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Abstract

This paper is concerned with data sharpening technique in nonparametric regression under the setting

where the multivariate predictor is embedded in an unknown low-dimensional manifold. Theoretical

asymptotic bias is derived, which reveals that the proposed data sharpening estimator has a reduced

bias compared to the usual local linear estimator. The asymptotic normality of the data sharpening

estimator is also developed. It can be confirmed from simulation and applications to real data that the

bias reduction for the data sharpening estimator supported on unknown manifold is evident.

Keywords Data Sharpening, Bias Reduction, Nonparametric Regression, Manifold

1 Introduction

Bias reduction for kernel estimators is an important topic in nonparametric regression. Among the many

nonparametric approaches, the local linear estimator is known to be an efficient standard tool. The local

linear estimator with multivariate predictor and its asymptotic behavior were studied in [11]. The bias

of the local linear estimator is Op(h
2) where h denotes scalar bandwidth as shown in Theorem 2.1 of [11].

Estimators based on high-order polynomials or high-order kernels have been used as conventional approaches

for reducing bias. [5] proposed a comprehensive method called data sharpening for reducing bias. Their

proposed estimator is derived by adding the usual local linear estimator applied to the data and the local

linear estimator of its residuals. Compared to the bias of the local linear estimator, the data sharpening

estimator has smaller bias in the order of Op(h
4). The data sharpening estimator was studied further in [9],

where an effective method for the bandwidth selection for a data sharpening estimator was fully discussed.

The data sharpening technique is closely related to the boosting. In fact the data sharpening can be seen as

one-step L2-boosting [3]: smooth the residual of initial estimator, and then the obtained residual smoother

is added to the initial estimator. Also it is worth to note that this idea can be found in [12] as twicing.
∗E-mail: naito@riko.shimane-u.ac.jp
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On the other hand, there has been researched on identifying intrinsic low-dimensional structures un-

derlying original high-dimensional data. It is assumed in this direction of research that the observed high-

dimensional data are essentially lying on a low-dimensional smooth manifold. Recently, this assumption

has been divided into known manifolds and unknown manifolds, which is reflected in the recent research

relating to low-dimensional manifolds. There are several examples of research based on known manifolds.

Directional statistics [8] is a representative area based on a known low-dimensional manifold, where the circle

and sphere frequently appear as the low-dimensional manifold. Regression for circular and spherical data

was discussed in [6] and [7]. While there has been an abundance of works concerning known manifolds, it

seems that research based on unknown low-dimensional manifolds has still not sufficiently emerged. The

local linear estimator on an unknown manifold was discussed in [2], where the asymptotic bias and variance

were obtained using the local chart connecting the low-dimensional manifold and Euclidean space. Further

works related to smoothing techniques on low-dimensional manifold can be found in [1] and [4].

In this paper, our purpose is to extend the data sharpening estimator on unknown manifolds by combining

[2], [11] and [13]. In the research regarding regression on a manifold, we can use the definition in [2] without

modification for the asymptotic term of the local linear estimator. We define the same data sharpening

estimator as [2] and [9] on a low-dimensional manifold and investigate its asymptotic behavior. Thus, the

present work can be seen as a generalization of the data sharpening technique in Euclidean space to an

unknown low-dimensional manifold.

This paper is organized as follows. Section 2 introduces the proposed data sharpening estimator with a

short review of the local linear estimator. The asymptotic results and assumptions are collected in Section

3. In particular, the asymptotic bias and variance of the data sharpening estimator are derived, and its

asymptotic normality is also developed. To confirm the bias reduction, the data sharpening estimator is

compared with the local linear estimator theoretically in Section 4. Asymptotic terms of the bias, variance

and mean squared error (MSE) for the data sharpening estimator are shown graphically in some specific

cases. In Section 5, the practical performance of the data sharpening estimator is investigated through

simulation and applications to real data sets. Proofs of theoretical results and calculations are contained in

Section 6.

2 Model and Data Sharpening

Throughout this paper, we use the notations LL and DS to denote Local Linear and Data Sharpening,

respectively.
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2.1 Model

Let {(Xi, Yi) ∈ Rp × R | 1 ≤ i ≤ n} be a random sample drawn from the model

Yi = m(Xi) + v(Xi)
1/2εi, i ∈ {1, · · · , n},

where ε1, · · · , εn are independent and identically distributed (i.i.d.) random variables satisfying E[εi] = 0,

V ar[εi] = 1 that are independent of X1, · · · , Xn; m : Rp → R is the target regression function defined as

m(x) = E[Y |X = x]

for x = (x1, · · · , xp) ∈ Rp; and v is a positive variance function. In this paper, we assume that X1, · · · , Xn

are embedded into a low-dimensional manifold X . Let positive integer d (d ≤ p) be the dimension of manifold

X . Manifold X is represented as the image of a local chart φ. The local chart φ is a bijective and C3 mapping

from Bd
0,r into X ∩ Bp

x,µ for some r > 0 and µ > 0, where Bq
y,ν = {z ∈ Rq| ||z − y|| < ν} (q = d or q = p)

is the ball with its center y and radius ν, and ||z|| =
√
zT z for z ∈ Rq. We suppose that the local chart φ

satisfies φ(0) = x. For a given x ∈ X , our problem is to estimate m(x) nonparametrically.

2.2 Data Sharpening

Commonly used nonparametric regression estimators for m(x) are multivariate versions of the Nadaraya-

Watson kernel estimator, the local polynomial estimator, and the smoothing spline. [5] proposed some kernel

regression estimators derived through a method called Data Sharpening (DS), which aims to reduce the bias

of usual kernel estimators. The DS estimator is obtained by adding the residual smoother to the original

regression estimator. The DS methods for the Nadaraya-Watson and LL estimators were discussed in [5] with

a scalar bandwidth when d = p and φ is the identical mapping on Rp. The general theory for multivariate

LL regression has been developed in [11]. Asymptotic conditional bias and variance of the LL estimator

were derived in [11], where they treated not only a scalar bandwidth but also a general bandwidth matrix.

For a scalar bandwidth h > 0, it is well known that the bias of the LL estimator is Op(h
2), whereas the DS

estimator has bias of the order Op(h
4).

The LL estimator m̂LL(x, h) is defined from the solution α̂(x) of the following weighted least squares

problem:

(α̂(x), β̂(x)) = arg-min
(α,β)∈R×Rp

n∑
i=1

{Yi − α− βT (Xi − x)}2Kh (Xi − x) ,
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where Kh(U) = h−pK(h−1U), K is a p-variate kernel function. By direct calculations, m̂LL(x, h) for m(x)

is derived as

m̂LL(x, h) = α̂(x) = eT1 (X
T
x WxXx)

−1XT
x WxY,

where

Xx =


1 (X1 − x)T

...
...

1 (Xn − x)T

 , Y =


Y1

...

Yn

 ,

Wx = diag(Kh(X1 − x), · · · ,Kh(Xn − x)), e1 = [1 0 · · · 0]T ∈ Rp+1.

The DS method consists of two steps: the first step is smoothing by m̂LL(x, h), and then calculating the

residuals by ri = Yi − m̂LL(Xi, h) for i = 1, · · · , n. In the second step, let r̂LL(x, h) be the LL estimator

applied to the residual data {(Xi, ri)| 1 ≤ i ≤ n}, which is obtained as

r̂LL(x, h) = eT1 (X
T
x WxXx)

−1XT
x Wx(Y − M̃),

where M̃ = [m̂LL(X1, h) · · · m̂LL(Xn, h)]
T . The DS estimator m̂DS(x, h) is then defined as

m̂DS(x, h) = m̂LL(x, h) + r̂LL(x, h) = eT1 (X
T
x WxXx)

−1XT
x Wx(2Y − M̃).

3 Theory

This section summarizes the asymptotic behavior for the DS estimator on the manifold as well as the

required assumptions. Assumptions for the LL estimator on the manifold were already developed in [2].

Some assumptions in [2] apply here, but additional assumptions are needed to develop asymptotics for

m̂DS(x, h).

3.1 Assumptions

We denote closure of Bp
x,µ as Bp

x,µ = {y ∈ Rp| ||y − x|| ≤ µ}.

1. The true regression function m is bounded and C4 on Rp.

2. The variance function v is bounded above and from zero on Rp.

3. The map φ given in Section 2.1 further satisfies the following. There exists a random element Z in Rd

such that P(X ∈ S) = Q(Z ∈ φ−1(S)) for any open set S of X ∩Bp
x,µ, where Q is the induced measure
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on Bd
0,r. And the measure Q has the non-degenerate density, which is denoted by f . The density f is

C2 on Bd
0,r and f(0) > 0.

4. The kernel function K is a radially symmetric density and C3.

5. For bandwidth h and sample size n, nhd → ∞ holds as n → ∞ and h → 0.

6. If the function w satisfies w(y) ≤ M(1 + ||y||2)3 (y ∈ X ) for some M > 0 and γ ∈ {1, 2, 4}, then as

h → 0,

E

[
w(X)K

(
X − x

h

)γ

1(X ∈ (Bp
x,h1−η ∩ X )c)

]
= o(hd+4)

and φ−1(Bp
x,h1−η ∩ X ) = Bd

0,h1−η hold for some η(0 < η < 1).

7. If function w′ is continuous on Bp
x,µ × Bp

x,µ, then as h → 0,

E

[
w′(X1, X2)K

(
X1 −X2

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
×1(X1 ∈ (Bp

x,h1−η′ ∩ X )c)1(X2 ∈ (Bp

x,h1−η′ ∩ X )c)

]
= o(h2d),

E

[
w′(X1, X2)K

(
X1 −X2

h

)2

K

(
X1 − x

h

)2

×1(X1 ∈ (Bp

x,h1−η′ ∩ X )c)1(X2 ∈ (Bp

x,h1−η′ ∩ X )c)

]
= o(h2d)

and φ−1(Bp

x,h1−η′ ∩ X ) = Bd
0,h1−η′ hold for some η′(0 < η′ < 1).

8. If function w∗ is continuous on Bp
x,µ × Bp

x,µ × Bp
x,µ, then as h → 0,

E

[
w∗(X1, X2, X3)K

(
X3 −X2

h

)
K

(
X3 −X1

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
×1(X1 ∈ (Bp

x,h1−η∗ ∩ X )c)1(X2 ∈ (Bp

x,h1−η∗ ∩ X )c)1(X3 ∈ (Bp

x,h1−η∗ ∩ X )c)

]
= o(h3d)

and φ−1(Bp

x,h1−η∗ ∩ X ) = Bd
0,h1−η∗ hold for some η∗(0 < η∗ < 1).

3.2 Notation

We define the following notations, some of which are also used in [2] and [9].

For a function g : Rq → R (q = d or q = p), ∇g(x) and ∇2g(x) are the gradient (column) vector and

the Hessian matrix of function g evaluated at x, respectively. The Jacobi (d × p) matrix of φ evaluated at
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a ∈ Rd is

J (a|φ) = [∇φ1(z) · · · ∇φp(z)]
T
∣∣
z=a

=

[
∂

∂zj
φi(z)

]
1≤i≤p,1≤j≤d

∣∣∣∣∣
z=a

.

For g and G : Rp → R, we define

B(x|g, φ) = C(x|φ)−1

∫
Rd

uTJ (φ−1(x)|φ)T∇2g(x)J (φ−1(x)|φ)uK(J (φ−1(x)|φ)u)du,

R(x|G,φ) =

∫
Rd

G(J (φ−1(x)|φ)u)2du,

where

C(x|φ) =

∫
Rd

K(J (φ−1(x)|φ)u)du.

Additionally, we put set

G∗(y) = 2G(y)− C(x|φ)−1G ∗G(y),

G ∗G(y) =

∫
Rd

G(J (φ−1(x)|φ)v)G(y − J (φ−1(x)|φ)v))dv.

When d = p and φ is the identity mapping idRp on Rp. Each notation and symbol are the same as those

used in [11], for example C(x|idRp) = 1.

