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Abstract
This paper is concerned with data sharpening technique in nonparametric regression under the setting
where the multivariate predictor is embedded in an unknown low-dimensional manifold. Theoretical
asymptotic bias is derived, which reveals that the proposed data sharpening estimator has a reduced
bias compared to the usual local linear estimator. The asymptotic normality of the data sharpening
estimator is also developed. It can be confirmed from simulation and applications to real data that the

bias reduction for the data sharpening estimator supported on unknown manifold is evident.
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1 Introduction

Bias reduction for kernel estimators is an important topic in nonparametric regression. Among the many
nonparametric approaches, the local linear estimator is known to be an efficient standard tool. The local
linear estimator with multivariate predictor and its asymptotic behavior were studied in [11]. The bias
of the local linear estimator is O,(h?) where h denotes scalar bandwidth as shown in Theorem 2.1 of [11].
Estimators based on high-order polynomials or high-order kernels have been used as conventional approaches
for reducing bias. [5] proposed a comprehensive method called data sharpening for reducing bias. Their
proposed estimator is derived by adding the usual local linear estimator applied to the data and the local
linear estimator of its residuals. Compared to the bias of the local linear estimator, the data sharpening
estimator has smaller bias in the order of O,(h?*). The data sharpening estimator was studied further in [9],
where an effective method for the bandwidth selection for a data sharpening estimator was fully discussed.
The data sharpening technique is closely related to the boosting. In fact the data sharpening can be seen as
one-step Lo-boosting [3]: smooth the residual of initial estimator, and then the obtained residual smoother

is added to the initial estimator. Also it is worth to note that this idea can be found in [12] as twicing.
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On the other hand, there has been researched on identifying intrinsic low-dimensional structures un-
derlying original high-dimensional data. It is assumed in this direction of research that the observed high-
dimensional data are essentially lying on a low-dimensional smooth manifold. Recently, this assumption
has been divided into known manifolds and unknown manifolds, which is reflected in the recent research
relating to low-dimensional manifolds. There are several examples of research based on known manifolds.
Directional statistics [8] is a representative area based on a known low-dimensional manifold, where the circle
and sphere frequently appear as the low-dimensional manifold. Regression for circular and spherical data
was discussed in [6] and [7]. While there has been an abundance of works concerning known manifolds, it
seems that research based on unknown low-dimensional manifolds has still not sufficiently emerged. The
local linear estimator on an unknown manifold was discussed in [2], where the asymptotic bias and variance
were obtained using the local chart connecting the low-dimensional manifold and Euclidean space. Further
works related to smoothing techniques on low-dimensional manifold can be found in [1] and [4].

In this paper, our purpose is to extend the data sharpening estimator on unknown manifolds by combining
[2], [11] and [13]. In the research regarding regression on a manifold, we can use the definition in [2] without
modification for the asymptotic term of the local linear estimator. We define the same data sharpening
estimator as [2] and [9] on a low-dimensional manifold and investigate its asymptotic behavior. Thus, the
present work can be seen as a generalization of the data sharpening technique in Euclidean space to an
unknown low-dimensional manifold.

This paper is organized as follows. Section 2 introduces the proposed data sharpening estimator with a
short review of the local linear estimator. The asymptotic results and assumptions are collected in Section
3. In particular, the asymptotic bias and variance of the data sharpening estimator are derived, and its
asymptotic normality is also developed. To confirm the bias reduction, the data sharpening estimator is
compared with the local linear estimator theoretically in Section 4. Asymptotic terms of the bias, variance
and mean squared error (MSE) for the data sharpening estimator are shown graphically in some specific
cases. In Section 5, the practical performance of the data sharpening estimator is investigated through
simulation and applications to real data sets. Proofs of theoretical results and calculations are contained in

Section 6.

2 Model and Data Sharpening

Throughout this paper, we use the notations LL and DS to denote Local Linear and Data Sharpening,

respectively.



2.1 Model

Let {(X;,Y;) € R? xR | 1 <4 < n} be arandom sample drawn from the model
Y; =m(X;) +v(X) %, i€{l,- ,n},

where €1, -+ , &, are independent and identically distributed (i.i.d.) random variables satistying E[e;] = 0,

Varle;] = 1 that are independent of X7,---, X,,;; m : RP — R is the target regression function defined as
m(z) = E[Y|X = z]

for x = (21, - ,x,) € RP; and v is a positive variance function. In this paper, we assume that Xi,---, X,
are embedded into a low-dimensional manifold X. Let positive integer d (d < p) be the dimension of manifold
X. Manifold X is represented as the image of a local chart . The local chart ¢ is a bijective and C® mapping
from Bf, into X N BE , for some r > 0 and p > 0, where BS , = {z € RY| ||z —y|| < v} (¢ =d or ¢ = p)
is the ball with its center y and radius v, and ||z|| = V2T 7 for z € R%. We suppose that the local chart ¢

satisfies ¢(0) = z. For a given x € X, our problem is to estimate m(z) nonparametrically.

