

where I is an index set and f, gi : Rn → R ∪ {+∞} are convex functions for
each i ∈ I. In order to calculate the minimum value of this convex programming
problem, Lagrange duality is effective:

max
λ∈R(I)

+

inf
x∈Rn

{f(x) +
∑
i∈I

λigi(x)}.

In this duality problem, inf
x∈Rn

{f(x) +
∑
i∈I

λigi(x)} is a convex programming prob-

lem which has no constraint. For example, we use Theorem 1.7, inf
x∈Rn

{f(x) +∑
i∈I

λigi(x)} is comparatively easy to solve. Moreover, under some assumption,

the following statement holds:

inf
gi(x)≤0

f(x) = max
λ∈R(I)

+

inf
x∈Rn

{f(x) +
∑
i∈I

λigi(x)}.

This assumption is said to be a constraint qualification. The following condition
is a well-known constraint qualification, called the Slater constraint qualification.

Definition 1.11. Let gi : Rn → R be convex function for all i = 1, . . . ,m and
C ⊆ Rn. The system {gi ≤ 0, i = 1, . . . ,m} is said to satisfy Slater constraint
qualification on C if

∃x0 ∈ C s.t. gi(x0) < 0 (∀i = 1, . . . ,m).
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Theorem 1.13. Let gi : Rn → R be convex function for all i = 1, . . . ,m, C ⊆ Rn,
S = {x ∈ C | gi(x) ≤ 0, ∀i = 1, . . . ,m} and the system {gi ≤ 0, i = 1, . . . ,m}
satisfies the Slater constraint qualification on C. Then the following condition
holds for all lower semi continuous proper convex function f : Rn → R ∪ {+∞}:

inf
x∈S

f(x) = max
λi≥0

inf
x∈C

{f(x) +
m∑
i=1

λigi(x)}.

The Slater constraint qualification is easy to check. However, the Slater con-
straint qualification is not a necessary condition that the optimal value of primal
convex programming problem is equal to the optimal value of Lagrange duality
problem. The following Farkas-minkowski is a necessary and sufficient constraint
qualification that the optimal value of primal convex programming problem is
equal to its Lagrange duality problem.

Definition 1.12. ([4]) Let I be a inedex set, gi : Rn → R∪{+∞} be lower semi
continuous convex function for all i ∈ I, C ⊆ Rn be a closed convex set. We say
that the system {gi ≤ 0, i ∈ I} is Farkas-Minkowski (FM, in short) if

cone co
∪
i∈I

epi g∗i + epi δ∗C is closed set.

Theorem 1.14. Let gi : Rn → R be a convex function for each i = 1, . . . ,m and
C be a closed convex set. If {gi ≤ 0, i = 1, . . . ,m} satisfies the Slater constraint
qualification on C, then {gi ≤ 0, i ∈ I} is FM, i.e.

cone co
m∪
i=1

epi g∗i + epi δ∗C is closed set.

Theorem 1.15. (Goberna M. A., Jeyakumar V., Lppez M. A., [4]) Let I be a
index set, gi : Rn → R∪{+∞} be lower semi continuous convex functions for all
i ∈ I and C be a closed convex set. Moreover, each gi is continuous at least at
one point of S = {x ∈ C | gi(x) ≤ 0, i ∈ I}. Then the following statements are
equivalent:

(i) The system {gi ≤ 0, i ∈ I} is FM.

(ii) For every lower semi continuous proper convex function f : Rn → R∪{+∞}
with A ∩ dom f ̸= ∅ and epi f ∗ + epi δ∗A is a closed set,

inf
x∈S

f(x) = max
λ∈R(I)

+

inf
x∈C

{f(x) +
∑
i∈I

λigi(x)}.

(iii) For every v ∈ Rn,

inf
x∈S

⟨v, x⟩ = max
λ∈R(I)

+

inf
x∈C

{⟨v, x⟩+
∑
i∈I

λigi(x)}.
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Theorem 1.15 shows that FM is a necessary and sufficient condition that the
optimal value of the primal convex programming problem is equal to the optimal
value of the Lagrange duality problem.

1.3 DC function

In this section, we examine a DC function and its property.

Definition 1.13. A function h : Rn → R ∪ {+∞} is said to be a difference
of convex function (DC function, in short) if there exists two convex functions
f : Rn → R ∪ {+∞} and g : Rn → R such that h = f − g.

Theorem 1.16. ([7]) The following statements hold:

(i) Every function f : Rn → R whose second partial derivatives are continuous
everywhere is a DC function, that is, every function in C2 is a DC function.

(ii) Let C be a compact convex subset of C. Then, every continuous function
on C is the limit of a sequence of DC functions which converges uniformly
on C, i.e., for all continuous function c : C → R and for all ε, there exists
a DC function f : C → R such that |c(x)− f(x)| ≤ ε for all x ∈ C.

Theorem 1.16 inspires us that the class of DC functions is quite wide. To prove
(i) of Theorem 1.16, we provide the following definition and theorem without
proof.

Definition 1.14. We say that a function f : Rn → R is a locally DC function if

∀x ∈ Rn, ∃ε > 0 s.t. f is a DC function on B(x, ε).

Theorem 1.17. (Hartman, [13]) Every locally DC function f : Rn → R is a DC
function.

Proof of (i) of Theorem 1.16. The elements of the Hessian ∇2f of f are bounded
on every closed neighborhood B(x0, ε). Therefore, for sufficient large µ > 0,
the function f(x) + µ∥x∥2 is a convex function on B(x0, ε) since its Hessian
∇2f(x) + 2µE is positive semidefinite on B(x0, ε) for sufficiently large µ. Then

f(x) = (f(x) + µ∥x∥2)− µ∥x∥2

is obviously DC on B(x0, ε). From Theorem 1.17, f is a DC function.

Theorem 1.18. Let h, hi : Rn → R(i = 1, . . . ,m) be DC functions. Then the
following functions are DC functions.

(i)
m∑
i=1

λihi, where λi ∈ R for each i = 1, . . . ,m.
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(ii) max
i=1,...,m

hi and min
i=1,...,m

hi.

(iii) |h|.

(iv)
m∏
i=1

hi.

Proof. (i) For each i = 1, . . . ,m, there exist convex functions fi, gi : Rn → R
such that hi = fi − gi. From this,

m∑
i=1

λihi =
m∑
i=1

λi(fi − gi)

=
∑
λi≥0

λifi −
∑
λi<0

λigi −

(∑
λi≥0

λigi −
∑
λi<0

λifi

)
.

Both of
∑
λi≥0

λifi−
∑
λi<0

λigi and
∑
λi≥0

λigi−
∑
λi<0

λifi are convex functions. Therefore

m∑
i=1

λihi is a DC function.

(ii) For each i = 1, . . . ,m, there exist convex functions fi, gi : Rn → R such that
hi = fi − gi. From this,

max
i=1,...,m

hi = max
i=1,...,m

{fi − gi} = max
i=1,...,m

{fi +
∑
j ̸=i

gj −
m∑
j=1

gj}

= max
i=1,...,m

{fi +
∑
j ̸=i

gj} −
m∑
j=1

gj.

Both of max
i=1,...,m

{fi +
∑
j ̸=i

gj} and
m∑
j=1

gj are convex functions. Therefore max
i=1,...,m

hi

is a DC function. min
i=1,...,m

hi is same.

(iii)There exist convex functions f, g : Rn → R such that h = f − g. From this,

|h| = 2max{f, g} − (f + g).

Both of 2max{f, g} and f + g are convex functions. Therefore |h| is a DC
function.
(iv) We prove the case of m = 2. As noted Lemma 1.2 after this proof, for
each i = 1, 2, there exist nonnegative convex functions fi, gi : Rn → R such that
hi = fi − gi. From this,

h1h2 = (f1 − g1)(f2 − g2) =
1

2
[(f1 + f2)

2 + (g1 + g2)
2]− 1

2
[(f1 + g2)

2 + (f2 + g1)
2].

As noted Lemma 1.3 after this proof, both of 1
2
[(f1 + f2)

2 + (g1 + g2)
2] and

1
2
[(f1+g2)

2+(f2+g1)
2] are convex functions. Therefore h1h2 is a DC function.
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Lemma 1.1. Let h : Rn → R is a DC function. Then there exist a convex
function f : Rn → R and a nonnegative convex function g : Rn → R such that
h = f−g. Also, there exists nonnegative convex function f : Rn → R and convex
function g : Rn → R such that h = f − g.

Proof. From h is a DC function, there exist convex functions h1, h2 : Rn → R
such that h = h1 − h2. Since h2 is a convex function, there exist a ∈ Rn and
b ∈ R such that ⟨a, ·⟩ − b ≤ h2. Moreover,

h = (h1 − ⟨a, ·⟩ − b)− (h2 − ⟨a, ·⟩ − b).

From this, we put f = h1 − ⟨a, ·⟩ − b and g = h2 − ⟨a, ·⟩ − b, then f and g are
convex functions and g is nonnegative.

Lemma 1.2. Let h : Rn → R is a DC function. Then there exist two nonnegative
convex functions f, g : Rn → R such that h = f − g.

Proof. It is clear that
h = max{h, 0}+min{h, 0}.