Using our notations, functions J1(x) and J2(x) used in [2] are expressed as J1(x) = B(x|m,φ) and

J2(x) = v(x)R(x|K,φ)/{f(φ−1(x))C(x|φ)2}.

3.3 Asymptotic Conditional Bias and Variance

The asymptotic behavior of the DS estimator is summarized in the following theorem.

Theorem 1. Let x ∈ X . Then under the assumptions in Section 3.1, asymptotic conditional bias and

variance of m̂DS(x, h) are

Bias[m̂DS(x, h)|X1, · · · , Xn] = −h4

4
B(x|J1, φ) + op(h

4),

V ar[m̂DS(x, h)|X1, · · · , Xn] =
1

nhd

R(x|K∗, φ)

R(x|K,φ)
J2(x)(1 + op(1)).

Remark 1. We compare Theorem 1 with Theorem 2.1 in [2]. It is realized that the DS method can be

applied on an unknown manifold as the estimator with bias reduction. Our assumptions are essentially equal
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to those given in [2] for the LL estimator, in which the bias of m̂LL(x, h) is Op(h
2), but the bias of m̂DS(x, h)

is Op(h
4) as in Theorem 1, indicating a bias reduction. On the other hand, 1/(nhd) appears in the variance

of m̂DS(x, h), which is the same order as the variance of m̂LL(x, h). The difference of variance for m̂DS(x, h)

and m̂LL(x, h) is captured in the ratio r(x|K∗,K, φ) = R(x|K∗, φ)/R(x|K,φ).

3.4 Asymptotic Normality

Asymptotic distributional result on the DS estimator is obtained as follows:

Theorem 2. Let E[ε4] < ∞ and x ∈ X . Then under the same assumptions in Theorem 1 and h = κn−1/(d+8)

for a positive constant κ, m̂DS(x, h) has asymptotic normality:

(
m̂DS(x, h)−m(x)− h4

4
B(x|J1, φ)

)/√
V ar[m̂DS(x, h)|X1, · · · , Xn]

D−→ N(0, 1),

where “
D−→” designates convergence in distribution, and N(0, 1) is the standard normal distribution.

Remark 2. The asymptotic normality of m̂DS(x, h) on Rp was already developed in [5] and [13]. Although

asymptotic normality of the LL estimator in [2] has not been discussed, it can be proved that

(
m̂LL(x, h)−m(x)− h2

2
J1(x)

)/√
V ar[m̂LL(x, h)|X1, · · · , Xn]

D−→ N(0, 1)

holds for h = κn−1/(d+4) using with the similar calculations as for the proof of Theorem 2.

4 Theoretical comparison

In this section, we report the theoretical performance of the DS estimator for m : Rp → R on the d-

dimensional closed and smooth manifold X ⊂ Rp. We investigate a bias reduction on a sharp-peaked point

by comparing the behavior of the leading terms in Theorem 1 of this paper and Theorem 2.1 in [2]. In

particular, our targets for comparison are the following terms: (h4/4)J1(x) versus (h8/16)B(x|J1, φ) in

squared bias, and (nhd)−1J2(x) versus (nh
d)−1r(x|K∗,K, φ)J2(x) in variance.

4.1 Settings: True function, kernel, local chart and bandwidth

For theoretical comparison, we consider the case p = 2 and d = 1. We utilize the true regression function m

as

m(x) = m(x1, x2) = x1 + 2 exp(−400(x2 − 0.5)2)
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for x ∈ X ⊂ R2 and the Gaussian density

K(x) =
1

2π
exp

(
−xTx

2

)
=

1

2π
exp

(
−x2

1 + x2
2

2

)

is used as the kernel. The local chart φ is supported on [0, 1], and hence, we have considered X = {φ(z) ∈

R2|z ∈ [0, 1]}. We assume that the density function f has uniform distribution on [0, 1]. By the use of

Gaussian kernel K and setting g(x) = ||J (φ−1(x)|φ)||, we obtain

h2

2
J1(x) =

h2

2
g(x)−2J (φ−1(x)|φ)T∇2m(x)J (φ−1(x)|φ), (1)

1

nh
J2(x) =

1

nh

1√
2

v(x)√
2πf(φ−1(x))

g(x), (2)

−h4

4
B(x|J1, φ) = −h4

4
g(x)−2J (φ−1(x)|φ)T∇2J1(x)J (φ−1(x)|φ), (3)

1

nh

R(x|K∗, φ)

R(x|K,φ)
J2(x) =

1

nh

√
2

(
2
√
2− 4√

3
+

1

2

)
J2(x) (4)

where ∇2m(x) is

∇2m(x) =

0 0

0
∂2

∂x2
2

m(x1, x2)

 ,

with

∂2

∂x2
2

m(x1, x2) = 1600{800(x2 − 0.5)2 − 1} exp(−400(x2 − 0.5)2).

Here, we set G(x) = {G0(x)}2 and G0(x) = φ′
2(φ

−1(x)). For smooth function η(x), we use subscript to

denote the partial derivatives by variables corresponding to those indices throughout in this section as

∂3

∂xi∂xj∂xk
η(x) = ηijk(x),

∂4

∂xi∂xj∂xk∂xℓ
η(x) = ηijkℓ(x)

and so on. Then, the each component of ∇2J1(x) is

J1,11(x) = g(x)−3m22(x)
{
6g(x)−1g1(x)

2G(x)− 2g11(x)G(x)− 4g1(x)G1(x) + g(x)G11(x)
}
,

J1,12(x) = g(x)−3m22(x)
{
6g(x)−1g2(x)g1(x)G(x)− 2g12(x)G(x)− 2g1(x)G2(x)

−2G1(x)g2(x)− 2g(x)G12(x)}+ g(x)−3m222(x) {−2g1(x)G(x) + g(x)G1(x)} ,
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J1,22(x) = g(x)−3m22(x)
{
6g(x)−1g2(x)

2G(x) + g(x)G22(x)− 2g22(x)G(x)− 4g2(x)G2(x)
}

+g(x)−2m2222(x)G(x)− 2g(x)−3m222(x) {g2(x)G(x)− g(x)G2(x)} ,

where

m222(x) = −1600× 800{800(x2 − 0.5)3 − 3(x2 − 0.5)} exp(−400(x2 − 0.5)2)

and

m2222(x) = −1280000{−640000(x2 − 0.5)4 + 4800(x2 − 0.5)2 − 3} exp(−400(x2 − 0.5)2).

We focus on functions

h4

4
J1(x)

2 (5)

and

h8

16
B(x|J1, φ)2 (6)

calculated from (1) and (3). The functions in (2) and (4) are also used in comparison of variances.

Here, it is necessary to determine the bandwidth parameter h. We consider the bandwidth parameter as

the minimizer of AMISE:

hLL = arg-min
h>0

{
h4

4

∫ 1

0

J1(φ(z))
2f(z)dz +

1

nh

∫ 1

0

J2(φ(z))f(z)dz

}

and

hDS = arg-min
h>0

{
h8

16

∫ 1

0

B(φ(z)|J1, φ)2f(z)dz +
1

nh

∫ 1

0

R(φ(z)|K∗, φ)

R(φ(z)|K,φ)
J2(φ(z))f(z)dz

}
.

By differentiate with h, we obtain

hLL =


∫ 1

0

J2(φ(z))dz∫ 1

0

J1(φ(z))
2dz


1
5

n− 1
5 (7)

9



and

hDS =

2

∫ 1

0

R(φ(z)|K∗, φ)

R(φ(z)|K,φ)
J2(φ(z))dz∫ 1

0

B(φ(z)|J1, φ)2dz


1
9

n− 1
9 . (8)

In fact, by estimating integrals using Monte Carlo method we utilize

ĥLL =


1

M

M∑
j=1

J2(φ(z(j)))

1

M

M∑
j=1

J1(φ(z(j)))
2



1
5

n− 1
5 (9)

and

ĥDS =


2

M

M∑
j=1

R(φ(z(j))|K∗, φ)

R(φ(z(j))|K,φ)
J2(φ(z(j))))

1

M

M∑
j=1

B(φ(z(j))|J1, φ)2



1
9

n− 1
9 , (10)

where each z(j) is generated uniformly on [0, 1], 1 ≤ j ≤ M and M = 10000.

4.2 Case of a Power Function

We consider the situation where the local chart is

φ(z) = ρα(z) =

zα
z


and 0 ≤ z ≤ 1. For the case α = 3, the true curve m(ρ3(z)) achieves its maximum at z = 1/2, as

displayed in Figure 1. By using ρα(z), we have ρ−1
α (x) = x2, g(x) =

√
α2x

2(α−1)
2 + 1, G0(x) = 1 and

J (ρ−1
α (x)|ρα) = [αxα−1

2 1]T . The g(x) and m22(x) are both functions containing only x2. Thus, we obtain

J (ρ−1
α (x)|ρα)T∇2m(x)J (ρ−1

α (x)|ρα) = m22(x),

J (ρ−1
α (x)|ρα)T∇2J1(x)J (ρ−1

α (x)|ρα) = J1,22(x),

g2(x) =
α2(α− 1)x2α−3

2

g(x)

10



Figure 1. True curve of m and the local chart ρ3. The manifold X is the image of ρ3 and is embedded in the plane y = 0 in
R3 as a thick solid curve. The true curve of m(ρ3(z)) is drawn as a thin solid curve on embedded X .

and

g22(x) =
α2(α− 1)

{
(2α− 3)x2α−4

2 g(x)2 − x2α−3
2 g2(x)

}
g(x)2

.

For our consideration, we utilized the case α = 3 and n = 1000, and used ĥLL = 0.01688 and ĥDS = 0.02275

calculated by (9) and (10). Functions (1), (2), (3) and (4) have been regarded as univariate function with z

by plugging x = ρ3(z). According to Figure 2, a bias reduction occurs around z = 1/2. In particular, the

squared bias of the DS estimator is smaller than that of the LL estimator at point 0.5 in panel (b) of Figure

2. Note that solid curves in panels (a) and (b) are close to the dashed curves on the intervals [0.3, 0.4] and

[0.6, 0.7]. However, the placement of the solid curve and the dashed curve is the opposite on the interval

[0.4, 0.5] and [0.5, 0.6]. Panel (c) displays the difference in asymptotic variances, in which the DS estimator

has a slightly bigger variance than that of the LL estimator. The reason for this could be considered to be

the fact that the variance of the DS estimator includes a convolution K ∗K. However, from the view of the

asymptotic MSE in panel (d), the DS estimator is superior in the sense of smaller MSE around of z = 1/2.

5 Practical Performance

This section investigates bias reduction of the DS estimator using simulated and real data. In both cases,

our aim is to confirm that the DS estimator can trace sudden variations hidden in data.

5.1 Simulation

The purpose of this simulation is to verify the bias reduction of the DS estimator for sudden variation by

estimating bias with the simulated data. We utilize m, K, ρ3 used in Section 4 in this simulation. Data

sets are generated by the following fixed design. First, we generated n = 1000 points uniformly from the
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(c) Variance based on ρ3
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Figure 2. Comparison of leading terms by Theorem 1 between the DS estimator (solid line) and LL estimator (dashed line)
in the case of n = 1000 and local chart ρ3. Here, the leading terms are used as the function with z by x = ρ3(z) and each

bandwidth parameter is ĥLL and ĥDS . Panel (a) displays (1) and (3), panel (b) displays (5) and (6), panel (c) displays (2) and
(4) and panel (d) displays (5) + (2) and (6) + (4). We focus on the interval [0.3, 0.7] to emphasize the difference.
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interval [0, 1] as Z, denoted {zi ∈ [0, 1]|zi ∼ U(0, 1), 1 ≤ i ≤ n}. The predictor X is defined as {(x1i, x2i) ∈

R2|(x1i, x2i) = φ(zi), 1 ≤ i ≤ n}. In each step k, we generate n random errors {ε(k)i |ε(k)i ∼ N(0, 1), 1 ≤ i ≤

n}, and then the response variable Y is obtained as {y(k)i ∈ R|y(k)i = m(x1i, x2i) + ε
(k)
i , 1 ≤ i ≤ n}. Let

D(k) = {(x1i, x2i, y
(k)
i ) ∈ R3|1 ≤ i ≤ n} be the simulated data in step k. By the shape of m, the simulated

data sets seem to have the structure of sudden variation around z = 0.5 for the case of φ = ρ3. For example,

D(1) is shown in Figure 3. We compose m̂DS(x, h;D(k)) and m̂LL(x, h;D(k)) by using D(k). We iterate above

Figure 3. Example of simulated data showing D(1) for the case of φ = ρ3, in which the predictors are embedded.

steps from k = 1 to N = 10000 and calculate the following two values:

B̂ias[m̂LL(x, ĥLL)] =
1

N

N∑
k=1

m̂LL(x, ĥLL;D(k))−m(x) (11)

and

B̂ias[m̂DS(x, ĥDS)] =
1

N

N∑
k=1

m̂DS(x, ĥDS ;D(k))−m(x), (12)

where ĥLL and ĥDS are the optimal values used in Section 4. We implemented this simulation 5 times, and

then calculated the mean of the obtained (11) and (12), which are displayed in Figure 4.