2.2 Data Sharpening

Commonly used nonparametric regression estimators for m(z) are multivariate versions of the Nadaraya-
Watson kernel estimator, the local polynomial estimator, and the smoothing spline. [5] proposed some kernel
regression estimators derived through a method called Data Sharpening (DS), which aims to reduce the bias
of usual kernel estimators. The DS estimator is obtained by adding the residual smoother to the original
regression estimator. The DS methods for the Nadaraya-Watson and LL estimators were discussed in [5] with
a scalar bandwidth when d = p and ¢ is the identical mapping on RP. The general theory for multivariate
LL regression has been developed in [11]. Asymptotic conditional bias and variance of the LL estimator
were derived in [11], where they treated not only a scalar bandwidth but also a general bandwidth matrix.
For a scalar bandwidth h > 0, it is well known that the bias of the LL estimator is O,(h?), whereas the DS
estimator has bias of the order O,(h?).

The LL estimator mpr(x,h) is defined from the solution &(x) of the following weighted least squares

problem:

n

A 3 = arg-min —a— T(X; —x)}? ; — T
(a(x), B(x)) = (j,g%emm;{“ BY(Xi — 2) YKy (X, — @),



where K, (U) = h"PK(h™1U), K is a p-variate kernel function. By direct calculations, iy, (x, h) for m(z)

is derived as

mrr(z,h) = a(z) = el (XIW, X,) ' XITW,Y,

where
1 (X1 —.’L‘)T Yl
X = ; Y = )
1 (X, —:E)T Y,
Wy = dlag(Kh(Xl - "E), T 7Kh(Xn - 1’))7 €1 = [1 0-- O]T € RPHL

The DS method consists of two steps: the first step is smoothing by m . (z, k), and then calculating the

residuals by r; = Y; — mpp(X;,h) for ¢ = 1,--- ;n. In the second step, let 711 (z, h) be the LL estimator

applied to the residual data {(X;,7;)| 1 <4 < n}, which is obtained as

Fro(x,h) = el (XTW, X,) ' XTW, (Y — M),

where M = [Mrr(X1,h) - mpr(X,, k)T, The DS estimator mpg(x,h) is then defined as

mps(z,h) = mpn(x,h) + 7oz, h) = D (XIW,X,) ' XIW,(2Y — M).

3 Theory

This section summarizes the asymptotic behavior for the DS estimator on the manifold as well as the

required assumptions. Assumptions for the LL estimator on the manifold were already developed in [2].

Some assumptions in [2] apply here, but additional assumptions are needed to develop asymptotics for

T/ﬁps(l‘, h)

3.1 Assumptions

We denote closure of BY , as By, = {y € R?| [y — || < pu}.

1. The true regression function m is bounded and C* on RP.

2. The variance function v is bounded above and from zero on RP.

such that P(X € §) = Q(Z € ¢~ !(S)) for any open set S of X NBL ,,

The map ¢ given in Section 2.1 further satisfies the following. There exists a random element Z in R?

where Q is the induced measure



on ng. And the measure QQ has the non-degenerate density, which is denoted by f. The density f is
C? on Bf, and f(0) > 0.

4. The kernel function K is a radially symmetric density and C3.
5. For bandwidth h and sample size n, nh? — oo holds as n — oo and h — 0.

6. If the function w satisfies w(y) < M(1 + ||y|[?)? (y € X) for some M > 0 and v € {1,2,4}, then as
h — 0,

plucor (F5) 10 @, n a0 = ot

and gp‘l(Bzyhl,,} nx)= Bg,hlfv hold for some n(0 < n < 1).

7. If function w’ is continuous on BE ,, x B, then as h — 0,

E{w,(xl’Xz)K <XhX) K <X2h x> K (th x>

Xl(Xl S (Bi)

h

2 2
E|:’LU/(X1,X2)K <)(1h)(2) K (th JZ>

e NRN(X € (B0, 020 = o02),

Xl(Xl S (Bi

oy NI X2 € (B, N X)C)} = o(h??)

and o1 (B?

— Rd
ot NX) =8

o.p1—n hold for some 70 <n <1).

8. If function w* is continuous on BY ,, x BY ,, x B ., then as h — 0,

E|w* (X1, Xa, X3) K (X3 - X2> K (X3 - X1> K (X"’h x) K <X1h x)

X1(Xy € (B, e NX))UX2 € (B, 0 NX))L(X5 € (B, . N X)C)} = o(h3)

and o1 (B?

z,h1="

L NX)=DBa

01—+ hold for some n*(0 < n* < 1).

3.2 Notation

We define the following notations, some of which are also used in [2] and [9].
For a function g : R? — R (¢ = d or ¢ = p), Vg(z) and V?g(z) are the gradient (column) vector and

the Hessian matrix of function g evaluated at x, respectively. The Jacobi (d x p) matrix of ¢ evaluated at



ae€R?is

Telp) = i) Ve |y = (o) )
For g and G : RP — R, we define
B(zlg,p) = Clalp)™ /Rd uF T (@ @) |e) V2 g(2) T (¢ (@) |)uK (T (¢~ (2)|p)u)du,

R(z|G, )

| 6 @leau,

where

Claly) = [ KT @l
Additionally, we put set

G'(y) = 2G(y) - Clalp)"'G*Gly),

G G(y) G(T (e~ M) e)v)Gly — T (¢~ (z)|)v))dv.