From (ii) of Theorem 1.18, both of max{h, 0} and min{h, 0} are DC functions.
Moreover, max{h, 0} is nonnegative and min{h, 0} is nonpositive. Therefore
there exist convex functions f1, f2, g1, g2 : Rn → R such that max{h, 0} = f1 −
g1 ≥ 0 and min{h, 0} = f2 − g2 ≤ 0. Without loss of generality, g1 and f2 are
nonnegative, from Lemma 1.1. Moreover,

h = max{h, 0}+min{h, 0} = (f1 − g1) + (f2 − g2) = (f1 − g1)− (g2 − f2).

Since f1 − g1, g2 − f2, g1 and f2 are nonnegative, f1 and g2 are nonnegative.
Therefore

h = (f1 + f2)− (g1 + g2),

and f1 + f2 and g1 + g2 are nonnegative convex functions.

Lemma 1.3. Let f : Rn → R be a nonnegative convex function. Then g2 is a
convex function.



Chapter 2

DC programming problem

In this chapter, we study the following DC programming problem (P):

(P)
minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0, ∀i = 1, 2, . . . ,m,

where fi, gi : Rn → R ∪ {+∞} are lower semi continuous proper convex func-
tion for each i = 0, 1, . . . ,m, and assume that the set of all feasible solutions
S = {x ∈ Rn | fi(x) − gi(x) ≤ 0, ∀i = 1, 2, . . . ,m} is nonempty. At first,
we introduce previous Lagrange-type duality results for DC programming and
canonical programming. Secondly, we show a Lagrange-type duality theorem for
a DC programming problem, which is a generalization of previous ones when
all constraint functions are real-valued. Finally, we apply this result to a DC
programming problem with reverse convex constraints.

2.1 Lagrange-type duality theorem in DC pro-

gramming problem

In this section, we give previous Lagrange-type duality results for (P). At first,
we give a duality theorem with no constraint DC programming.

Theorem 2.1. (Toland duality) Let f : Rn → R ∪ {+∞} be a lower semi
continuous proper convex function, g : Rn → R be a convex function. Then

inf
x∈Rn

{f(x)− g(x)} = inf
x∗∈Rn

{g∗(x∗)− f ∗(x∗)}.

Theorem 2.2 and Theorem 2.3 give duality for the DC programming problem
(P). We adopt the conventions 0 · (+∞) = +∞ and 0 · (−∞) = 0 in Theorem 2.2
and Theorem 2.3.

Theorem 2.2. (J.-E. Martinez-Legaz, M. Volle, [8]) Let fi : Rn → R, be a
convex for each i = 0, 1, , . . . ,m, let g0 : Rn → R ∪ {+∞,−∞} satisfies g0 = g∗∗0 ,

12
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and let gi : Rn → R∪{+∞,−∞} be subdifferentiable on S for each i = 1, . . . ,m.
If

for each (x∗
1, . . . , x

∗
m) ∈

m∏
i=1

{g∗i − f ∗
i ≤ 0}, there exists x̄ ∈ domf0

such that fi(x̄)− ⟨x̄, x∗
i ⟩+ g∗i (x

∗
i ) < 0 for each i = 1, · · · ,m,

then

inf
fi(x)−gi(x)≤0

{f0(x)−g0(x)} = inf
x∗∈domg∗0

inf
g∗i (x

∗
i )−f∗

i (x
∗
i )≤0

max
λ∈Rm

+{
g∗0(x

∗) +
m∑
i=1

λig
∗
i (x

∗
i )−

(
f0 +

m∑
i=1

λifi

)∗(
x∗ +

m∑
i=1

λix
∗
i

)}
.

Theorem 2.3. (J.-E. Martinez-Legaz, M. Volle, [8]) Let fi : Rn → R, be a
convex for each i = 0, 1, . . . ,m, let g0 : Rn → R ∪ {+∞,−∞} satisfies g0 = g∗∗0 ,
and let gi : Rn → R∪{+∞,−∞} be subdifferentiable on S for each i = 1, . . . ,m.
If

for each (x∗
1, . . . , x

∗
m) ∈ Ω = {(x∗

1, . . . , x
∗
m) ∈ Rnm | ∂g∗1(x∗

1) ∩ · · · ∩ ∂g∗m(x
∗
m) ̸= ∅},

there exists x0 ∈ domf0 such that fi(x0)− ⟨x0, x
∗
i ⟩+ g∗i (x

∗
i ) < 0

for each i = 1, . . . ,m,

then

inf
fi(x)−gi(x)≤0

{f0(x)−g0(x)} = inf
(x∗,x∗

1,··· ,x∗
m)∈domg∗0×Ω

max
λ∈Rm

+{
g∗0(x

∗) +
m∑
i=1

λig
∗
i (x

∗
i )−

(
f0 +

m∑
i=1

λifi

)∗(
x∗ +

m∑
i=1

λix
∗
i

)}
.

Remark 2.1. The right-hand side of Theorem 2.2 and Theorem 2.3 can trans-
form to a formulation of Lagrange-type duality. Indeed,

g∗0(x
∗) +

m∑
i=1

λig
∗
i (x

∗
i )−

(
f0 +

m∑
i=1

λifi

)∗(
x∗ +

m∑
i=1

λix
∗
i

)

= g∗0(x
∗) +

m∑
i=1

λig
∗
i (x

∗
i )− sup

x∈Rn

{⟨
x, x∗ +

m∑
i=1

λix
∗
i

⟩
−

(
f0 +

m∑
i=1

λifi

)
(x)

}

= inf
x∈Rn

{
f0(x)− ⟨x, x∗⟩+ g∗0(x

∗) +
m∑
i=1

λi(fi(x)− ⟨x, x∗
i ⟩+ g∗i (x

∗
i ))

}
.

Next, we consider the following canonical DC programming problem (Q):

(Q)
minimize ⟨a, x⟩
subject to f(x) ≤ 0, g(x) ≥ 0,
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where f, g : R → R are convex functions and a ∈ Rn. It is well-known that the
DC programming problem (P), where primal function and constraint functions
are real-valued functions, can be transformed into canonical DC programming as
follows.

The optimal value of (P) is

inf{f0(x)− g0(x) | fi(x)− gi(x) ≤ 0, ∀i = 1, . . . ,m}.

By using an additional variable xn+1, this optimal value is rewritten as follows:

inf{xn+1 | f0(x)− g0(x)− xn+1 ≤ 0, fi(x)− gi(x) ≤, ∀i = 1, . . . ,m}.

We define a function h : Rn+1 → R by

h(x, xn+1) = max{f0(x)− g0(x)− xn+1, fi(x)− gi(x) (i = 1, . . . ,m)}.

From Theorem 1.18, h is a DC function, therefore there exists convex functions
f, g : Rn+1 → R such that h = f − g. It is clear that

f0(x)− g0(x)− xn+1 ≤ 0 and fi(x)− gi(x) ≤ 0, ∀i = 1, . . . ,m

if and only if
h(x, xn+1) ≤ 0.

Therefore

inf{xn+1 | f0(x)− g0(x)− xn+1 ≤ 0, fi(x)− gi(x) ≤ 0, ∀i = 1, . . . ,m}
= inf{xn+1 | h(x, xn+1) ≤ 0}
= inf{xn+1 | f(x, xn+1)− g(x, xn+1) ≤ 0}
= inf{xn+1 | f(x, xn+1) ≤ xn+2, xn+2 ≤ g(x, xn+1), xn+2 ∈ R}
= inf{xn+1 | f(x, xn+1)− xn+2 ≤ 0, 0 ≤ g(x, xn+1)− xn+2, xn+2 ∈ R}.

Using another additional variable xn+2, we put functions F,G : Rn+2 → R and
a ∈ Rn+2 by

F (x, xn+1, xn+2) = f(x, xn+1)− xn+2,

G(x, xn+1, xn+2) = g(x, xn+1)− xn+2 and

a = (0, . . . , 0, 1, 0).

Then

inf{xn+1 | f(x, xn+1)− xn+2 ≤ 0, 0 ≤ g(x, xn+1)− xn+2, xn+2 ∈ R}
= inf{⟨a, x⟩ | x ∈ Rn+2, F (z) ≤ 0, G(z) ≥ 0}.

Theorem 2.4 and Theorem 2.5 give duality in the canonical DC programming
problem (Q).
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Theorem 2.4. (Y. Fujiwara, D. Kuroiwa, [3]) Let f, g : Rn → R be convex
functions, and let a ∈ Rn, let S = {x ∈ Rn | f(x) ≤ 0, g(x) ≥ 0} be nonempty
and let

∪
x∈S

∂g(x) ⊆ A. If for each z ∈ A∩dom g∗, {f ≤ 0}∩{⟨−z, ·⟩+g∗(z) ≤ 0}

is nonempty and cone co(epi f ∗∪{−z}× [−g∗(z),+∞)∪{0}× [0,+∞)) is closed,
then

inf
f(x)≤0,g(x)≥0

⟨a, x⟩ = inf
y∈A

sup
λ , µ≥0

inf
x∈Rn

{⟨a, x⟩+ λf(x) + µ(⟨−y, x⟩+ g∗(y))}

holds and the supremum on λ, µ ≥ 0 being attained for all y ∈ A.