In the left panel (a) of Figure 4, it can be seen that the solid curve (DS) nears the horizontal dotted line

(y = 0) around the vertical dotted line (z = 0.5). From this we can claim that the reduction of estimated

bias of the DS estimator occurs around the vertical dotted line. The right panel (b) of Figure 4 shows that

the DS estimator supported on the 1-dimensional manifold X has a smaller bias around the point of sudden

variation x = ρ3(0.5), which can also be observed in panel (a). From the this result, we can consider that bias

reduction for the DS estimator on an unknown manifold also occurs around the point of sudden variation.

Next, we compare this simulation and the theoretical results from Figures 2. We compare panel (a) of

Figure 2 with panel (a) of Figure 4. The following facts can be observed: the curve of estimated bias has a
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(a) Based on ρ3 (b) Based on ρ3

Figure 4. Comparison of (11) and (12). Panel (a): (12) (solid) and (11) (dashed) with x = ρ3(z), drawn as the curve of z; (b):
(12) (thick) and (11) (thin) with x = ρ3(z) in R3; In (b), the solid curve on y = 0 denotes X , and the mark × means the point
of sudden variation.

similar shape to the curve of asymptotic bias in Figure 4 for each estimator, although the scales of curves

(11) and (12) in Figure 4 differ to those of (1) and (3) in Figures 2 because each theoretical bandwidth

used in this simulation might be much smaller than the optimal bandwidth for each simulated data set D(k).

Reduced bias for the DS estimator has certainly occurred, as it is observed that the curve of (12) is closer

to zero than the curve of (11) around z = 0.5 in Figure 4. These two points correspond to places where

the magnitude of asymptotic bias for the DS estimator is smaller than that of the LL estimator in Figure 2.

It can be confirmed from the above facts that data sharpening is an efficient smoothing technique endowed

with the property of bias reduction.

5.2 Real Data: directional data

We demonstrate here the applicability of the DS estimator to real data. To study the bias reduction, we

investigate the fitting of the DS estimator. If the fitting of the DS estimator is better than that of the LL

estimator, this indicates that the DS estimator can trace the sudden variation of data because of the bias

reduction. We used the sets of directional data tabulated in Tables 1.1 and 1.2 in [8], and the data of angle

and velocity for 199 winds included in the R package “NPCirc” [10].

Table 1.1 is the frequencies of the vanishing angles of 714 nonmigratory British mallards with 0◦ defined

as north. Table 1.2 shows the orientation of the least projection elongations of sand grains in thin sections,

cut parallel to laminations, of Recent Gulf Coast beach sand. The aforementioned tables in [8] include

frequencies for each 18 subintervals of degree divided from the interval of degree [0◦, 360◦]. We regard the
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middle value of each bin of subinterval as the observation of the predictor and the height of bin as the

observation of the response variable.

We denote each data set as Di = {(xk, yk)|1 ≤ k ≤ ni} and note that each xk is embedded in the unit

circle X = {z ∈ R2| ||z|| < 1}. D1 and D2 correspond to Tables 1.1 and 1.2 in [8], respectively, with sample

size ni = 18(i = 1, 2). D3 designates the data from“ NPCirc” with sample size n3 = 199, and D4 is based

on D3 without data (2.60, 8.4). Although the local chart φ is unknown for practical situation of real data,

we exploit the local chart as follows for the purpose of expressing estimators graphically.

φ(θ) =

cos θ
sin θ


with θ ∈ [0, 2π) because Dk’s are sets of circular data. Note that the LL and DS estimators can be composed

without the local chart.

To determine the bandwidth parameter h, we implemented the following leave-one-out cross validation

for the LL and DS estimators:

RSSLL(h) =
1

n

n∑
i=1

{
yi − m̂

(−i)
LL (xi, h)

}2

(13)

and

RSSDS(h) =
1

n

n∑
i=1

{
yi − m̂

(−i)
DS (xi, h)

}2

(14)

for each value of h and each data set, where m̂
(−i)
DS (xi, h) is the DS estimator based on the data without

(xi, yi), evaluated at x = xi and m̂
(−i)
LL (xi, h) is defined similarly. We utilized the bandwidth parameter h as

the minimizer of RSS:

hLL = arg-min
h>0

RSSLL(h) (15)

and

hDS = arg-min
h>0

RSSDS(h). (16)

The curve of RSS and the chosen value of h for each Dk are exhibited in Figure 5. Actual values of (15) and

(16) as well as corresponding minimum of (13) and (14) are tabulated in Table 1.
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Table 1: The optimal bandwidths (15) and (16), and the minimum values of (13) and (14).

DATA hLL hDS RSSLL(hLL) RSSDS(hDS)
D1 0.394 0.504 210.714 199.277
D2 0.357 0.449 357.091 341.957
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(b) D2

Figure 5. RSS as the function of bandwidth h. The solid curve is (14), the dashed curve is (13) and the vertical lines are the
minimizers hLL (15) and hDS (16) of (13) and (14), respectively, in both panels.

We first look at the obtained regression curves in Figure 6. Panel (a) shows the curves of the DS estimator

and LL estimator based on the unit circle in R3. Since the predictors in D2 were observed on the interval

of degree [0◦, 180◦], panel (b) displays the same curves based on the half unit circle. We can see that the

two curves of the LL and DS estimators are almost the same. A possible reason is that the sample size

n = 18 is small for each Di. However Figure 5 and Table 1 reveal that the DS estimator is better than the

LL estimator from the perspective of the best RSS for each Dk.

(a) D1 (b) D2

Figure 6. The DS estimator and LL estimator in R3. The thin curve is the LL estimator, the thick curve is the DS estimator,
the dotted points are data, and the solid line on the bottom plane is X .

To compare the DS estimator and LL estimator with changing bandwidth, we compose two estimators

using the same h in an interval including (13) and (14). The results are shown in Figure 7. Panels (a) and
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(b) show the curves of the LL and DS estimators by D1, while panels (c) and (d) display those by D2. The

thin curves show the estimator using the optimal bandwidths, and the two horizontal dotted lines indicate

the range of the maximums of the LL estimators with different bandwidths.

From panels (a) and (b) of Figure 7, we can observe that the range of maximums of the LL estimator

for different bandwidths is wider than that of the DS estimator. This difference in the range of maximums

indicates that the performance of the LL estimator for sudden variation largely changes depending on band-

widths, while a similar performance of the DS estimator is observed regardless of the values of bandwidths

which are not largely different from the optimal one.

In panels (c) and (d) of Figure 7, we observe a sudden variation appearing around the interval [1.5, 2.0].

From panels (c) and (d), the range of maximums in panel (d) seem to be almost the same as the range of

maximums in panel (c) in contrast to panels (a) and (b). One difference between panel (a) and panel (c)

is the variance of data around the peak. That is, data around the peak in panel (a) is dense whereas data

around the peak in the panel (c) like as sparse. However, examining panels (c) and (d), the maximums of

the DS estimators are bigger than those of the LL estimators with the same h. In other words, even if the

data seem to be sparse in a sudden variation, the DS estimator can trace the sudden variation better than

the LL estimator.

The block is our focus in panels (c) and (d), and actually the place where the data and curves increase

slowly. It can be observed from panel (c) that one of the LL estimators is far from optimal one, but panel

(d) shows the DS estimator behaving stably in the same area. Thus, it can be claimed that the DS estimator

performs more stably than the LL estimator in the area where the data varies slightly.

By summarizing the above considerations, the curve of the LL estimator is significantly affected by

changing the bandwidth h whereas the curves of the DS estimator are changed at the place of a sudden

variation by changing h. Further, the DS estimator can indicate the shape of a sudden variation better than

the LL estimator with the same h. This suggests the effect bias reduction is present when using the DS

estimator.

Next we address the results for D3 and D4. Optimal bandwidths and RSS values are tabulated in Table

2.

Table 2: The optimal bandwidths (15) and (16), and the minimum values of (13) and (14).

DATA hLL hDS RSSLL(hLL) RSSDS(hDS)
D3 0.424 0.534 14.853 14.856
D4 0.369 0.422 14.663 14.666

Table 2 and Figure 8 show that there is no significant difference between the LL estimator and DS
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(a) LL estimators by D1 with h =
0.35, 0.42, 0.55
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(b) DS estimators by D1 with h =
0.35, 0.42, 0.55
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(c) LL estimators by D2 with h = 0.3, 0.4, 0.5
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(d) DS estimators by D2 with h = 0.3, 0.4, 0.5

Figure 7. Comparison of the DS estimator and LL estimator with changing the bandwidth. Estimators are shown as the
functions of the angle θ. The thick curve in (a), (c): the LL estimator with h = hLL, the thick curve in (b), (d): the DS
estimator with h = hDS . The dashed solid and thin solid curves in all panels are estimators with listed values of bandwidths.
The dotted points are data. The blocks in all panels are our attention area and the horizontal dotted lines are indicating the
range of the maximums of the LL estimators for listed differenced bandwidths.
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(a) Curves of RSS by D3
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(b) Curves of RSS by D4

Figure 8. RSS as a function of bandwidth h. The solid curve is (14), the dashed curve is (13) and the vertical lines are the
minimizers hLL (15) and hDS (16) of (13) and (14), respectively, in both panels.

estimator when considering RSS values. Note that the placement of hLL < hDS for the data sets D3 and D4

are the same for D1 and D2.

Figure 9 shows the curves of the estimator drawn by x = φ(θ) in R2. From panel (a) of Figure 9, we can

observe that the data includes a sudden variation in the interval [1.5, 3.5] and its variation in the interval

is smaller than those outside of the interval. By closely looking at the blocked area in panel (a), the DS

estimator behaves nearer the data as compared to the LL estimator, which might be understood as the effect

of bias reduction.

Next, we address the result of D4, which is made by deleting an observation (2.60, 8.4) indicated by △

from D3. The estimators by optimal bandwidths are shown in panel (b) of Figure 9, where it can be observed

that the DS estimator is below the LL estimator in the interval [1.5, 3.5] including a sudden variation of data.

Hence, we see that, due to bias reduction, the DS estimator can trace the sudden variation better than the

LL estimator.

We observe from comparing panels (a) and (b) of Figure 9 that the minimum of the DS estimator

is smaller than that of the LL estimator, although both estimators are pulled up by the data △. In other

words, even if the DS estimator is affected by a possible outlier, it has a tendency to trace a sudden variation.

This can be understood as an effect of bias reduction.

6 Conclusion

In this paper we have proposed the DS regression estimator on an unknown low-dimensional manifold. It

has been proved theoretically in Theorem 1 that the DS estimator has a reduced bias compared to the LL

estimator even in the situation where the covariates are embedded in the manifold. In Sections 4 and 5, we

have confirmed numerically that such a bias reduction certainly occurred for simulated data as well as some
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Figure 9. The DS estimator and LL estimator drawn in R2 by x = φ(θ). The dashed curve is the LL estimator, the solid curve
is the DS estimator, and the dotted points are data. △ is the outlier point.

real data sets.

We have also developed asymptotic normality of the DS estimator in Theorem 2. This asymptotic

normality makes it possible to construct an approximate point-wise confidence interval or confidence band

of the regression function as was discussed in [13], which is our future problem.

We have not fully discussed the problem of “data-based bandwidth selection”. This usually can be

accomplished via the minimization of AMISE as suggested in Section 4. To do this we need a fine estimate

of the unknown local chart φ and its derivatives, which is also another important issue to be tackled.

7 Proof

For a Cℓ function g : Rp → R, a = (a1, · · · , ap) ∈ Rp, i = (i1, · · · , ip) with ik nonnegative integer, we define

ai = ai11 · · · aipp , |i| =
∑p

k=1 ik,

(
∂

∂x

)i

g(x) =
∂|i|

∂xi1
1 · · · ∂xip

p

g(x)

and  j

i

 =
j!

i1! · · · ip−1!

(
j −

p−1∑
k=1

ik

)
!
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for |i| = j. We denote j-th differentials (1 ≤ j ≤ ℓ) of g(x) over a segment a as

djag(x) =
∑
|i|=j

 j

i

 ai
(

∂

∂x

)i

g(x).

Using this notation, m(Xi) can be expressed as

m(Xi) = m(x) +
3∑

j=1

1

j!
djXi−xm(x) +

1

4!

∑
|i|=4

 4

i

 (Xi − x)i
(

∂

∂y

)i

m(y)

∣∣∣∣∣
y=x+ti(Xi−x)

= m(x) +
4∑

j=1

1

j!
djXi−xm(x) +

1

4!
r(x+ ti(Xi − x))

for some 0 < ti < 1, where

r(a) =
∑
|i|=4

 4

i

 (Xi − x)i
(

∂

∂y

)i

m(y)

∣∣∣∣∣
y=a

− d4Xi−xm(x).

We define b(x) = E[m̂LL(x, h)|X1, · · · , Xn]−m(x). Then b(Xi) can be expressed as

b(Xi) = b(x) +∇b(x)T (Xi − x) +
1

2
(Xi − x)T∇2b(x+ t∗i (Xi − x))(Xi − x)

for some 0 < t∗i < 1. For α, β ∈ R, we use the notations

Op(h
αnβ1p) =


Op(h

αnβ)

...

Op(h
αnβ)

 ∈ Rp,

Op(h
αnβ1Tp ) = Op(h

αnβ1p)
T and

Op(h
αnβ1p1

T
p ) =


Op(h

αnβ) · · · Op(h
αnβ)

...
. . .

...

Op(h
αnβ) · · · Op(h

αnβ)

 p× p matrix.

Similar to the notations utilized in Section 4, for smooth function η(z), we shall use ∂i and ∂ij to denote

the partial derivatives evaluated at a by variables corresponding to those indices i and j throughout in this
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section:

∂

∂zi
η(z)

∣∣∣∣
z=a

= ∂iη(a) and
∂2

∂zi∂zj
η(z)

∣∣∣∣
z=a

= ∂ijη(a)

and so on.

7.1 Proof of Theorem 1

By putting m = [m(X1) · · ·m(Xn)]
T , we have

m = Xx

 m(x)

∇m(x)

+

4∑
j=2

1

j!


djX1−xm(x)

...

djXn−xm(x)

+
1

4!


r(x+ t1(X1 − x))

...

r(x+ tn(Xn − x))

 .

Therefore,

E[m̂LL(x, h)|X1, · · · , Xn]

= eT1 (X
T
x WxXx)

−1XT
x Wxm

= m(x) + eT1 (X
T
x WxXx)

−1XT
x Wx


4∑

j=2

1

j!


djX1−xm(x)

...

djXn−xm(x)

+
1

4!


r(x+ t1(X1 − x))

...

r(x+ tn(Xn − x))




= m(x) +
4∑

j=2

1

j!
Rj(x) +

1

4!
R(x).

By E[Yi|X1, · · · , Xn] = m(Xi) and the definition of b(x), we have

b(x) =

4∑
j=2

1

j!
Rj(x) +

1

4!
R(x),

E[ri|X1, · · · , Xn] = E[Yi − m̂LL(Xi, h)|X1, · · · , Xn] = −b(Xi).

By introducing b = [b(X1) · · · b(Xn)]
T , we see that

b = Xx

 b(x)

∇b(x)

+
1

2
Qb(x) +

1

2
Rb(x),
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where

Rb(x) =


(X1 − x)T (∇2b(x+ t∗1(X1 − x))−∇2b(x))(X1 − x)

...

(X1 − x)T (∇2b(x+ t∗n(X1 − x))−∇2b(x))(X1 − x)

 ,

Qb(x) =


(X1 − x)T∇2b(x)(X1 − x)

...

(X1 − x)T∇2b(x)(X1 − x)

 .

Along the same line as the calculation of E[m̂LL(x, h)|X1, · · · , Xn],

E[r̂LL(x, h)|X1, · · · , Xn]

= eT1 (X
T
x WxXx)

−1XT
x Wx


E[r1|X1, · · · , Xn]

...

E[rn|X1, · · · , Xn]


= −eT1 (X

T
x WxXx)

−1XT
x Wxb

= −eT1 (X
T
x WxXx)

−1XT
x Wx

Xx

 b(x)

∇b(x)

+
1

2
Qb(x) +

1

2
Rb(x)


= −b(x)− 1

2
eT1 (X

T
x WxXx)

−1XT
x Wx(Qb(x) +Rb(x)).

By combining above equalities, we have

E[m̂DS(x, h)|X1, · · · , Xn] = E[m̂LL(x, h)|X1, · · · , Xn] + E[r̂LL(x, h)|X1, · · · , Xn]

= m(x) + b(x)− b(x)− 1

2
eT1 (X

T
x WxXx)

−1XT
x Wx(Qb(x) +Rb(x))

= m(x)− 1

2
eT1 (X

T
x WxXx)

−1XT
x Wx(Qb(x) +Rb(x)).

Here our focus goes to eT1 (X
T
x WxXx)

−1XT
x WxQb(x). We see that

1

n
XT

x WxQb(x)

=
1

n
XT

x diag(Kh(X1 − x), · · · , Kh(Xn − x))


(X1 − x)T∇2b(x)(X1 − x)

...

(Xn − x)T∇2b(x)(Xn − x)


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=
1

n

n∑
i=1

 (Xi − x)T∇2b(x)(Xi − x)Kh(Xi − x)

(Xi − x)T∇2b(x)(Xi − x)Kh(Xi − x)(Xi − x)



=
1

n

n∑
i=1


(Xi − x)T

 4∑
j=2

1

j!
∇2Rj(x) +

1

4!
∇2R(x)

(Xi − x)Kh(Xi − x)

(Xi − x)T

 4∑
j=2

1

j!
∇2Rj(x) +

1

4!
∇2R(x)

(Xi − x)Kh(Xi − x)(Xi − x)

 .

and note that R2(x) = h2J1(x) + op(h
2) as was shown in [2]. By assumptions in Section 3.1 and the law of

large numbers,

1

n

n∑
i=1

(Xi − x)T∇2R2(x)(Xi − x)Kh(Xi − x)

= h2 1

n

n∑
i=1

(Xi − x)T∇2J1(x)(Xi − x)Kh(Xi − x) + op(h
d−p+4)

= hd−p+4A1(x)B(x|J1, φ)(1 + op(1))

and

1

n

n∑
i=1

(Xi − x)T∇2R2(x)(Xi − x)Kh(Xi − x)(Xi − x)

= h2 1

n

n∑
i=1

(Xi − x)T∇2J1(x)(Xi − x)Kh(Xi − x)(Xi − x)(1 + op(h
2))

= Op(h
d−p+51p).

On the other hand, we have from Lemma 2 that

1

n

n∑
i=1

(Xi − x)T

 4∑
j=3

1

j!
∇2Rj(x) +

1

4!
∇2R(x)

 (Xi − x)Kh(Xi − x)

= Op(h
d−p+5) +Op(h

d−p+6) + op(h
d−p+6)

= Op(h
d−p+5),

1

n

n∑
i=1

(Xi − x)T

 4∑
j=3

1

j!
∇2Rj(x) +

1

4!
∇2R(x)

 (Xi − x)Kh(Xi − x)(Xi − x)

= Op(h
d−p+61p).
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Hence, we obtain

1

n
XT

x WxQb(x) = hd−p+4


A1(x)B(x|J1, φ)/2

0

+ op(1p+1)

 .

Using Lemma 1, we finally reach

eT1 (X
T
x WxXx)

−1XT
x WxQb(x)

= eT1

(
1

n
XT

x WxXx

)−1
1

n
XT

x WxQb(x)

= hp−d

([
A1(x)

−1 −A1(x)
−1A2(x)

TA3(x)
−1

]
+

[
op(1) op(1

T
p )

])

×hd−p+4


A1(x)B(x|J1, φ)/2

0

+ op(1p+1)


=

h4

2
B(x|J1, φ)(1 + op(1)),

which gives the bias expression in Theorem 1.

Next, we turn to the variance. We shall introduce the following notation

m̂DS(x, h) = eT1 (X
T
x WxXx)

−1XT
x Wx(2In − L)Y,

where L = [L1 · · ·Ln]
T and LT

i = eT1 (X
T
Xi

WXiXXi)
−1XT

Xi
WXi . By Lemma 4 with x = Xi,

Li =
hp−d

n
A1(Xi)

−1


(1−A2(Xi)

TA3(Xi)
−1(X1 −Xi))Kh(X1 −Xi)

...

(1−A2(Xi)
TA3(Xi)

−1(Xn −Xi))Kh(Xn −Xi)

 (1 + op(1)).

Simple but long calculations give

V ar[m̂LL(x, h)|X1, · · · , Xn]

=
1

nhd
v(x)A1(x)

−2f(φ−1(x))

∫
Rd

K
(
J (φ−1(x)|φ)v

)2
dv(1 + op(1)), (17)

eT1 (X
T
x WxXx)

−1XT
x WxLV LTWxXx(X

T
x WxXx)

−1e1

=
1

nhd
v(x)A1(x)

−4f(φ−1(x))3
∫
Rd

{K ∗K(J (φ−1(x)|φ)v)}2dv(1 + op(1)) (18)
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and

eT1 (X
T
x WxXx)

−1XT
x WxV LTWxXx(X

T
x WxXx)

−1e1

=
1

nhd
v(x)A1(x)

−3f(φ−1(x))2

×
∫
Rd

K
(
J (φ−1(x)|φ)v

)
K ∗K(J (φ−1(x)|φ)v)dv(1 + op(1)). (19)

Using (17), (18) and (19), we have

V ar[m̂DS(x, h)|X1, · · · , Xn]

= 4eT1 (X
T
x WxXx)

−1XT
x WxVWxXx(X

T
x WxXx)

−1e1

−4eT1 (X
T
x WxXx)

−1XT
x WxV LTWxXx(X

T
x WxXx)

−1e1

+eT1 (X
T
x WxXx)

−1XT
x WxLV LTWxXx(X

T
x WxXx)

−1e1

=
1

nhd
v(x)A1(x)

−2f(φ−1(x))

×
(∫

Rd

4K
(
J (φ−1(x)|φ)v

)2
dv +

∫
Rd

A1(x)
−2f(φ−1(x))2K ∗K(J (φ−1(x)|φ)v)2dv

−
∫
Rd

4A1(x)
−1f(φ−1(x))K

(
J (φ−1(x)|φ)v

)
K ∗K(J (φ−1(x)|φ)v)dv

)
(1 + op(1))

=
1

nhd

R(x|K∗, φ)

R(x|K,φ)
J2(x)(1 + op(1)),

which is the variance in Theorem 1.