Theorem 2.5. (Y. Fujiwara, D. Kuroiwa, [3]) Let f, g : Rn → R be convex
functions, and let a ∈ Rn, S = {x ∈ Rn | f(x) ≤ 0, g(x) ≥ 0} is nonempty,
Y ′ = {y ∈ Rn | {f ≤ 0} ∩ {⟨y, ·⟩ > g∗(y)} ̸= ∅} and

∪
x∈S

∂g(x) ⊆ A ⊆ Y ′. If

cone epi f ∗ + {0} × [0,+∞) is closed, then

inf
f(x)≤0,g(x)≥0

⟨a, x⟩ = inf
y∈A

sup
λ , µ≥0

inf
x∈Rn

{⟨a, x⟩+ λf(x) + µ(⟨−y, x⟩+ g∗(y))}

holds and the supremum on λ, µ ≥ 0 being attained for all y ∈ A.

In [3], Theorem 2.4 and Theorem 2.5 proved another way. In fact, Theorem 2.5
can prove by using Theorem 2.4.

Proof of Theorem 2.5. We assume the assumption of Theorem 2.5, i.e. assume
that ∪

x∈S

∂g(x) ⊆ A ⊆ Y ′

hold and
cone epi f ∗ + {0} × [0,+∞) is closed.

For each z ∈ A,

∃x0 ∈ {f ≤ 0} s.t. − ⟨x0, z⟩+ g∗(z) < 0.

Therefore the system {− ⟨x, z⟩ + g∗(z) ≤ 0, x ∈ Rn} satisfy Slater condition on
{f ≤ 0}. From Theorem 1.14,

cone epi(−⟨·, z⟩+ g∗(z))∗ + epi δ∗{f≤0}

is a closed set. For each v ∈ Rn,

inf
f(x)≤0,−⟨x,z⟩+g∗(z)≤0

⟨x, v⟩ = max
λ≥0

inf
x∈{f≤0}

{⟨x, v⟩+ λ(−⟨x, z⟩+ g∗(z))}
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hold, from Theorem 1.15. From cone epi f ∗ + {0} × [0,+∞) is a closed set, by
using Theorem 1.14,

inf
x∈{f≤0}

{⟨x, v⟩+ λ(−⟨x, z⟩+ g∗(z))}

= inf
f(x)≤0

{⟨x, v⟩+ λ(−⟨x, z⟩+ g∗(z))}

= max
µ≥0

inf
x∈Rn

{⟨x, v⟩+ λ(−⟨x, z⟩+ g∗(z)) + µf(x)}

for each λ ≥ 0. Therefore, for each v ∈ Rn,

inf
f(x)≤0,−⟨x,z⟩+g∗(z)≤0

⟨x, v⟩

= max
λ≥0

max
µ≥0

inf
x∈{f≤0}

{⟨x, v⟩+ λ(−⟨x, z⟩+ g∗(z)) + µf(x)}

= max
λ≥0, µ≥0

inf
x∈{f≤0}

{⟨x, v⟩+ λ(−⟨x, z⟩+ g∗(z)) + µf(x)}.

From Theorem 1.15,

cone co(epi f ∗ ∪ epi((−⟨·, z⟩+ g∗(z))∗)) + {0} × [0,+∞)

is a closed set. Moreover,

cone co(epi f ∗ ∪ epi((−⟨·, z⟩+ g∗(z))∗)) + {0} × [0,+∞)

= cone co(epi f ∗ ∪ {−z} × [−g∗(z),+∞) ∪ {0} × [0,+∞)).

Therefore the assumption of Theorem 2.4 hold, and we can use Theorem 2.4.

It is well-known that canonical DC programming problems are special cases
of DC programming problems, so Theorems 2.2 and 2.3 have broader application
areas than Theorems 2.4 and 2.5. However, the assumptions of Theorems 2.2
and 2.3 are stronger than Theorems 2.4 and 2.5 whenever the DC programming
problem is canonical. In this paper, we give a Lagrange-type duality result for
a general DC programming problem, which is a generalization of Theorems 2.2,
2.3, 2.4, and 2.5.

We consider the following subproblems (P(y0,(yi)
m
i=1)) of (P):

(P(y0,(yi)
m
i=1))

minimize f0(x)− ⟨x, y0⟩+ g∗0(y0)
subject to fi(x)− ⟨x, yi⟩+ g∗i (yi) ≤ 0,∀i = 1, . . . ,m,

where (y0, (yi)
m
i=1) = (y0, y1, . . . , ym) ∈ Rn(m+1). It is clear that all subproblems

(P(y0,(yi)
m
i=1)) are convex programming. Let Val(P) and Val(P(y0,(yi)

m
i=1)) be

the minimum values of (P) and (P(y0,(yi)
m
i=1)), respectively.
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Lemma 2.1. Let fi, gi : Rn → R∪{+∞} be lower semi continuous proper convex
functions for each i = 1, . . . ,m, S = {x ∈ Rn | fi(x)− gi(x) ≤ 0,∀i = 1, . . . ,m},
(yi)

m
i=1 ∈ Rnm and S(yi)

m
i=1 = {x ∈ Rn | fi(x)−⟨x, yi⟩+g∗i (yi) ≤ 0, ∀i = 1, . . . ,m}.

Then
S(yi)

m
i=1 ⊆ S,

furthermore if gi is subdifferentiable on S for each i = 1, . . . ,m and∪
x∈S

(
m∏
i=1

∂gi(x)

)
⊆ D ⊆ Rnm, then

∪
(yi)mi=1∈D

S(yi)
m
i=1 = S.

Proof. For each x ∈ S(yi)
m
i=1,

0 ≥ fi(x)− ⟨x, yi⟩+ g∗i (yi) ≥ fi(x)− gi(x)

by using the Young-Fenchel duality for each i = 1, . . . ,m. So S(yi)
m
i=1 ⊆ S.

Let z ∈ S. since ∂gi(z) is a nonempty set for each i = 1, . . . ,m, there exists
yi ∈ ∂gi(z) and

0 ≥ fi(z)− gi(z) = fi(z)− ⟨z, yi⟩+ g∗i (yi).

Therefore z ∈ S(yi)
m
i=1. Also we have (yi)

m
i=1 ∈

∪
x∈S

(
m∏
i=1

∂gi(x)

)
. So z ∈∪

(yi)mi=1∈D
S(yi)

m
i=1. Therefore S ⊆

∪
(yi)mi=1∈D

S(yi)
m
i=1. It is clear that the opposite

inclusion holds.

Lemma 2.2 needs to the proof of Theorem 2.6.

Lemma 2.2. Let h : Rn → R ∪ {+∞} be a function, let A be a nonempty set,
and let B(x) be nonempty subsets of Rn for all x ∈ A. Then

inf
x∈A

inf
y∈B(x)

h(y) = inf
y∈

∪
x∈A

B(x)
h(y)

Proof. For each x ∈ A, since B(x) ⊆
∪
x∈A

B(x),

inf
y∈B(x)

h(y) ≥ inf
y∈

∪
x∈A

B(x)
h(y).

Therefore we have
inf
x∈A

inf
y∈B(x)

h(y) ≥ inf
y∈

∪
x∈A

B(x)
h(y).
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Assume that inf
x∈A

inf
y∈B(x)

h(y) > inf
y∈

∪
x∈A

B(x)
h(y). Then there exists β such that

inf
x∈A

inf
y∈B(x)

h(y) > β > inf
y∈

∪
x∈A

B(x)
h(y).

From β > inf
y∈

∪
x∈A

B(x)
h(y), there exists y0 ∈

∪
x∈A

B(x) such that h(y0) < β, and

there exist x0 ∈ A such that y0 ∈ B(x0). Therefore

inf
x∈A

inf
y∈B(x)

h(y) ≤ inf
y∈B(x0)

h(y) ≤ h(y0) < β.

This contradicts to inf
x∈A

inf
y∈B(x)

h(y) > β. So, inf
x∈A

inf
y∈B(x)

h(y) = inf
y∈

∪
x∈A

B(x)
h(y).

Theorem 2.6. (R. Harada, D. Kuroiwa, [2]) Let fi, gi : Rn → R ∪ {+∞} be
lower semi continuous proper convex functions for each i = 0, 1, . . . ,m, S = {x ∈
Rn | fi(x) − gi(x) ≤ 0,∀i = 1, . . . ,m}, let gi subdifferentiable on S for each

i = 1, . . . ,m,
∪
x∈S

∂g0(x) ⊆ D0 ⊆ Rn, and
∪
x∈S

(
m∏
i=1

∂gi(x)

)
⊆ D ⊆ Rnm. Then

Val(P)= inf
(y0,(yi)mi=1)∈D0×D

Val(P(y0,(yi)
m
i=1)).