7.2 Proof of Theorem 2

We put u(x)T = eT1 (X
T
x WxXx)

−1XT
x Wx, ε = [ε1 · · · εn]T and Un = [u(X1) · · ·u(Xn)]

T . Then we have

m̂DS(x, h) = u(x)T (2In − Un)Y and Y = m+ ε. By E[Y|X1, · · · , Xn] = m, we have

m̂DS(x, h) = u(x)T (2In − Un)(m+ ε)

= u(x)T (2In − Un)m+ u(x)T (2In − Un)ε

= E[u(x)T (2In − Un)Y|X1, · · · , Xn] + u(x)T (2In − Un)ε

= E[m̂DS(x, h)|X1, · · · , Xn] + u(x)T (2In − Un)ε

= m(x) +
h4

4
B(x|J1, φ) + u(x)T (2In − Un)ε+ op(h

4).

26



By plugging above expressions as well as
√
nhdop(h

4) = op(1), we have

√
nhd

(
m̂DS(x, h)−m(x)− h4

4
B(x|J1, φ)

)
=

√
nhdu(x)T (2In − Un)ε+ op(1).

Let νni(x) be the i-th element of
√
nhdu(x)T (2In − Un), then

√
nhdu(x)T (2In − Un)ε =

n∑
i=1

νni(x)εi,

E

[
n∑

i=1

νni(x)εi|X1, · · · , Xn

]
= 0

and

V ar[νni(x)εi|X1, · · · , Xn] = νni(x)
2.

We would apply Liapounoff’s central limit theorem to {νni(x)εi}ni=1, so that we aim to show that {νni(x)εi}ni=1

satisfy the Liapounoff’s condition. The summation in the denominator is

n∑
i=1

V ar [νni(x)εi|X1, · · · , Xn] = V ar

[
n∑

i=1

νni(x)εi|X1, · · · , Xn

]
= nhdV ar[u(x)T (2In − Un)ε|X1, · · · , Xn]

= nhdV ar[m̂DS(x, h)|X1, · · · , Xn]

= Op(1).

Let ui(x) be the i-th element of u(x). By the definition of νni(x), we get

νni(x) =
√
nhd

(
(2In − Un)

T
)
i
u(x)

=
√
nhd

([
2e1 · · · 2en

]
−
[
u(X1) · · · u(Xn)

])
i

u(x)

=
√
nhd

(
2eTi −

[
ui(X1) · · · ui(Xn)

])
u(x)

=
√
nhd

2ui(x)− u(x)T


ui(X1)

...

ui(Xn)


 ,

where ei is n-dimensional vector with its i-th element 1 and 0 otherwise. Similar calculations to obtain the
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bias of the LL estimator based on [ui(X1) · · ·ui(Xn)]
T yield that

u(x)T


ui(X1)

...

ui(Xn)

 = ui(x) +
1

2
h2Si(x) + op

(
hp−d+2

n

)

= ui(x) +
1

2

hp−d+2

n

n

hp−d
Si(x) + op

(
hp−d+2

n

)
,

where

Si(x) = A1(x)
−1

∫
Rd

uTJ (φ−1(x)|φ)T∇2ui(x)J (φ−1(x)|φ)uK(J (φ−1(x)|φ)u)du.

Lemma 4 implies that

ui(x) =
hp−d

n
A1(x)

−1(1−A2(x)
TA3(x)

−1(Xi − x))Kh(Xi − x)(1 + op(1))

and (n/np−d)Si(x) = Op(1) holds for all i(1 ≤ i ≤ n). Thus, we obtain

2ui(x)− u(x)T


ui(X1)

...

ui(Xn)

 = ui(x) +Op

(
hp−d+2

n

)
.

By Lemma 5 and assumptions in Section 3.1, we have

n∑
i=1

E
[
{νni(x)εi}4|X1, · · · , Xn

]
= (nhd)2

h4(p−d)

n3

1

n

n∑
i=1

{
A1(x)

−1(1−A2(x)
TA3(x)

−1(Xi − x))Kh(Xi − x)
}4

×E
[
ε4i |X1, · · · , Xn

]
(1 + o(1)) + (nhd)2Op

(
h4p−4d+8

n3

)
= E[ε4]

h4p−2d

n

1

n

n∑
i=1

{
A1(x)

−1(1−A2(x)
TA3(x)

−1(Xi − x))
}4

Kh(Xi − x)4

×(1 + o(1)) + op

(
h4p−2d

n

)
= E[ε4]

h4p−2d

n

(
h−4p+df(φ−1(x)) +Op(h

−4p+d+1)
)
+ op

(
h4p−2d

n

)
=

1

nhd
E[ε4]f(φ−1(x)) +Op

(
h

nhd

)
+ op

(
h4p−d

nhd

)
→ 0,
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as n → ∞. Therefore, Liapounoff’s condition

lim
n→∞

E

[
n∑

i=1

{νni(x)εi}4
∣∣∣∣∣X1, · · · , Xn

]/(
n∑

i=1

V ar[νni(x)εi|X1, · · · , Xn]

)4

= 0

has been confirmed by choosing δ = 2, from which it follows that

n∑
i=1

νni(x)εi√√√√ n∑
i=1

V ar[νni(x)εi]

=

√
nhdu(x)(2In − Un)ε√

V ar[
√
nhdu(x)(2In − Un)ε|X1, · · · , Xn]

D−→ N(0, 1).
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SUPPLEMENTARY MATERIAL

to

“Data Sharpening on Unknown Manifold”

Masaki Kudo and Kanta Naito

In this appendix we provide the following Lemmas to complete the proof of Theorems.

Lemma 1. Let x ∈ X . If the assumptions in Section 3.1 hold, then as n → ∞ and h → 0,(
1

n
XT

x WxXx

)−1

= hp−d

([
A1(x)

−1 −A1(x)
−1A2(x)

TA3(x)
−1

−A1(x)
−1A3(x)

−1A2(x) h−2A3(x)
−1

]
+

[
op(1) op(1

T
p )

op(1p) op(h
−21p1

T
p )

])
.

Proof. Direct but lengthy calculations yield that

E [Kh(X − x)] = hd−pA1(x) + o(hd−p),

E [Kh(X − x)(X − x)] = hd−p+2A2(x) + o(hd−p+21p)

and

E
[
Kh(X − x)(X − x)(X − x)T

]
= hd−p+2A3(x) + o(hd−p+21p1

T
p ).

Using above results, we obtain

1

n
XT

x WxXx =
1

n

n∑
i=1

[
Kh(Xi − x) Kh(Xi − x)(Xi − x)

Kh(Xi − x)(Xi − x)T Kh(Xi − x)(Xi − x)(Xi − x)T

]

=

[
hd−p(A1(x) + op(1)) h2+d−p(A2(x)

T + op(1
T
p ))

h2+d−p(A2(x) + op(1p)) h2+d−p(A3(x) + op(1p1
T
p ))

]

= hd−p

([
A1(x) h2A2(x)

T

h2A2(x) h2A3(x)

]
+

[
op(1) op(h

21Tp )

op(h
21p) op(h

21p1
T
p )

])
.

By using (M + o(1p+11
T
p+1))

−1 = M−1 + o(1p+11
T
p+1) for (p+1)× (p+1) nonsingular M ,

(
1

n
XT

x WxXx

)−1

= hp−d

([
A1(x) h2A2(x)

T

h2A2(x) h2A3(x)

]
+

[
op(1) op(h

21Tp )

op(h
21p) op(h

21p1
T
p )

])−1

1



= hp−d

[ A1(x) h2A2(x)
T

h2A2(x) h2A3(x)

]−1

+

[
op(1) op(1

T
p )

op(1p) op(1p1
T
p )

] ,

where[
A1(x) h2A2(x)

T

h2A2(x) h2A3(x)

]−1

=

[
A1(x)

−1 + h4A1(x)
−2A2(x)

TS−1A2(x) −h2A1(x)
−1A2(x)

TS−1

−h2S−1A2(x)A1(x)
−1 S−1

]
and S = h2A3(x)− h4A1(x)

−1A2(x)A2(x)
T . Using an asymptotic evaluation of S−1 as

S−1 = h−2(A3(x)− h2A1(x)
−1A2(x)A2(x)

T )−1 = h−2(A3(x)
−1 + op(1p1

T
p )),

we have

h4A1(x)
−2A2(x)

TS−1A2(x) = h2A1(x)
−2A2(x)

T (A3(x)
−1 + op(1p1

T
p ))A2(x)

= h2A1(x)
−2A2(x)

TA3(x)
−1A2(x) + op(h

21p1
T
p ))

= Op(h
2)

and

−h2A1(x)
−1A2(x)

TS−1 = −A1(x)
−1A2(x)

T (A3(x)
−1 + op(1p1

T
p ))

= −A1(x)
−1A2(x)

TA3(x)
−1 + op(1

T
p ).

Above calculations are combined into[
A1(x)

−1 + h4A1(x)
−2A2(x)

TS−1A2(x) −h2A1(x)
−1A2(x)

TS−1

−h2S−1A2(x)A1(x)
−1 S−1

]

=

[
A1(x)

−1 +Op(h
2) −A1(x)

−1A2(x)
TA3(x)

−1 + op(1
T
p )

−A1(x)
−1A3(x)

−1A2(x) + op(1p) h−2A3(x)
−1 + op(h

−21p1
T
p )

]

=

[
A1(x)

−1 −A1(x)
−1A2(x)

TA3(x)
−1

−A1(x)
−1A3(x)

−1A2(x) h−2A3(x)
−1

]
+

[
Op(h

2) op(1
T
p )

op(1p) op(h
−21p1

T
p )

]
,

from which, we finally obtain(
1

n
XT

x WxXx

)−1

= hp−d

([
A1(x)

−1 −A1(x)
−1A2(x)

TA3(x)
−1

−A1(x)
−1A3(x)

−1A2(x) h−2A3(x)
−1

]

+

[
op(1) op(1

T
p )

op(1p) op(h
−21p1

T
p )

])
.
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Lemma 2. Let x ∈ X . Under the assumptions in Section 3.1, we have for j = 3, 4,

eT1 (X
T
x WxXx)

−1XT
x WxRb(x) = op(h

4), (20)

1

n

n∑
i=1

(Xi − x)T∇2R(x)(Xi − x)Kh(Xi − x) = op(h
d−p+6), (21)

1

n

n∑
i=1

(Xi − x)T∇2R(x)(Xi − x)Kh(Xi − x)(Xi − x) = op(h
d−p+71p), (22)

1

n

n∑
i=1

(Xi − x)T∇2Rj(x)(Xi − x)Kh(Xi − x) = Op(h
d−p+j+2), (23)

where

R(x) = eT1 (X
T
x WxXx)

−1XT
x Wx


r(x+ t1(X1 − x))

...

r(x+ tn(Xn − x))

 ,

Rj(x) = eT1 (X
T
x WxXx)

−1XT
x Wx


djX1−xm(x)

...

djXn−xm(x)

 .

Proof. To prove (9), we start the following calculations of XT
x WxRb(x)/n:

1

n
XT

x WxRb(x)

=
1

n

n∑
i=1

[
(Xi − x)T (∇2b(x+ t∗i (Xi − x))−∇2b(x))(Xi − x)Kh(Xi − x)

(Xi − x)T (∇2b(x+ t∗i (Xi − x))−∇2b(x))(Xi − x)Kh(Xi − x)(Xi − x)

]

=

p∑
α,β=1

1

n

n∑
i=1

[
w(αβ)(Xi, t

∗
i )Kh(Xi − x)

w(αβ)(Xi, t
∗
i )Kh(Xi − x)(Xi − x)

]
,

where we put

w(αβ)(y, t) = {∂αβb(x+ t(y − x))− ∂αβb(x)}(yα − xα)(yβ − xβ)

for y ∈ X and 0 < t < 1. To derive the result of convergence in probability, we would

calculate

E

[
1

n

n∑
i=1

w(αβ)(Xi, t
∗
i )Kh(Xi − x)

]
=

1

n

n∑
i=1

E
[
w(αβ)(Xi, t

∗
i )Kh(Xi − x)

]
3



and

E

[
1

n

n∑
i=1

w(αβ)(Xi, t
∗
i )Kh(Xi − x)(Xi − x)

]
=

1

n

n∑
i=1

E
[
w(αβ)(Xi, t

∗
i )Kh(Xi − x)(Xi − x)

]
.

We shall check that w(αβ)(y, t) is satisfying |w(αβ)(y, t)| ≤ C(1 + ||y||2) for some C > 0.

Since the function m is C4, the function b is also C4 and hence we have |∂αβb(x + t(y −

x))−∂αβb(x)| ≤ M for the maximum value M because above first term ∂αβb(x+ t(y−x))

has continuous function with y on the compact region X . Using evaluations

|yαyβ| ≤
1

2
(yα + yβ) ≤

1

2
||y||2

and

|xαyβ| ≤ |xα|max{||y||2, 1} ≤ |xα|(1 + ||y||2),

we observe that

|w(αβ)(y, t)| = |∂αβb(x+ t(y − x))− ∂αβb(x)||(yα − xα)(yβ − xβ)|

≤ M(|yαyβ|+ |xαyβ|+ |yαxβ|+ |xαxβ|)

≤ C(1 + ||y||2)

for C = M maxαβ{|xα|, |xαxβ|, 1/2}. So we have just finished to check that assumption 6

in Section 3.1 holds for w(αβ)(y, t) and therefore we can proceed to evaluate the expectation

for w(αβ)(y, t) in the sequel. We see that b(x) = h2J1(x) + op(h
2) holds by the results in

[2], and y ∈ Bp
x,h1−η tends to x as h tends to zero because ||y− x|| < h1−η holds, hence we

have ∂αβb(x+ t(y−x))−∂αβb(x) = o(h2) for y ∈ Bp
x,h1−η ∩X . We obtain from evaluations

above

1

n

n∑
i=1

E
[
w(αβ)(Xi, t

∗
i )Kh(Xi − x)

]
= E

[
w(αβ)(X1, t

∗
1)Kh(X1 − x)1(X1 ∈ Bp

x,h1−η ∩ X )
]

+E
[
w(αβ)(X1, t

∗
1)Kh(X1 − x)1(X1 ∈ (Bp

x,h1−η ∩ X )c)
]

4



= E

[
{∂αβb(x+ t∗1(X1 − x))− ∂αβb(x)}(X1 − x)α(X1 − x)β

×Kh(X1 − x)1(X1 ∈ Bp
x,h1−η ∩ X )

]
+ o(hd−p+4)

= hd−p+4

∫
Rd

∂αβb(φ(0) + t∗1(φ(hu)− φ(0)))− ∂αβb(φ(0))

h2
φα(hu)− φα(0)

h

×
φβ(hu)− φβ(0)

h
K

(
φ(hu)− φ(0)

h

)
1(u ∈ Bd

0,h−η)f(hu)du+ o(hd−p+4)

= o(hd−p+4).

Furthermore we have

1

n

n∑
i=1

E
[
w(αβ)(Xi, t

∗
i )Kh(Xi − x)(Xi − x)

]
= o(hd−p+51p),

holds because |w(αβ)(y, t)(yγ − xγ)| ≤ C(1 + ||y||2)|yγ − xγ | < C(1 + ||y||2)2 for each

γ ∈ {1, · · · , p}. Hence, we have (20) by the following calculations:

eT1 (X
T
x WxXx)

−1XT
x WxRb(x)

= eT1

(
1

n
XT

x WxXx

)−1 1

n
XT

x Wx


(X1 − x)T (∇2b(x+ t∗1(X1 − x))−∇2b(x))(X1 − x)

...

(Xn − x)T (∇2b(x+ t∗n(Xn − x))−∇2b(x))(Xn − x)


= Op(h

p−d1Tp+1)

[
op(h

d−p+4)

op(h
d−p+51p)

]

= op(h
4).

Next, our focus goes to

R(x) = eT1

(
1

n
XT

x WxXx

)−1 1

n
XT

x Wx


r(x+ t1(X1 − x))

...

r(x+ tn(Xn − x))

 .

It follows that

1

n
XT

x Wx


r(x+ t1(X1 − x))

...

r(x+ tn(Xn − x))


5



=
1

n
XT

x diag(Kh(X1 − x), · · · , Kh(Xn − x))


r(x+ t1(X1 − x))

...

r(x+ tn(Xn − x))


=

p∑
α,β,γ,δ=1

1

n

n∑
i=1

[
r(αβγδ)(Xi, ti)Kh(Xi − x)

r(αβγδ)(Xi, ti)Kh(Xi − x)(Xi − x)

]
,

where r(αβγδ)(y, t) = D(αβγδ)(y, t)(yα−xα)(yβ −xβ)(yγ −xγ)(yδ −xδ) and D(αβγδ)(y, t) =

∂αβγδm(x + t(y − x)) − ∂αβγδm(x) for y ∈ X and 0 < t < 1. We shall evaluate

E[r(αβγδ)(X1, t1)Kh(X1 − x)]. By the evaluation same as w(αβ)(y, t), we obtain

|r(αβγδ)(y, t)| ≤ N |w(αβ)(y, t)w(γδ)(y, t)| ≤ NC2(1 + ||y||2)2

for some N > 0. By assumptions in Section 3.1, we see that

E
[
r(αβγδ)(X1, t1)Kh(X1 − x)

]
= E

[
r(αβγδ)(X1, t1)Kh(X1 − x)1(X1 ∈ (Bp

x,h1−η ∩ X ))
]

+E
[
r(αβγδ)(X1, t1)Kh(X1 − x)1(X1 ∈ (Bp

x,h1−η ∩ X )c)
]

= E
[
r(αβγδ)(φ(Z), t1)Kh(φ(Z)− φ(0))1(φ(Z) ∈ (Bp

x,h1−η ∩ X ))
]

+E
[
r(αβγδ)(φ(Z), t1)Kh(φ(Z)− φ(0))1(φ(Z) ∈ (Bp

x,h1−η ∩ X )c)
]

= h−p+4E

[
D(αβγδ)(φ(Z), t1)

φα(Z)− φα(0)

h

φβ(Z)− φβ(0)

h

φγ(Z)− φγ(0)

h

× φδ(Z)− φδ(0)

h
K

(
φ(Z)− φ(0)

h

)
1(Z ∈ Bd

0,h1−η)

]
+ o(hd−p+4).

Since

D(αβγδ)(φ(hu), t1) = ∂αβγδm(x+ t1(φ(hu)− φ(0)))− ∂αβγδm(x) = o(1),

as h → 0 and by noting that (φα(hu)− φα(0))/h = O(1), we obtain

E

[
D(αβγδ)(φ(Z), t1)

φα(Z)− φα(0)

h

φβ(Z)− φβ(0)

h

φγ(Z)− φγ(0)

h

φδ(Z)− φδ(0)

h

× K

(
φ(Z)− φ(0)

h

)
1(Z ∈ Bd

0,h1−η)

]
6



=

∫
Bd
0,h1−η

D(αβγδ)(φ(z), t1)K

(
φ(z)− φ(0)

h

)

×φα(z)− φα(0)

h

φβ(z)− φβ(0)

h

φγ(z)− φγ(0)

h

φδ(z)− φδ(0)

h
f(z)dz

= hd
∫
Bd
0,h−η

D(αβγδ)(φ(hu), t1)K

(
φ(hu)− φ(0)

h

)

×φα(hu)− φα(0)

h

φβ(hu)− φβ(0)

h

φγ(hu)− φγ(0)

h

φδ(hu)− φδ(0)

h
f(hu)du

= o(hd).

Thus, we have

E

[
1

n

n∑
i=1

r(x+ ti(Xi − x))Kh(Xi − x)

]
= o(hd−p+4).

By the law of large numbers,

1

n

n∑
i=1

r((x+ ti(Xi − x))Kh(Xi − x) = op(h
d−p+4)

holds. From the same calculations, we have

1

n

n∑
i=1

r(x+ ti(Xi − x))Kh(Xi − x)(Xi − x) = op(h
d−p+51p)

because there exists N > 0 such that |r(αβγδ)(y, t)(yϵ − xϵ)| ≤ N(1 + ||y||2)3 for all

α, β, γ, δ, ϵ ∈ {1, · · · , p}. So we obtain

R(x) = eT1

(
1

n
XT

x WxXx

)−1 1

n
XT

x Wx


r(x+ t1(X1 − x))

...

r(x+ tn(Xn − x))


= eT1

(
1

n
XT

x WxXx

)−1 p∑
α,β,γ,δ=1

1

n

n∑
i=1

[
r(αβγδ)(Xi, ti)Kh(Xi − x)

r(αβγδ)(Xi, ti)Kh(Xi − x)(Xi − x)

]

= eT1 Op(h
p−d1p+11

T
p+1)

[
op(h

d−p+4)

op(h
d−p+51p)

]

= op(h
4).

Therefore, we finally have (21) and (22).
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To prove (23), we shall evaluate Rj(x) for j = 3, 4. It is easy to confirm that

1

n
XT

x Wx


djX1−xm(x)

...

djXn−xm(x)

 =
1

n

n∑
i=1

[
djXi−xm(x)Kh(Xi − x)

djXi−xm(x)Kh(Xi − x)(Xi − x)

]

hence, we obtain

E

[
1

n

n∑
i=1

djXi−xm(x)Kh(Xi − x)

]

= E
[
djX1−xm(x)Kh(X1 − x)1(X1 ∈ Bp

x,h1−η ∩ X )
]

+E
[
djX1−xm(x)Kh(X1 − x)1(X1 ∈ (Bp

x,h1−η ∩ X )c)
]

= h−pE

[
djφ(Z)−φ(0)m(x)K

(
φ(Z)− φ(0)

h

)
1(Z ∈ Bd

0,h1−η)

]
+ o(hd−p+4)

= hd−p+j

∫
Rd

∑
|i|=j

(
j

i

)(
φ(hu)− φ(0)

h

)i( ∂

∂x

)i

m(x)

×K

(
φ(hu)− φ(0)

h

)
1(u ∈ Bd

0,h−η)f(hu)du+ o(hd−p+4)

and

E

[
1

n

n∑
i=1

djXi−xm(x)Kh(Xi − x)(Xi − x)

]

= hd−p+j+1

∫
Rd

∑
|i|=j

(
j

i

)(
φ(hu)− φ(0)

h

)i( ∂

∂x

)i

m(x)

×K

(
φ(hu)− φ(0)

h

)
1(u ∈ Bd

0,h−η)f(hu)
φ(hu)− φ(0)

h
du+ o(hd−p+41p),

where we have used the assumption 6 in Section 3.1. By using (φα(hu)−φα(0))/h = O(1),

we get

1

n

n∑
i=1

d3Xi−xm(x)Kh(Xi − x) = Op(h
d−p+3),

1

n

n∑
i=1

d3Xi−xm(x)Kh(Xi − x)(Xi − x) = Op(h
d−p+41p),
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1

n

n∑
i=1

d4Xi−xm(x)Kh(Xi − x) = Op(h
d−p+4)

and

1

n

n∑
i=1

d4Xi−xm(x)Kh(Xi − x)(Xi − x) = Op(h
d−p+51p) + op(h

d−p+41p) = op(h
d−p+41p)

by the assumption 6 in Section 3.1. Thus, we have

Rj(x) = eT1

(
1

n
XT

x WxXx

)−1 1

n
XT

x Wx


djX1−xm(x)

...

djXn−xm(x)


= eT1

(
1

n
XT

x WxXx

)−1 1

n

n∑
i=1

[
djXi−xm(x)Kh(Xi − x)

djXi−xm(x)Kh(Xi − x)(Xi − x)

]

= eT1 Op(h
p−d1p+11

T
p+1)

[
Op(h

d−p+j)

Op(h
d−p+41p)

]

= Op(h
j),

so we obtain (23).

Lemma 3. Let x ∈ X . Under the assumptions in Section 3.1, as n → ∞ and h → 0, we

obtain

eT1 (X
T
x WxXx)

−1XT
x Wx

=
hp−d

n
A1(x)

−1


(1−A2(x)

TA3(x)
−1(X1 − x))Kh(X1 − x)

...

(1−A2(x)
TA3(x)

−1(Xn − x))Kh(Xn − x)


T

(1 + op(1)).