Proof. For any x ∈ Rn and y0 ∈ D0, we have g0(x) + g∗0(y0) ≥ ⟨x, y0⟩, that is,
f0(x)− g0(x) ≤ f0(x)− ⟨x, y0⟩+ g∗0(y0). By using Lemma 2.1,

inf
x∈S

{f0(x)− g0(x)} ≤ inf
x∈S

{f0(x)− ⟨x, y0⟩+ g∗0(x)}

≤ inf
x∈S(yi)

{f0(x)− ⟨x, y0⟩+ g∗0(x)}

for any (yi)
m
i=1 ∈ D. This shows Val(P)≤ inf

(y0,(yi)mi=1)∈D0×D
Val(P(y0,(yi)

m
i=1)). Con-

versely, for each x ∈ S, pick yi ∈ ∂gi(x) for each i = 1, . . . ,m, then fi(x) −
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⟨x, yi⟩+ g∗i (yi) = fi(x)− gi(x). Therefore

inf
(y0,(yi)mi=1)∈D0×D

Val(P(y0,(yi)
m
i=1)) = inf

y0∈D0

inf
(yi)mi=1∈D

inf
z∈S(yi)mi=1

{f0(z)− ⟨z, y0⟩+ g∗0(y0)}

= inf
y0∈D0

inf
z∈

∪
(yi)

m
i=1

∈D

S(yi)mi=1

{f0(z)− ⟨z, y0⟩+ g∗0(y0)}

= inf
y0∈D0

inf
z∈S

{f0(z)− ⟨z, y0⟩+ g∗0(y0)}

= inf
z∈S

inf
y0∈D0

{f0(z)− ⟨z, y0⟩+ g∗0(y0)}

≤ inf
z∈S

inf
y0∈

∪
x∈S

∂g0(x)
{f0(z)− ⟨z, y0⟩+ g∗0(y0)}

≤ inf
z∈S

inf
y0∈∂g0(z)

{f0(z)− ⟨z, y0⟩+ g∗0(y0)}

= inf
z∈S

inf
y0∈∂g0(z)

{f0(z)− g0(z)}

= inf
z∈S

{f0(z)− g0(z)}

= Val(P).

The second and third equalities hold from Lemma 2.1 and Lemma 2.2, respec-
tively. When S ̸= ∅, this reverse inequality is clear since Val(P)= +∞. This
completes the proof.

From this, we give the following theorem.

Theorem 2.7. (R. Harada, D. Kuroiwa, [2]) Let fi, gi : Rn → R ∪ {+∞} be
lower semi continuous convex functions for each i = 0, 1, . . . ,m, S = {x ∈
Rn | fi(x) − gi(x) ≤ 0, ∀i = 1, . . . ,m} nonempty,

∪
x∈S

∂g0(x) ⊆ D0 ⊆ Rn and∪
x∈S

(
m∏
i=1

∂gi(x)

)
⊆ D ⊆ Rnm. If each fi is continuous at least at one point of

S(yi)
m
i=1 = {x ∈ Rn | fi(x)− ⟨x, yi⟩+ g∗i (yi) ≤ 0, ∀i = 1, . . . ,m} and

cone co
m∪
i=1

(epi f ∗
i − (yi, g

∗
i (yi))) + {0} × [0,+∞) is closed, (2.1)

for each (yi)
m
i=1 ∈ D ∩

m∏
i=1

dom g∗i , then

Val(P)

= inf
(y0,(yi)mi=1)∈D0×D

max
λi≥0

inf
x∈Rn

{
f0(x)− ⟨x, y0⟩+ g∗0(y0) +

m∑
i=1

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

}
.

Proof. For each (yi)
m
i=1 ∈ D,

epi (fi − ⟨·, yi⟩+ g∗i (yi))
∗ = epi (f ∗

i (·+ yi)− g∗i (yi))

= epif ∗
i − (yi, g

∗
i (yi))
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for each i = 1, . . . ,m. Also it is easy to check that epi δ∗Rn = {0}× [0,+∞). From
the assumption of this theorem and Theorem 1.15, we have

inf
x∈S(yi)

{f0(x)− ⟨x, y0⟩+ g∗0(y0)}

= max
λi≥0

inf
x∈Rn

{
f0(x)− ⟨x, y0⟩+ g∗0(y0) +

m∑
i=1

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

}
.

Therefore we conclude the final equality by using Theorem 2.6.

2.2 Applications

We will prove Theorems 2.2, 2.3 and 2.4 by using Theorem 2.7 when all fi(i =
1, . . . ,m) are real-valued functions.
[Theorem 2.7⇒Theorem 2.2]

Assume the assumption of Theorem 2.2, that is,

for each (x∗
1, . . . , x

∗
m) ∈

m∏
i=1

{g∗i − f ∗
i ≤ 0}, there exists x̄ ∈ Rn

such that fi(x̄)− ⟨x̄, x∗
i ⟩+ g∗i (x

∗
i ) < 0,∀i = 1, . . . ,m.

Therefore {fi − ⟨·, x∗
i ⟩ + g∗i (x

∗
i ) ≤ 0, i = 1, . . . ,m} holds the Slater constraint

qualification. From Theorem 1.14,

cone co
m∪
i=1

epi(fi − ⟨·, x∗
i ⟩+ g∗i (x

∗
i ))

∗ = cone co
m∪
i=1

(epi f ∗
i − (x∗

i , g
∗
i (x

∗
i ))) is closed.

Let D0 = dom g∗0 and D =
m∏
i=1

{g∗i − f ∗
i ≤ 0}. It is clear that

∪
x∈S

∂g0(x) ⊆ D0.

Now we show ∪
x∈S

(
m∏
i=1

∂gi(x)

)
⊆ D.

For each (yi)
m
i=1 ∈

∪
x∈S

(
m∏
i=1

∂gi(x)

)
, there exists x0 ∈ S such that

(yi)
m
i=1 ∈

m∏
i=1

∂gi(x0). Then, for each i = 1, . . . ,m, gi(x0) + g∗i (yi) = ⟨x0, yi⟩, that
is,

gi(x0) + g∗i (yi) = fi(x0) + ⟨x0, yi⟩ − fi(x0) ≤ fi(x0) + f ∗
i (yi),

therefore we have g∗i (yi)− f ∗
i (yi) ≤ fi(x0)− gi(x0) ≤ 0. This shows (yi)

m
i=1 ∈ D,

that is, ∪
x∈S

(
m∏
i=1

∂gi(x)

)
⊆ D.
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Therefore the assumption of Theorem 2.7 is satisfied.
[Theorem 2.7⇒Theorem 2.3]

Assume the assumption of Theorem 2.3, that is,

for each (x∗
1, . . . , x

∗
m) ∈ Ω = {(x∗

1, . . . , x
∗
m) ∈ Rnm |

m∩
i=1

∂g∗i (x
∗
i ) ̸= ∅},

there exists x0 ∈ Rn such that fi(x0)− ⟨x0, x
∗
i ⟩+ g∗i (x

∗
i ) < 0, ∀i = 1, . . . ,m.

Therefore {fi − ⟨·, x∗
i ⟩ + g∗i (x

∗
i ) ≤ 0, i = 1, . . . ,m} holds the Slater constraint

qualification. From Theorem 1.14,

cone co
m∪
i=1

epi(fi − ⟨·, x∗
i ⟩+ g∗i (x

∗
i ))

∗ = cone co
m∪
i=1

(epi f ∗
i − (x∗

i , g
∗
i (x

∗
i ))) is closed.

Let D0 = dom g∗0 and D = Ω. It is clear that
∪
x∈S

∂g0(x) ⊆ D0. Now we show

∪
x∈S

(
m∏
i=1

∂gi(x)

)
⊆ D.

For each (yi)
m
i=1 ∈

∪
x∈S

(
m∏
i=1

∂gi(x)

)
, there exists x0 ∈ S such that

(yi)
m
i=1 ∈

m∏
i=1

∂gi(x0). Since gi = g∗∗i , x0 ∈ ∂gi(yi) for each i = 1, . . . ,m. Therefore

x0 ∈
m∩
i=1

∂gi(yi), and we have
m∩
i=1

∂gi(yi) ̸= ∅, that is,

(yi)
m
i=1 ∈ Ω = D.

Consequently the assumption of Theorem 2.7 is satisfied.
Also, Theorem 2.7 is a strongly generalization of Theorem 2.2 and Theo-

rem 2.3 when all fi(i = 1, . . . ,m) are real valued functions. For example, let
n = 1, m = 1,

f1(x) =


−x− 1 x < −1,

0 x ∈ [−1, 1],
x− 1 x > 1,

and g1(x) = 0, ∀x ∈ R.

Then
f ∗
1 (x

∗) = |x∗|+ δ[−1,1](x
∗) and g∗1(x

∗) = δ{0}(x
∗).

Therefore cone epif ∗
1 + {0}× [0,+∞) is closed. In short, the assumption of The-

orem 2.7 holds. However, both the assumption of Theorem 2.2 and Theorem 2.3
do not hold because f1(x)− ⟨x, x∗⟩+ g∗1(x

∗) ≥ 0 for each x, x∗ ∈ R.



DC programming and its Lagrange-type duality 22

But, Theorem 2.7 is not a generalization of Theorem 2.2 and Theorem 2.3
when some fi(i = 1, . . . ,m) is not a real-valued function. For example, let n = 1,
m = 1 ,

f0(x) = x, g0(x) = 0, f1(x) =

{
−1 x ∈ [−1, 1],
+∞ x /∈ [−1, 1]

and g1(x) = 0, ∀x ∈ R.

Then,
f ∗
1 (x

∗) = |x∗|+ 1 and g∗1(x
∗) = δ{0}, ∀x∗ ∈ R.

Therefore f0, g0 f1 and g1 satisfy the assumption of Theorem 2.2 and Theorem 2.3.
However, cone epi f ∗

1 + {0} × [0,+∞) is not closed. In short f1 and g1 do not
satisfy the assumption of Theorem 2.7.
[Theorem 2.7⇒Theorem 2.4]

Assume the assumption to Theorem 2.4. Let f0 = ⟨a, ·⟩, g0 = 0, f1 = f ,
g1 = 0, f2 = 0, and g2 = g. Then ∂g0(x) = {0} for each x ∈ S and g∗0 = δ{0}. Let
D0 = {0}, D = {0} × A, where A is the set satisfying

∪
x∈S

∂g(x) ⊆ A. Then

∪
x∈S

∂g0(x) ⊆ D0 and
∪
x∈S

(∂g1(x)× ∂g2(x)) ⊆ D.

Also S(y1, y2) is nonempty from Lemma 2.1 and

cone co(epi (f1 − ⟨·, y1⟩+ g∗1(y1))
∗ ∪ epi(f2 − ⟨·, y2⟩+ g∗2(y2))

∗) + {0} × [0,+∞)

= cone co(epif ∗ ∪ {−y2} × [−g∗(y2),+∞) ∪ {0} × [0,+∞))

is closed for each (y1, y2) ∈ D. By using Theorem 2.7, we have

inf
f(x)≤0,g(x)≥0

⟨a, x⟩ = inf
fi(x)−gi(x)≤0

{f0(x)− g0(x)}

= inf
(y0,y1,y2)∈D0×D

max
λi≥0

inf
x∈Rn

{f0(x)− ⟨x, y0⟩+ g∗0(y0) +
∑2

i=1
λi(fi(x)− ⟨x, yi⟩+ g∗(yi))}

= inf
y∈A

max
λi≥0

inf
x∈Rn

{⟨a, x⟩+ λ1f(x) + λ2(−⟨x, y⟩+ g∗(y))}.

This completes the proof of Theorem 2.4.
Next, we examine the following DC programming problem with reverse convex

inequality system.

(R)
minimize f0(x)− g0(x)
subject to gi(x) ≥ 0, ∀i = 1, 2, . . . ,m,

where gi : Rn → R are convex function for each i = 1, . . . ,m. In problem (P), if
fi = 0 for each i = 1, . . . ,m, problem (P) becomes problem (R). From this, the
following theorem hold.
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Theorem 2.8. Let f0 : Rn → R∪{+∞} be lower semi continuous proper convex
function, gi : Rn → R be convex function for each i = 0, 1, . . . ,m,

∪
x∈S

∂g0(x) ⊆

D0 ⊆ Rn,
∪
x∈S

(
m∏
i=1

∂gi(x)

)
⊆ D ⊆ Rnm. If

for each (yi)
m
i=1 ∈ D∩

m∏
i=1

dom g∗i , f0 is continuous at least at one point of S(yi)
m
i=1,

then,

Val(R) = inf
(y0,(yi)mi=1)∈D0×D

max
λi≥0

inf
x∈Rn{

f0(x)− ⟨x, y0⟩+ g∗0(y0) +
m∑
i=1

λi(−⟨x, yi⟩+ g∗i (yi))

}
.

Proof. Let fi = 0 for each i = 1, . . . ,m, then

epif ∗
i = {0} × [0,+∞).

Therefore

cone co
m∪
i=1

(epi f ∗
i − (yi, g

∗
i (yi))) + {0} × [0,+∞)

= cone co
m∪
i=1

({0} × [0,+∞)− (yi, g
∗
i (yi))) + {0} × [0,+∞).

Moreover,

cone co
m∪
i=1

({0} × [0,+∞)− (yi, g
∗
i (yi))) + {0} × [0,+∞)

= cone co{(0, 1),−(y1, g
∗
1(y1)), . . . ,−(ym, g

∗
m(ym))}.

From Theorem 1.1, this set is closed set. Therefore,

Val(R) = inf
(y0,(yi)mi=1)∈D0×D

max
λi≥0

inf
x∈Rn{

f0(x)− ⟨x, y0⟩+ g∗0(y0) +
m∑
i=1

λi(−⟨x, yi⟩+ g∗i (yi))

}

Example 2.1. In this example, we calculate the optimal value of the following
DC programming problem by using Theorem 2.7:

(P)
minimize x− |y|
subject to x2 + y2 − 1− |x| ≤ 0.
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Let f0(x, y) = x, g0(x, y) = |y|, f1(x, y) = x2 + y2 − 1, g1(x, y) = |x|, D0 = {0}×
[−1, 1], and D = [−1, 1]×{0}. Then we have g∗0 = δ{0}×[−1,1] and g∗1 = δ[−1,1]×{0}.
For each y1 ∈ D, we can check that f1 is continuous at least at one point of S(y1)
because S(y1) = {x ∈ Rn | f1(x)− ⟨x, y1⟩+ g∗1(y1) ≤ 0} is nonempty, and

cone co (epi f ∗
1 − (y1, g

∗
1(y1))) + {0} × [0,+∞)

is closed. By using Theorem 3.1,

Val(P) = inf
(t1,t2)∈D0, (t3,t4)∈D

max
λ≥0

inf
(x,y)∈R2

{f0(x, y)− ⟨(x, y), (t1, t2)⟩+ g∗0(t1, t2) + λ(f1(x, y)− ⟨(x, y), (t3, t4)⟩+ g∗1(t3, t4)}
= inf

t2,t3∈[−1,1]
max
λ≥0

inf
(x,y)∈R2

{x− t2y + λ(x2 + y2 − 1− t3x)}

= inf
t2,t3∈[−1,1]

max
λ>0

inf
(x,y)∈R2

{x− t2y + λ(x2 + y2 − 1− t3x)}

= inf
t2,t3∈[−1,1]

max
λ>0

inf
(x,y)∈R2{

λ

((
x− λt3 − 1

2λ

)2

+

(
y − t2

2λ

)2

−
(
λt3 − 1

2λ

)2

−
(
t2
2λ

)2

− 1

)}

= inf
t2,t3∈[−1,1]

max
λ>0

{
λ

(
−
(
λt3 − 1

2λ

)2

−
(
t2
2λ

)2

− 1

)}

= inf
t2,t3∈[−1,1]

−min
λ>0

{
t23 + 4

4
λ+

t22 + 1

4λ
− t3

2

}
= inf

t2,t3∈[−1,1]

{
−2

√
t23 + 4

4
· t

2
2 + 1

4
+

t3
2

}

= inf
t3∈[−1,1]

{
−2

√
t23 + 4

4
· 1

2 + 1

4
+

t3
2

}

= −1

2
−

√
10

2
.

In the 7th equality, min is attained when λ =
√

t22+1

t23+4
.



Chapter 3

Another Lagrange-type duality

We observe the following DC programming problem with inequality constraints:

(P)
minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m,

where fi, gi : Rn → R are convex functions for each i = 0, 1, . . . ,m. Clearly,
problem (P) is equivalent to the following problem (P′):

(P′)
minimize f0(x)− g0(x)
subject to max

i=1,...,m
{fi(x)− gi(x)} ≤ 0,

and problem (P′) is also a DC programming problem. Indeed, form Theorem 1.18,

max
i=1,...,m

{fi(x)− gi(x)} = F (x)−G(x),

where

F = max
i=1,...,m

{
fi +

∑
j ̸=i

gj

}
, G =

m∑
i=1

gi,

and F andG are convex functions. To our surprise, we can observe that constraint
qualifications of two DC inequality systems {fi − gi ≤ 0, i = 1, . . . ,m} and
{F −G ≤ 0} have a difference in spite of the two systems being equivalent. This
can be seen at the end of Section 3.2. Motivated by the observation, we study
other Lagrange-type duality results of the last chapter.

3.1 Maximum function of DC functions

At first, we give another duality result.

25
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Theorem 3.1. (R. Harada, D. Kuroiwa, [1]) Let fi, gi : Rn → R be convex
functions for each i = 0, 1, . . . ,m, S = {x ∈ Rn | fi(x)−gi(x) ≤ 0, ∀i = 1, . . . ,m},∪
x∈S

∂g0(x) ⊆ D0 and D =
∪
x∈S

m∑
i=1

∂gi(x). If

cone co

(
m∪
i=1

(
epi f ∗

i +
∑
j ̸=i

epi g∗j

)
−

m∑
i=1

(
yi, g

∗
i (yi)

))
+{0}×[0,+∞) is closed (3.1)

for each (yi)
m
i=1 ∈

∪
x∈S

m∏
i=1

∂gi(x), then following Lagrange-type duality holds:

Val(P) = inf
(y0,ŷ)∈D0×D

max
λ̂, λi≥0
m∑
i=1

λi=λ̂

inf
x∈Rn



f0(x)− ⟨x, y0⟩+ g∗0(y0)

+
m∑
i=1

λi(fi(x)− gi(x))

+λ̂

(
m∑
j=1

gj(x)− ⟨x, ŷ⟩+ (
m∑
j=1

gj)
∗(ŷ)

)


.