Proof. Using Lemma 1, we calculate

e1(X
T
x WxXx)

−1XT
x Wx

= eT1

(
1

n
XT

x WxXx

)−1 1

n
XT

x Wx

= hp−dA1(x)
−1
{[

1 −A2(x)
TA3(x)

−1
]
+ op(1

T
p+1)

}

9



× 1

n

[
Kh(X1 − x) · · · Kh(Xn − x)

Kh(X1 − x)(X1 − x) · · · Kh(Xn − x)(Xn − x)

]

=
hp−d

n
A1(x)

−1


(1−A2(x)

TA3(x)
−1(X1 − x))Kh(X1 − x)

...

(1−A2(x)
TA3(x)

−1(Xn − x))Kh(Xn − x)


T

× (1 + op(1)).

Lemma 4. Let x ∈ X and k ∈ {1, 2, 3, 4}. If c(x) is a p-dimensional vector function whose

elements are continuous functions of x, then as h → 0,

E[(c(x)T (X − x))kKh(X − x)4] = O(h−4p+d+k).

Proof. By direct calculation, we obtain

E[(c(x)T (X − x))kKh(X − x)4]

= h−4pE

[
(c(x)T (X − x))kK

(
X − x

h

)4

1(X ∈ (Bp
x,h1−η ∩ X ))

]

+ h−4pE

[
(c(x)T (X − x))kK

(
X − x

h

)4

1(X ∈ (Bp
x,h1−η ∩ X )c)

]

= h−4pE

[
(c(x)T (φ(Z)− φ(0)))kK

(
φ(Z)− φ(0)

h

)4

1(Z ∈ Bd
0,h1−η)

]
+ o(hd−4p+4)

= h−4p

∫
Bd
0,h1−η

(c(x)T (φ(z)− φ(0)))kK

(
φ(z)− φ(0)

h

)4

f(z)dz + o(hd−4p+4)

= h−4p

∫
Bd
0,h−η

(c(x)T (φ(hu)− φ(0)))kK

(
φ(hu)− φ(0)

h

)4

f(hu)hddu+ o(hd−4p+4)

= hd−4p+k

∫
Bd
0,h−η

(
c(x)T

φ(hu)− φ(0)

h

)k

K

(
φ(hu)− φ(0)

h

)4

f(hu)du+ o(hd−4p+4)

= hd−4p+kf(0)

∫
Rd

(
c(x)TJ (0|φ)u

)k
K(J (0|φ)u)4du+ o(hd−4p+k) + o(hd−4p+4).

Lemma 5. Let x ∈ X .
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1. If function w∗ : X ×X ×X → R is continuous on Bp
x,µ ×Bp

x,µ ×Bp
x,µ, then as h → 0,

E

[
w∗(X1, X2, X3)K

(
X3 −X2

h

)
K

(
X3 −X1

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
(X1 − x)

]
= O(h3d+11p), (24)

E

[
w∗(X1, X2, X3)K

(
X3 −X2

h

)
K

(
X3 −X1

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
(X1 − x)(X2 − x)T

]
= O(h3d+21p1

T
p ). (25)

2. If function w′ : X × X → R is continuous on Bp
x,µ × Bp

x,µ, then as h → 0, for

i, j ∈ {1, 2},

E

[
w′(X1, X2)K

(
X1 −X2

h

)
K

(
Xi − x

h

)
K

(
Xj − x

h

)
(X1 − x)

]
= O(h2d+11p), (26)

E

[
w′(X1, X2)K

(
X1 −X2

h

)
K

(
Xi − x

h

)
K

(
Xj − x

h

)
(X1 − x)(X2 − x)T

]
= O(h2d+21p1

T
p ). (27)

3. If function w : X → R is continuous on Bp
x,µ, then as h → 0,

E

[
w(X1)K

(
X1 − x

h

)2

(X1 − x)

]
= O(hd+11p), (28)

E

[
w(X1)K

(
X1 − x

h

)2

(X1 − x)(X1 − x)T

]
= O(hd+21p1

T
p ). (29)

Proof. We introduce the following calculations before starting the proof of Lemma 5. By

applying Taylor’s theorem for each φα(hu) with variate h, we get

φα(hu) = φα(0) + h∇φα(0)
Tu+

h2

2
uT∇2φα(0)u+

h3

6

d∑
i,j,k=1

uiujuk
∂3

∂zi∂zj∂zk
φα(z)

∣∣∣∣
z=hαu

for some 0 < hα < h. We put

ξα(u, h) =
1

2
uT∇2φα(0)u+

h

6

d∑
i,j,k=1

uiujuk
∂3

∂zi∂zj∂zk
φα(z)

∣∣∣∣
z=hαu

.

By collecting φ1(hu) · · ·φp(hu), we obtain

φ(hu)− φ(0)

h
= J (0|φ)u+ h


ξ1(u, h)

...

ξp(u, h)

 .
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Using above expansion and multivariate Taylor’s theorem, we have

K

(
φ(hu)− φ(0)

h

)
= K

J (0|φ)u+ h


ξ1(u, h)

...

ξp(u, h)


 = K(J (0|φ)u) + κ(0, u, h), (30)

where

κ(0, u, h) = h

p∑
α=1

ξα(u, h)∂αK(J (0|φ)u) + h2

2

p∑
α,β=1

ξα(u, h)ξβ(u, h)∂αβK(u0)

and

u0 = J (0|φ)u+ s0h


ξ1(u, h)

...

ξp(u, h)


for some 0 < s0 < 1．Additionally we have

φ(hu)− φ(hv)

h
= J (0|φ)(u− v) + h


ξ1(u, h)− ξ1(v, h)

...

ξp(u, h)− ξp(v, h)

 .

So we get

K

(
φ(hu)− φ(hv)

h

)
= K(J (0|φ)(u− v)) + λ(0, u, v, h), (31)

where

λ(0, u, v, h) = h

p∑
α=1

{ξα(u, h)− ξα(v, h)} ∂αK(J (0|φ)(u− v))

+
h2

2

p∑
α,β=1

{ξα(u, h)− ξα(v, h)} {ξα(u, h)− ξα(v, h)} ∂αβK(w0)

and

w0 = J (0|φ)(u− v) + t0h


ξ1(u, h)− ξ1(v, h)

...

ξp(u, h)− ξp(v, h)


for some 0 < t0 < 1.
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We shall start the proof of Lemma 5. By direct calculation,

E

[
w∗(X1, X2, X3)K

(
X3 −X2

h

)
K

(
X3 −X1

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
(X1 − x)

]

= E

[
w∗(X1, X2, X3)K

(
X3 −X2

h

)
K

(
X3 −X1

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)

×1(X1 ∈ Bp

x,h1−η∗ ∩ X )1(X2 ∈ Bp

x,h1−η∗ ∩ X )1(X3 ∈ Bp

x,h1−η∗ ∩ X )(X1 − x)

]

+E

[
w∗(X1, X2, X3)K

(
X3 −X2

h

)
K

(
X3 −X1

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)

×1(X1 ∈ (Bp

x,h1−η∗ ∩ X )c)1(X2 ∈ (Bp

x,h1−η∗ ∩ X )c)1(X3 ∈ (Bp

x,h1−η∗ ∩ X )c)(X1 − x)

]
.

Above second term is

E

[
w∗(X1, X2, X3)K

(
X3 −X2

h

)
K

(
X3 −X1

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
(X1 − x)

×1(X1 ∈ (Bp

x,h1−η∗ ∩ X )c)1(X2 ∈ (Bp

x,h1−η∗ ∩ X )c)1(X3 ∈ (Bp

x,h1−η∗ ∩ X )c)

]
= o(h3d+11p)

because there exists C such that

|w∗(y, z, w)(yα − xα)| ≤ C(1 + ||y||2)

for all y, z, w ∈ X . By using (30) and (31), the first term can be calculated as

E

[
w∗(φ(Z1), φ(Z2), φ(Z3))K

(
φ(Z3)− φ(Z2)

h

)
K

(
φ(Z3)− φ(Z1)

h

)

×K

(
φ(Z2)− φ(0)

h

)
K

(
φ(Z1)− φ(0)

h

)
(φβ(Z1)− φβ(0))

×1(φ(Z1) ∈ Bp

x,h1−η∗ ∩ X )1(φ(Z2) ∈ Bp

x,h1−η∗ ∩ X )1(φ(Z3) ∈ Bp

x,h1−η∗ ∩ X )

]

=

∫
Rd×Rd×Rd

w∗(φ(z1), φ(z2), φ(z3))K

(
φ(z3)− φ(z2)

h

)
K

(
φ(z3)− φ(z1)

h

)

×K

(
φ(z2)− φ(0)

h

)
K

(
φ(z1)− φ(0)

h

)
(φβ(z1)− φβ(0))f(z1)f(z2)f(z3)

13



×1(φ(z1) ∈ Bp

x,h1−η∗ ∩ X )1(φ(z2) ∈ Bp

x,h1−η∗ ∩ X )1(φ(z3) ∈ Bp

x,h1−η∗ ∩ X )dz1dz2dz3

=

∫
Rd×Rd×Rd

w∗(φ(z1), φ(z2), φ(z3))K

(
φ(z3)− φ(z2)

h

)
K

(
φ(z3)− φ(z1)

h

)

×K

(
φ(z2)− φ(0)

h

)
K

(
φ(z1)− φ(0)

h

)
f(z1)f(z2)f(z3)(φβ(z1)− φβ(0))

×1(z1 ∈ Bd
0,h1−η∗ )1(z2 ∈ Bd

0,h1−η∗ )1(z2 ∈ Bd
0,h1−η∗ )dz1dz2dz3

=

∫
Bd

0,h1−η∗×Bd

0,h1−η∗×Bd

0,h1−η∗

w∗(φ(z1), φ(z2), φ(z3))K

(
φ(z3)− φ(z2)

h

)

×K

(
φ(z3)− φ(z1)

h

)
K

(
φ(z2)− φ(0)

h

)
K

(
φ(z1)− φ(0)

h

)
×f(z1)f(z2)f(z3)(φβ(z1)− φβ(0))dz1dz2dz3

= h3d
∫
Bd

0,h−η∗×Bd

0,h−η∗×Bd

0,h−η∗

w∗(φ(hu1), φ(hu2), φ(hu3))K

(
φ(hu3)− φ(hu2)

h

)

×K

(
φ(hu3)− φ(hu1)

h

)
K

(
φ(hu2)− φ(0)

h

)
K

(
φ(hu1)− φ(0)

h

)
×f(hu1)f(hu2)f(hu3)(φβ(hu1)− φβ(0))du1du2du3

= h3d
∫
Rd×Rd×Rd

w∗(φ(hu1), φ(hu2), φ(hu3))f(hu1)f(hu2)f(hu3)

×K

(
φ(hu3)− φ(hu2)

h

)
K

(
φ(hu3)− φ(hu1)

h

)
K

(
φ(hu2)− φ(0)

h

)
K

(
φ(hu1)− φ(0)

h

)
×1(u1 ∈ Bd

0,h−η∗ )1(u2 ∈ Bd
0,h−η∗ )1(u3 ∈ Bd

0,h−η∗ )(φβ(hu1)− φβ(0))du1du2du3

= h3d
∫
Rd×Rd×Rd

w∗(φ(hu1), φ(hu2), φ(hu3))

×
(
f(0) + huT1 ∇f(0) +

h2

2
uT1 ∇2f(h0u1)u1

)

×
(
f(0) + huT2 ∇f(0) +

h2

2
uT2 ∇2f(h0u2)u2

)

×
(
f(0) + huT3 ∇f(0) +

h2

2
uT3 ∇2f(h0u3)u3

)
× (K (J (0|φ)(u3 − u2)) + λ(0, u3.u2, h))

14



× (K (J (0|φ)(u3 − u1)) + λ(0, u3.u1, h))

×{K (J (0|φ)u2) + κ(0, u2, h)}

×{K (J (0|φ)u1) + κ(0, u1, h)}

×1(u1 ∈ Bd
0,h−η∗ )1(u2 ∈ Bd

0,h−η∗ )1(u3 ∈ Bd
0,h−η∗ )(φβ(hu1)− φβ(0))du1du2du3,

of which the leading term is

h3df(0)3
∫
Rd×Rd×Rd

K (J (0|φ)(u3 − u2))K (J (0|φ)(u3 − u1))K (J (0|φ)u2)

×K (J (0|φ)u1) 1(u1 ∈ Bd
0,h−η∗ )1(u2 ∈ Bd

0,h−η∗ )1(u3 ∈ Bd
0,h−η∗ )

×(φβ(hu1)− φβ(0))du1du2du3

= h3d+1f(0)3
∫
Rd×Rd×Rd

K (J (0|φ)(u3 − u2))K (J (0|φ)(u3 − u1))K (J (0|φ)u2)

×K (J (0|φ)u1) 1(u1 ∈ Bd
0,h−η∗ )1(u2 ∈ Bd

0,h−η∗ )1(u3 ∈ Bd
0,h−η∗ )

×
φβ(hu1)− φβ(0)

h
du1du2du3

= h3d+1f(0)3
∫
Rd×Rd×Rd

K(J (0|φ)(u3 − u2))K(J (0|φ)(u3 − u1))

×K(J (0|φ)u2)K(J (0|φ)u1)∇φβ(0)u1du1du2du3(1 + o(1)).