Also we give a unified result of Theorem 2.7 and Theorem 3.1, as follows:

Theorem 3.2. (R. Harada, D. Kuroiwa, [1]) Let fi, gi : Rn → R be convex func-
tions for each i = 0, 1, · · · ,m, S = {x ∈ Rn | fi(x) − gi(x) ≤ 0, ∀i = 1, . . . ,m},

I ⊆ {1, . . . ,m},
∪
x∈S

∂g0(x) ⊆ D0 and D =
∪
x∈S

(∏
i/∈I

∂gi(x)×
∑
i∈I

∂gi(x)

)
. If

cone co

(∪
i∈I

((
epi f ∗

i +
∑
j ̸=i
j∈I

epi g∗j

)
−
∑
i∈I

(
yi, g

∗
i (yi)

))

∪
∪
i/∈I

(
epi f ∗

i −
(
yi, g

∗
i (yi)

)))
+ {0} × [0,+∞)

(3.2)

is closed for each (yi)
m
i=1 ∈

∪
x∈S

m∏
i=1

∂gi(x), then

Val(P) = inf
(y0,((yi)i/∈I ,ŷ))∈D0×D

max
λ̂, λi≥0∑
i∈I

λi=λ̂

inf
x∈Rn


f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+
∑
i∈I

λi(fi(x)− gi(x)) + λ̂

(∑
j∈I

gj(x)− ⟨x, ŷ⟩+ (
∑
j∈I

gj)
∗(ŷ)

)
 .

Remark 3.1. If I = ∅, then Theorem 3.2 becomes Theorem 2.7, and if I =
{1, · · · ,m}, then Theorem 3.2 becomes Theorem 3.1. Also, the assumptions of
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Theorem 2.7 and Theorem 3.1 have a difference. This can be seen at the end
of Section 3. Therefore Theorem 3.2 is a generalization of Theorem 2.7 and
Theorem 3.1.

In order to prove Theorem 3.2, we provide the following Theorem 3.3, Lemma 3.1
and Lemma 3.2.

The following theorem will be used in the proof of the main theorem:

Theorem 3.3. (M. Sion, [14]) Let X be a convex set, Y be a compact convex
set, f : X×Y → R, where f(x, ·) is upper semi continuous concave on Y for each
x ∈ X and f(·, y) is lower semi continuous convex on X for each y ∈ Y . Then

inf
x∈X

max
y∈Y

f(x, y) = max
y∈Y

inf
x∈X

f(x, y).

Lemma 3.1. For any m ∈ N and for any convex sets Ci ⊆ Rn (i = 1, . . . ,m),

co
m∪
i=1

Ci =
∪
λi≥0

m∑
i=1

λi=1

m∑
i=1

λiCi. (3.3)

Proof. Clearly, (3.3) holds when m = 1, 2. Assume that (3.3) holds for some
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m ∈ N. Let Ci ⊆ Rn be convex sets for all i = 1, . . . ,m+ 1. Then,

co
m+1∪
i=1

Ci

= co

(
m∪
i=1

Ci ∪ Cm+1

)

= co

(
co

( m∪
i=1

Ci

)
∪ Cm+1

)

=
∪

λ∈[0,1]

(
λco

m∪
i=1

Ci + (1− λ)Cm+1

)
(
... from the case when m = 2)

=
∪

λ∈[0,1]

(
λ
∪
λi≥0

m∑
i=1

λi=1

m∑
i=1

λiCi + (1− λ)Cm+1

)
(
... from the assumption)

=
∪

λ∈[0,1]

∪
λi≥0

m∑
i=1

λi=1

(
m∑
i=1

λλiCi + (1− λ)Cm+1

)

=
∪
λi≥0

m+1∑
i=1

λi=1

m+1∑
i=1

λiCi.

Therefore (3.3) holds for m + 1. From mathematical induction, the proof is
completed.

Lemma 3.2. For any m ∈ N and for any convex sets Ai, Bi ⊆ Rn (i = 1, . . . ,m),

co
∪
λi≥0

m∑
i=1

λi=1

m∑
i=1

(λiAi + (1− λi)Bi) = co
m∪
i=1

(Ai +
∑
j ̸=i

Bj). (3.4)

Proof. We may assume that all Ai and Bi are not empty. We show this lemma
by using mathematical induction. It is clear that (3.4) holds when m = 1. In
the case of m = 2, (3.4) holds from Lemma 3.1 by putting C1 = A1 + B2 and
C2 = A2 + B1. Assume that (3.4) holds for some m ∈ N. Let Ai, Bi ⊆ Rn be
convex sets for all i = 1, . . . ,m+ 1. Then,
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co
∪
λi≥0

m+1∑
i=1

λi=1

m+1∑
i=1

(λiAi + (1− λi)Bi)

= co
∪

0≤λ1≤1

( ∪
λ2,...,λm+1≥0

m+1∑
i=1

λi=1

(m+1∑
i=1

(λiAi + (1− λi)Bi)
))

= co

( ∪
0≤λ1<1

( ∪
λ2,...,λm+1≥0

m+1∑
i=1

λi=1

(m+1∑
i=1

(λiAi + (1− λi)Bi)
))

∪
(
A1 +

m+1∑
i=2

Bi

))

= co

( ∪
0≤λ1<1

(
λ1A1 + (1− λ1)B1

+
∪

λ2,...,λm+1≥0
m+1∑
i=1

λi=1

(m+1∑
i=2

(λiAi + (1− λi)Bi)
))

∪
(
A1 +

m+1∑
i=2

Bi

))
.

= co

( ∪
0≤λ1<1

(
λ1A1 + (1− λ1)B1 + (1− λ1)

∪
λ2,...,λm+1≥0
m+1∑
i=2

λi
1−λ1

=1(m+1∑
i=2

(
λi

1− λ1

Ai +
1− λi

1− λ1

Bi)
))

∪
(
A1 +

m+1∑
i=2

Bi

))
.

(3.5)

For all i = 2, . . . ,m+1, since Bi are convex sets, 1−λi = (1−λ1−λi)+λ1, and
1− λ1 − λi ≥ 0, we have

1− λi

1− λ1

Bi =
1− λ1 − λi

1− λ1

Bi +
λ1

1− λ1

Bi =

(
1− λi

1− λ1

)
Bi +

λ1

1− λ1

Bi
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and then

∪
λ2,...,λm+1≥0
m+1∑
i=2

λi
1−λ1

=1

(m+1∑
i=2

(
λi

1− λ1

Ai +
1− λi

1− λ1

Bi)
)

=
∪

λ2,...,λm+1≥0
m+1∑
i=2

λi
1−λ1

=1

(m+1∑
i=2

(
λi

1− λ1

Ai + (1− λi

1− λ1

)Bi +
λ1

1− λ1

Bi

)

=
λ1

1− λ1

m+1∑
i=2

Bi +
∪

λ2,...,λm+1≥0
m+1∑
i=2

λi
1−λ1

=1

(m+1∑
i=2

(
λi

1− λ1

Ai + (1− λi

1− λ1

)Bi)
)

=
λ1

1− λ1

m+1∑
i=2

Bi +
∪

λ′
2,...,λ

′
m+1≥0

m+1∑
i=2

λ′
i=1

(m+1∑
i=2

(λ′
iAi + (1− λ′

i)Bi)
)
.

Hence,

(3.5)

= co

( ∪
0≤λ1<1

(
λ1A1 + (1− λ1)B1 + λ1

m+1∑
i=2

Bi

+ (1− λ1)
∪

λ′
2,...,λ

′
m+1≥0

m+1∑
i=2

λ′
i=1

(m+1∑
i=2

(λ′
iAi + (1− λ′

i)Bi)
))

∪
(
A1 +

m+1∑
i=2

Bi

))

= co

( ∪
0≤λ1<1

(
λ1A1 + (1− λ1)B1 + λ1

m+1∑
i=2

Bi

+ (1− λ1)co
∪

λ′
2,...,λ

′
m+1≥0

m+1∑
i=2

λ′
i=1

(m+1∑
i=2

(λ′
iAi + (1− λ′

i)Bi)
))

∪
(
A1 +

m+1∑
i=2

Bi

))
.

(3.6)
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From the assumption,

(3.6) = co

( ∪
0≤λ1<1

(
λ1A1 + (1− λ1)B1 + λ1

m+1∑
i=2

Bi

+(1− λ1)co
m+1∪
i=2

(
Ai +

∑
j ̸=i

2≤j≤m+1

Bj

))
∪
(
A1 +

m+1∑
i=2

Bi

))

= co

( ∪
0≤λ1<1

(
λ1A1 + (1− λ1)B1 + λ1

m+1∑
i=2

Bi

+(1− λ1)
m+1∪
i=2

(
Ai +

∑
j ̸=i

2≤j≤m+1

Bj

))
∪
(
A1 +

m+1∑
i=2

Bi

))

= co

( ∪
0≤λ1≤1

(
λ1

(
A1 +

m+1∑
i=2

Bi

)
+ (1− λ1)

(
B1 +

m+1∪
i=2

(Ai +
∑
j ̸=i

2≤j≤m+1

Bj)
)))

= co

( ∪
0≤λ1≤1

(
λ1

(
A1 +

m+1∑
i=2

Bi

)
+ (1− λ1)

(m+1∪
i=2

(Ai +
∑
j ̸=i

Bj)
)))

.

(3.7)

By using Lemma 3.1,

(3.7) = co

((
A1 +

m+1∑
i=2

Bi

)
∪
(m+1∪

i=2

(Ai +
∑
j ̸=i

Bj)

))

= co
m+1∪
i=1

(Ai +
∑
j ̸=i

Bj).

Consequently, (3.4) holds for m+ 1.

Proof of Theorem 3.2. Let F = max
i∈I

{fi +
∑
j ̸=i
j∈I

gj} and G =
∑
i∈I

gi. We can see the

problem (P) is converted to the following equivalent problem (P′′):

(P′′)
minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0,∀i /∈ I,

F (x)−G(x) ≤ 0.

From (1.2),

D =
∪
x∈S

(∏
i/∈I

∂gi(x)×
∑
i∈I

∂gi(x)

)
=
∪
x∈S

(∏
i/∈I

∂gi(x)× ∂
∑
i∈I

gi(x)

)
.
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For each ((yi)i/∈I , ŷ) ∈ D ∩ (
∏
i/∈I

dom g∗i × domG∗), there exists x̂ ∈ S such that

yi ∈ ∂gi(x̂) for each i /∈ I and ŷ ∈ ∂
∑
i∈I

gi(x̂), that is,

gi(x̂) + g∗i (yi) = ⟨x̂, yi⟩ (i /∈ I),
(∑

i∈I

gi

)
(x̂) +

(∑
i∈I

gi

)∗
(ŷ) = ⟨x̂, ŷ⟩ .

From (1.4), there exists yi(i ∈ I) such that (
∑
i∈I

gi)
∗(ŷ) =

∑
i∈I

g∗i (yi) and
∑
i∈I

yi = ŷ.

Then ∑
i∈I

(gi(x̂) + g∗i (yi)) =
∑
i∈I

⟨x̂, yi⟩ ,

and since gi(x̂) + g∗i (yi) ≥ ⟨x̂, yi⟩ for each i ∈ I, we have

gi(x̂) + g∗i (yi) = ⟨x̂, yi⟩ , that is yi ∈ ∂gi(x̂)

for each i ∈ I. Therefore

(yi)
m
i=1 ∈

m∏
i=1

∂gi(x̂) ⊆
∪
x∈S

m∏
i=1

∂gi(x). (3.8)

From ŷ ∈ ∂
∑
i∈I

gi(x̂) and x̂ ∈ S,

F (x)− ⟨x̂, ŷ⟩+G∗(ŷ) = max
i∈I

{fi(x̂) +
∑
j ̸=i
j∈I

gj(x̂)} − ⟨x̂, ŷ⟩+ (
∑
i∈I

gi)
∗(ŷ)

= max
i∈I

{fi(x̂) +
∑
j ̸=i
j∈I

gj(x̂)} −
∑
i∈I

gi(x̂)

= max
i∈I

{fi(x̂)− gi(x̂)} ≤ 0.

From yi ∈ ∂gi(x̂) for each i /∈ I and x̂ ∈ S, fi(x̂)−⟨x̂, yi⟩+g∗i (yi) = fi(x̂)−gi(x̂) ≤
0. Therefore x̂ is an element of {x ∈ Rn | fi(x) − ⟨x, yi⟩ + g∗i (yi) ≤ 0, ∀i /∈
I, F (x) − ⟨x, ŷ⟩ + G∗(ŷ) ≤ 0} and this set is non-empty. For each i ∈ I, let
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Fi = fi +
∑
j ̸=i
j∈I

gj. Now we have

epiF ∗ = co
∪
i∈I

epiF ∗
i (

... from (1.1))

=
∪
λi≥0∑

i∈I
λi=1

∑
i∈I

λiepiF
∗
i (

... by using Lemma 3.1)

=
∪
λi≥0∑

i∈I
λi=1

∑
i∈I

λi(epi f
∗
i +

∑
j ̸=i
j∈I

epi g∗j ) (
... from (1.5))

=
∪
λi≥0

m∑
i=1

λi=1

∑
i∈I

(λiepi f
∗
i + (1− λi)epi g

∗
i )

= co
∪
λi≥0

m∑
i=1

λi=1

∑
i∈I

(λiepi f
∗
i + (1− λi)epi g

∗
i )

= co
∪
i∈I

(epi f ∗
i +

∑
j ̸=i
j∈I

epi g∗i ). (
... from Lemma 2)

Therefore

epiF ∗ − (ŷ, G∗(ŷ)) = co

(∪
i∈I

(epi f ∗
i +

∑
j∈I
j ̸=i

epi g∗j )−
∑
i∈I

(yi, g
∗
i (yi))

)
,

and hence

cone co

(∪
i/∈I

(epi f ∗
i − (yi, g

∗
i (yi))) ∪ (epiF ∗ − (ŷ, G∗(ŷ)))

)
+ {0} × [0,+∞)

= cone co

(∪
i/∈I

(epi f ∗
i − (yi, g

∗
i (yi))) ∪

(∪
i∈I

(epi f ∗
i +

∑
j∈I
j ̸=i

epi g∗j )−
∑
i∈I

(yi, g
∗
i (yi))

))

+ {0} × [0,+∞),

because co(A ∪ coB) = co(A ∪ B) for any A, B ⊆ Rn. From (3.2), this set is
closed. By using Theorem 2.7,

Val(P) = inf
(y0,((yi)i/∈I ,ŷ))∈D0×D

max
λ̂, λi≥0

inf
x∈Rn{

f0(x)− ⟨x, y0⟩+ g∗0(y0) +
∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂(F (x)− ⟨x, ŷ⟩+G∗(ŷ))

}
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holds. For any (y0, ((yi)i/∈I , ŷ)) ∈ D0 ×D,

max
λi≥0(i ̸∈I)

λ̂≥0

inf
x∈Rn

{
f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂(F (x)− ⟨x, ŷ⟩+G∗(ŷ))

}

= max
λi≥0(i ̸∈I)

λ̂≥0

inf
x∈Rn


f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂
(
max
i∈I

{
fi(x) +

∑
j ̸=i, j∈I

gj(x)

}
− ⟨x, ŷ⟩+ (

∑
j∈I

gj)
∗(ŷ)

)


= max
λi≥0(i ̸∈I)

λ̂≥0

inf
x∈Rn

f0(x)− ⟨x, y0⟩+ g∗0(y0) +
∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂
(

max
λi≥0(i∈I)∑

i∈I λi=1

∑
i∈I λi(fi(x) +

∑
j ̸=i, j∈I

gj(x))− ⟨x, ŷ⟩+ (
∑
j∈I

gj)
∗(ŷ)

)


= max
λi≥0(i ̸∈I)

λ̂≥0

inf
x∈Rn

max
λi≥0(i∈I)∑

i∈I λi=1
f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂
∑

i∈I λi(fi(x) +
∑

j ̸=i, j∈I
gj(x))− ⟨x, ŷ⟩+ (

∑
j∈I

gj)
∗(ŷ))


= max

λi≥0(i ̸∈I)
λ̂≥0

max
λi≥0(i∈I)∑
i∈I

λi=1

inf
x∈Rn


f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂
∑

i∈I λi(fi(x) +
∑

j ̸=i, j∈I
gj(x))− ⟨x, ŷ⟩+ (

∑
j∈I

gj)
∗(ŷ))


= max

λ̂, λi≥0∑
i∈I

λi=1

inf
x∈Rn


f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂(
∑

i∈I λi(fi(x)− gi(x) +
∑
j∈I

gj(x))− ⟨x, ŷ⟩+ (
∑
j∈I

gj)
∗(ŷ))


= max

λ̂, λi≥0∑
i∈I

λi=1

inf
x∈Rn


f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+λ̂
∑

i∈I λi(fi(x)− gi(x)) + λ̂(
∑
j∈I

gj(x)− ⟨x, ŷ⟩+ (
∑
j∈I

gj)
∗(ŷ))


= max

λ̂, λi≥0∑
i∈I

λi=λ̂

inf
x∈Rn


f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+
∑

i∈I λi(fi(x)− gi(x)) + λ̂(
∑
j∈I

gj(x)− ⟨x, ŷ⟩+ (
∑
j∈I

gj)
∗(ŷ))

 .
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The fourth equality of the previous equalities follows from Theorem 3.3. Hence
we have

Val(P) = inf
(y0,((yi)i/∈I ,ŷ))∈D0×D

max
λ̂, λi≥0∑
i∈I

λi=λ̂

inf
x∈Rn


f0(x)− ⟨x, y0⟩+ g∗0(y0) +

∑
i/∈I

λi(fi(x)− ⟨x, yi⟩+ g∗i (yi))

+
∑
i∈I

λi(fi(x)− gi(x)) + λ̂(
∑
j∈I

gj(x)− ⟨x, ŷ⟩+ (
∑
j∈I

gj)
∗(ŷ))

 .

This completes the proof.

3.2 Comparison

Now we can apply Theorem 3.1 to DC programming problems.