Therefore, we obtain

E

[
w∗(φ(Z1), φ(Z2), φ(Z3))K

(
φ(Z3)− φ(Z2)

h

)
K

(
φ(Z3)− φ(Z1)

h

)

×K

(
φ(Z2)− φ(0)

h

)
K

(
φ(Z1)− φ(0)

h

)
(φβ(Z1)− φβ(0))

×1(φ(Z1) ∈ Bp

x,h1−η∗ ∩ X )1(φ(Z2) ∈ Bp

x,h1−η∗ ∩ X )1(φ(Z3) ∈ Bp

x,h1−η∗ ∩ X )

]

= O(h3d+11p),

which is in (24). The proof of (25) is same as (24).
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Next we prove (26). We have

E

[
w′(X1, X2)K

(
X1 −X2

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
(X1 − x)

]

= E

[
w′(X1, X2)K

(
X1 −X2

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)

×1(X1 ∈ Bp

x,h1−η′ ∩ X )1(X2 ∈ Bp

x,h1−η′ ∩ X )(X1 − x)

]

+E

[
w′(X1, X2)K

(
X1 −X2

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)

×1(X1 ∈ (Bp

x,h1−η′ ∩ X )c)1(X2 ∈ (Bp

x,h1−η′ ∩ X )c)(X1 − x)

]

= E

[
w′(φ(Z1), φ(Z2))K

(
φ(Z1)− φ(Z2)

h

)
K

(
φ(Z3)− φ(Z2)

h

)
K

(
φ(Z2)− φ(0)

h

)

×K

(
φ(Z1)− φ(0)

h

)
1(Z1 ∈ Bd

0,h1−η′ )1(Z2 ∈ Bd
0,h1−η′ )(φ(Z1)− φ(0))

]

+o(h2d+11p).

The above leading term is

E

[
w′(φ(Z1), φ(Z2))K

(
φ(Z1)− φ(Z2)

h

)
K

(
φ(Z2)− φ(0)

h

)
K

(
φ(Z1)− φ(0)

h

)

×1(Z1 ∈ Bd
0,h1−η′ )1(Z2 ∈ Bd

0,h1−η′ )(φβ(Z1)− φβ(0))

]

=

∫
Rd×Rd

w′(φ(z1), φ(z2))K

(
φ(z1)− φ(z2)

h

)
K

(
φ(z2)− φ(0)

h

)
K

(
φ(z1)− φ(0)

h

)
×1(φ(z1) ∈ Bp

x,h1−η′ ∩ X )1(φ(z2) ∈ Bp

x,h1−η′ ∩ X )f(z1)f(z2)(φβ(z1)− φβ(0))dz1dz2

=

∫
Bd

0,h1−η′×Bd

0,h1−η′

w′(φ(z1), φ(z2))f(z1)f(z2)K

(
φ(z1)− φ(z2)

h

)

×K

(
φ(z2)− φ(0)

h

)
K

(
φ(z1)− φ(0)

h

)
(φβ(z1)− φβ(0))dz1dz2

= h2d+1

∫
Bd

0,h−η′×Bd

0,h−η′

w′(φ(hu1), φ(hu2))f(hu1)f(hu2)K

(
φ(hu1)− φ(hu2)

h

)
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×K

(
φ(hu2)− φ(0)

h

)
K

(
φ(hu1)− φ(0)

h

)
φβ(hu1)− φβ(0)

h
du1du2

= h2d+1

∫
Rd×Rd

{
w′(φ(0), φ(0)) + (w′(φ(hu1), φ(hu2))− w′(φ(0), φ(0)))

}
×
(
f(0) + huT1 ∇f(0) +

h2

2
uT1 ∇2f(h0u1)u1

)

×
(
f(0) + huT2 ∇f(0) +

h2

2
uT2 ∇2f(h0u2)u2

)
× (K (J (0|φ)(u1 − u2)) + λ(0, u1, u2, h))

× (K (J (0|φ)u2) + κ(0, u2, h)) (K (J (0|φ)u1) + κ(0, u1, h))

×1(u1 ∈ Bd
0,h−η′ )1(u2 ∈ Bd

0,h−η′ )
φβ(hu1)− φβ(0)

h
du1du2du3

= h2d+1w′(φ(0), φ(0))f(0)2

×
∫
Rd

∫
Rd

K(J (0|φ)(u1 − u2))K(J (0|φ)u2)du2K(J (0|φ)u1)∇φβ(0)u1du1(1 + o(1)).

Thus we have

E

[
w′(X1, X2)K

(
X1 −X2

h

)
K

(
X2 − x

h

)
K

(
X1 − x

h

)
(X1 − x)

]
= O(h2d+11p),

which completes to derive (26).

Finally, (28) can be derived as

E

[
w(X1)K

(
X1 − x

h

)2

(X1 − x)

]

= hd+1w(0)f(0)

∫
Rd

K (J (0|φ)u)2 J (0|φ)udu(1 + o(1)).

The proof of (29) is same as (28).

Lemma 6. Let x ∈ X . Under the assumptions in Section 3.1, as n → ∞ and h → 0, we

obtain

eT1 (X
T
x WxXx)

−1XT
x WxLV LTWxXx(X

T
x WxXx)

−1e1

=
1

nhd
v(x)A1(x)

−4f(φ−1(x))3
∫
Rd

K ∗K(J (φ−1(x)|φ)v)2dv(1 + op(1)),
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eT1 (X
T
x WxXx)

−1XT
x WxV LTWxXx(X

T
x WxXx)

−1e1

=
1

nhd
v(x)A1(x)

−1f(φ−1(x))2
∫
Rd

K
(
J (φ−1(x)|φ)v

)
K ∗K(J (φ−1(x)|φ)v)dv

×(1 + op(1)).

Proof. Lemma 1 implies that eT1 (1/nX
T
x WxXx)

−1 = Op(h
p−d1Tp+1) and we note that

LV LT = [L1 · · ·Ln]
TV [L1 · · ·Ln] =


LT
1
...

LT
n

V [L1 · · ·Ln] =


LT
1 V L1 · · · LT

1 V Ln

...
. . .

...

LT
nV L1 · · · LT

nV Ln

 .

We have by using blockwise calculation that

1

n2
XT

x WxLV LTWxXx ≡

[
M11 M T

21

M21 M22

]
,

where

M11 =
1

n2

n∑
i,j=1

LT
i V LjKh(Xi − x)Kh(Xj − x)

=
hd−2p

n
v(x)A1(x)

−2f(φ−1(x))3
∫
Rd

K ∗K(J (φ−1(x)|φ)v)2dv(1 + o(1)), (32)

M21 =
1

n2

n∑
i,j=1

LT
i V LjKh(Xi − x)Kh(Xj − x)(Xi − x)

= Op

(
hd−2p+1

n
1p

)
, (33)

M22 =
1

n2

n∑
i,j=1

LT
i V LjKh(Xi − x)Kh(Xj − x)(Xi − x)(Xj − x)T

= Op

(
hd−2p+2

n
1p1

T
p

)
. (34)

Using (32), (33) and (34), we obtain

eT1 (X
T
x WxXx)

−1XT
x WxLV LTWxXx(X

T
x WxXx)

−1e1

= eT1

(
1

n
XT

x WxXx

)−1 1

n2
XT

x WxLV LTWxXx

(
1

n
XT

x WxXx

)−1

e1
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= eT1

(
1

n
XT

x WxXx

)−1
[
M11 M T

21

M21 M22

](
1

n
XT

x WxXx

)−1

e1

= hp−dA1(x)
−1
([

1 −A2(x)
TA3(x)

−1
]
+ op(1

T
p+1)

)
×

[
M11 M T

21

M21 M22

]
hp−dA1(x)

−1

([
1

−A3(x)
−1A2(x)

]
+ op(1p+1)

)

= h2p−2dA1(x)
−2M11(1 + op(1))− 2h2p−2dA1(x)

−2M21A3(x)
−1A2(x)(1 + op(1))

+ h2p−2dA1(x)
−2A2(x)

TA3(x)
−1M22A3(x)

−1A2(x)(1 + op(1))

=
1

nhd
v(x)A1(x)

−4f(φ−1(x))3
∫
Rd

K ∗K(J (φ−1(x)|φ)v)2dv(1 + op(1)).

Next we shall start the proof of (17). Notice that ei is a n-dimensional and e1 is a

(p+ 1)-dimensional.

InV LT = [e1 · · · en]TV [L1 · · ·Ln] =


eT1
...

eTn

V [L1 · · ·Ln] =


eT1 V L1 · · · eT1 V Ln

...
. . .

...

eTnV L1 · · · eTnV Ln

 .

We have by using blockwise calculation that

1

n2
XT

x WxV LTWxXx =
1

n2
XT

x WxInV LTWxXx ≡

[
S11 ST

21

S21 S22

]
,

where

S11 =
1

n2

n∑
i,j=1

eTi V LjKh(Xi − x)Kh(Xj − x)

=
hd−2p

n
v(x)A1(x)

−1f(φ−1(x))2

×
∫
Rd

K
(
J (φ−1(x)|φ)v

)
K ∗K(J (φ−1(x)|φ)v)dv(1 + op(1)), (35)

S21 =
1

n2

n∑
i,j=1

eTi V LjKh(Xi − x)Kh(Xj − x)(Xi − x)

= Op

(
hd−2p+1

n
1p

)
, (36)
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S22 =
1

n2

n∑
i,j=1

eTi V LjKh(Xi − x)Kh(Xj − x)(Xi − x)(Xj − x)T

= Op

(
hd−2p+2

n
1p1

T
p

)
. (37)

Using (35), (36) and (37), we obtain

eT1 (X
T
x WxXx)

−1XT
x WxV LTWxXx(X

T
x WxXx)

−1e1

= eT1

(
1

n
XT

x WxXx

)−1 1

n2
XT

x WxInV LTWxXx

(
1

n
XT

x WxXx

)−1

e1

= eT1

(
1

n
XT

x WxXx

)−1
[
S11 ST

21

S21 S22

](
1

n
XT

x WxXx

)−1

e1

= hp−dA1(x)
−1
([

1 −A2(x)
TA3(x)

−1
]
+ op(1

T
p+1)

)
×

[
S11 ST

21

S21 S22

]
hp−dA1(x)

−1

([
1

−A3(x)
−1A2(x)

]
+ op(1p+1)

)

= h2p−2dA1(x)
−2S11(1 + op(1))− 2h2p−2dA1(x)

−2S21A3(x)
−1A2(x)(1 + op(1))

+ h2p−2dA1(x)
−2A2(x)

TA3(x)
−1S22A3(x)

−1A2(x)(1 + op(1))

=
1

nhd
v(x)A1(x)

−1f(φ−1(x))2
∫
Rd

K
(
J (φ−1(x)|φ)v

)
K ∗K(J (φ−1(x)|φ)v)dv

× (1 + op(1)).
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