Example 3.1. Consider the following DC programming problem:

(P)
minimize f0(x)− g0(x)
subject to x = (x1, x2) ∈ R2, fi(x)− gi(x) ≤ 0, i = 1, 2,

where f0(x1, x2) = x2
1 − x2, g0(x1, x2) = 0, f1(x1, x2) = x2, g1(x1, x2) = |x1|,

f2(x1, x2) = −x2, and g2(x1, x2) = |x1|. This mathematical programming prob-
lem is neither convex nor differentiable, therefore the previous theorems concerned
with convex or differentiable programming problems can not be applied directly.
Let D0 =

∪
x∈S

∂g0(x) = {(0, 0)} and D =
∪
x∈S

(∂g1(x) + ∂g2(x)) = [−2, 2] × {0}.

We can check that the assumption of Theorem 3.1 holds. Therefore,

Val(P) = inf
ŷ1∈[−2,2]

max
λ1,λ2≥0

inf
x1,x2∈R{

x2
1 − x2 + λ1(|x1|+ x2) + λ2(|x1| − x2)− (λ1 + λ2)ŷ1x1

}
= inf

ŷ1∈[−2,2]
max

λ1,λ2≥0
inf

x1,x2∈R{
x2
1 + (λ1 + λ2)(|x1| − ŷ1x1) + (−1 + λ1 − λ2)x2

}
= inf

ŷ1∈[−2,2]
max
λ2≥0

inf
x1∈R

{
x2
1 + (2λ2 + 1)(|x1| − ŷ1x1)

}
= inf

ŷ1∈[−2,2]
max
λ2≥0

min{ inf
x1≥0

{
x2
1 + (2λ2 + 1)(1− ŷ1)x1

}
,

inf
x1≤0

{
x2
1 − (2λ2 + 1)(1 + ŷ1)x1

}
},

and we can see that

inf
x1≥0

{
x2
1 + (2λ2 + 1)(1− ŷ1)x1

}
=

{
−1

4
(2λ2 + 1)2(1− ŷ1)

2 if ŷ1 ∈ [1, 2]
0 if ŷ1 ∈ [−2, 1)

inf
x1≤0

{
x2
1 − (2λ2 + 1)(1 + ŷ1)x1

}
=

{
−1

4
(2λ2 + 1)2(1 + ŷ1)

2 if ŷ1 ∈ [−2,−1]
0 if ŷ1 ∈ (−1, 2],
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then we have

Val(P) = inf
|ŷ1|∈[1,2]

max
λ2≥0

{
−1

4
(2λ2 + 1)2(1− |ŷ1|)2

}
= inf

|ŷ1|∈[1,2]

{
−1

4
(1− |ŷ1|)2

}
=− 1

4
.

This example shows that Theorem 3.1 contributes to solving DC programming
problems.

Next, we provide an observation that Theorem 3.1 has no relevance to Theo-
rem 2.7. At first, we give a DC inequality system which holds the assumption of
Theorem 3.1 but does not hold the assumption of Theorem 2.7 in the following
example:

Example 3.2. Define f1, f2, g1, g2 : R → R as

f1(x) =


1
4
x2 − x+ 1 if x ≥ 2,

0 if − 2 < x < 2,
1
4
x2 + x+ 1 otherwise,

f2(x) =
1

25
x2 − 1

4
,

g1(x) =
1

5
x2 and g2(x) =

[
x+ 1

2

]
x−

[
x+ 1

2

]2
,

where [·] is the greatest integer function. Since g2(x) = kx − k2 if x ∈ [2k −
1, 2k + 1) where k ∈ Z, g2 is also a convex function. Also we can see that

f ∗
1 (y) =

{
y2 + 2y if y ≥ 0,
y2 − 2y otherwise,

f ∗
2 (y) = 5y2 +

1

4
,

g∗1(y) =
5

4
y2 and g∗2(y) = (2[y] + 1)y − [y]2 − [y].

Put F = max{f1 + g2, f2 + g1} and G = g1 + g2. For each ŷ ∈ D =
∪
x∈S

(∂g1(x) +

∂g2(x)), there exists x̂ ∈ S, y1 ∈ ∂g1(x̂), y2 ∈ ∂g2(x̂) such that ŷ = y1 + y2 and
G∗(ŷ) = g∗1(y1) + g∗2(y2) from (1.4). Since epiF ∗ = co((epi f ∗

1 +epi g∗2)∪ (epi f ∗
2 +

epi g∗1)),

cone co(epiF ∗ − (ŷ, G∗(ŷ))) + {0} × [0,+∞)

= cone co({(n, n2) | n ∈ Z} − (y1 + y2, g
∗
1(y1) + g∗2(y2))) + {0} × [0,+∞).

The latter set is always closed. In general,

cone co({(n, n2) | n ∈ Z}−(a, b)) =

{
epih if a /∈ Z, α ≤ β or a ∈ Z, a2 − b ≥ 0,
R2 otherwise,
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where a, b ∈ R, α = min
{

n2−b
n−a

| n ∈ Z, n > a
}
, β = max

{
n2−b
n−a

| n ∈ Z, n > a
}
,

and h(x) =

{
αx if x ≥ 0,
βx otherwise.

From this, cone co({(n, n2) | n ∈ Z} − (a, b)) is

always closed. Therefore {F − G ≤ 0} holds condition (2.1). Also S(ŷ) ̸= ∅
because F (x̂)−⟨x̂, ŷ⟩+G∗(ŷ) ≤ 0. Therefore {F −G ≤ 0} holds the assumption
of Theorem 3.1. However,

cone co((epi f ∗
1 − (0, g∗1(0))) ∪ (epi f ∗

2 − (0, g∗2(0)))) + {0} × [0,+∞)

= {(x, α) | 2|x| < α} ∪ {(0, 0)}

is not closed, that is, {f1 − g1 ≤ 0, f2 − g2 ≤ 0} does not hold (2.1).

Next, we give a DC inequality system which holds the assumption of The-
orem 2.7 but does not hold the assumption of Theorem 3.1 in the following
example:

Example 3.3. Define f1, f2, g1, g2 : R → R as

f1(x) =

[
x+ 1

2

]
x−

[
x+ 1

2

]2
, f2(x) =

[
2x+ 1

2

]
x− 1

2

[
2x+ 1

2

]2
,

g1(x) =
1

4
x2, and g2(x) =

1

2
x2.

We can see that

f ∗
1 (y) = (2[y] + 1)y − [y]2 − [y], f ∗

2 (y) = ([y] +
1

2
)y − 1

2
[y]2 − 1

2
[y],

g∗1(y) = y2 and g∗2(x) =
1

2
y2,

and then

cone co((epi f ∗
1 − (y1, g

∗
1(y1))) ∪ (epi f ∗

2 − (y2, g
∗
2(y2)))) + {0} × [0,+∞)

= cone co
(
({(n, n2) | n ∈ Z} − (y1, g

∗
1(y1)))

∪
({(

n,
1

2
n2

)
| n ∈ Z

}
− (y2, g

∗
2(y2))

))
+ {0} × [0,+∞),

for each (y1, y2) ∈
∪

x∈S(∂g1(x) × ∂g2(x)). The latter set is always closed in the
similar way to Example 3.2. Also, for each (y1, y2) ∈

∪
x∈S(∂g1(x) × ∂g2(x)),

there exists z ∈ R such that y1 =
1
2
z, y2 = z, then

S(y1, y2) = {x ∈ R | fi(x)− xyi + g∗i (yi) ≤ 0, i = 1, 2}

=

{
x ∈ R

∣∣∣∣∣
[
x+1
2

]
x−

[
x+1
2

]2 − 1
2
xz + 1

4
z2 ≤ 0,[

2x+1
2

]
x− 1

2

[
2x+1
2

]2 − xz + 1
2
z2 ≤ 0

}

⊇
{
x ∈ R

∣∣∣∣ 1
4
x2 − 1

2
xz + 1

4
z2 ≤ 0,

1
2
x2 − xz + 1

2
z2 ≤ 0

}
∋ z,
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Then S(y1, y2) is non-empty. Therefore {f1 − g1 ≤ 0, f2 − g2 ≤ 0} holds the
assumption of Theorem 2.7. However,

cone co((epi f ∗
1 + epi g∗2) ∪ (epi f ∗

2 + epi g∗1)− (0 + 0, g∗1(0) + g∗2(0)))

+ {0} × [0,+∞)

= R× (0,+∞) ∪ {(0, 0)}

is not a closed set, that is, (3.1) does not hold.



Conclusions

In this paper, we studied Lagrange-type duality for DC programming problems.
In Chapter 2, we introduced previous Lagrange-type duality theorems in previ-
ous research and we gave a Lagrange-type duality theorem, as Theorem 2.7. Also
we showed that Theorem 2.7 is a generalization of known previous Lagrange-
type duality results for DC programming problems in the real-valued case. In
Chapter 3, we used the fact that the maximum of DC functions is also a DC
function. Based on this idea, we presented Theorem 3.1, which is a Lagrange-
type duality theorem for the maximum DC inequality constraint of the original
DC inequality constraints. We observed that Theorem 3.1 has no relevance to
Theorem 2.7, more precisely, Theorem 3.1 does not imply Theorem 2.7 and The-
orem 2.7 does not imply Theorem 3.1. Also we proved Theorem 3.2, which is a
unified Lagrange-type duality result of Theorem 2.7 and Theorem 3.1. Conse-
quently, the class of DC programming problems to which Lagrange-type duality
theorems can be applied was broader than the class in previous research.
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