Rd

When d = p and ¢ is the identity mapping idgr on RP. Each notation and symbol are the same as those
used in [11], for example C(z|idgs) = 1.
Using our notations, functions Ji(z) and Ja(z) used in [2] are expressed as Ji(z) = B(z|m,¢) and

Jo(z) = v(@) R(z|K, ) /{f (7} (2))C(x]p)?}.

3.3 Asymptotic Conditional Bias and Variance

The asymptotic behavior of the DS estimator is summarized in the following theorem.

THEOREM 1. Let # € X. Then under the assumptions in Section 3.1, asymptotic conditional bias and

variance of mpg(z, h) are

N h*
Bias[mps(z,h)| X1, , Xa] = —ZB($|J17<P)+0p(h4)’

1 R(z|K*,p)

Vartos(e, WX, Xl = ha ik o)

Ja(2)(1 4 0p(1))-

REMARK 1. We compare Theorem 1 with Theorem 2.1 in [2]. It is realized that the DS method can be

applied on an unknown manifold as the estimator with bias reduction. Our assumptions are essentially equal



to those given in [2] for the LL estimator, in which the bias of 7,1, (z, h) is O,(h?), but the bias of mpg(z, h)
is O,(h*) as in Theorem 1, indicating a bias reduction. On the other hand, 1/(nh?) appears in the variance
of mpg(x, h), which is the same order as the variance of mp,(z, h). The difference of variance for mpg(z, h)

and mpr(x,h) is captured in the ratio r(x|K*, K, ¢) = R(z|K*, ¢)/R(z|K, p).
3.4 Asymptotic Normality

Asymptotic distributional result on the DS estimator is obtained as follows:

THEOREM 2. Let E[*] < oo and 2 € X. Then under the same assumptions in Theorem 1 and h = xn =1/ (4+8)

for a positive constant k, mpg(z, h) has asymptotic normality:

4

h B(xul,ga)) / SVarTins @ MK, Xa] -2 N(0,1),

(ﬁDS(% h) —m(x) 4

where “247 designates convergence in distribution, and N(0,1) is the standard normal distribution.

REMARK 2. The asymptotic normality of mpg(z,h) on RP was already developed in [5] and [13]. Although

asymptotic normality of the LL estimator in [2] has not been discussed, it can be proved that

<ﬁm(x, h) — m(z) — h;Jl(a:)> / VVarfing, (z, h)| X1, -, Xn] == N(0,1)

holds for h = kn~=1/(4+4) using with the similar calculations as for the proof of Theorem 2.

4 Theoretical comparison

In this section, we report the theoretical performance of the DS estimator for m : R? — R on the d-
dimensional closed and smooth manifold X C RP. We investigate a bias reduction on a sharp-peaked point
by comparing the behavior of the leading terms in Theorem 1 of this paper and Theorem 2.1 in [2]. In
particular, our targets for comparison are the following terms: (h*/4)Ji(z) versus (h%/16)B(z|J1,¢) in

squared bias, and (nh?)~1Jy(z) versus (nh?)~lr(z|K*, K, p)Ja2(x) in variance.

4.1 Settings: True function, kernel, local chart and bandwidth

For theoretical comparison, we consider the case p = 2 and d = 1. We utilize the true regression function m

as

m(z) = m(xy,x2) = 21 + 2exp(—400(zy — 0.5)%)



for € X C R? and the Gaussian density

1 xTx 1 2 + 22
K(z) = — _rry L X 2
(z) = o exp ( 2 > or P < 2 )

is used as the kernel. The local chart ¢ is supported on [0, 1], and hence, we have considered X = {p(z) €

R?|z € [0,1]}. We assume that the density function f has uniform distribution on [0,1]. By the use of

Gaussian kernel K and setting g(x) = ||J (¢~ 1(z)|p)||, we obtain

Pa@ = e @) m@ T @)le) m
) = T (), @)
L Balhe) = @) T @l @I @) ®)
%W&(m) = 3 (2[2— % + ;) J(x) 4)

where V2m(z) is

Vim(z) = | 52 | :
0 aix%m(ojl,xg)
with
;f%m(xl,u) = 1600{800(x3 — 0.5)% — 1} exp(—400(z5 — 0.5)?).

Here, we set G(z) = {Go(x)}? and Go(x) = ph(p~1(x)). For smooth function n(zx), we use subscript to

denote the partial derivatives by variables corresponding to those indices throughout in this section as

63

Wjaxkn(x) = nije(7),
84
mﬁ(@ = Mijke(T)

and so on. Then, the each component of V2.J;(z) is

Jinn(x) = g(@)Pmaa(z) {69(z) " 91(2)?G(x) — 2911 (2)G(z) — 491 (2)G1(z) + g(x)G11 (2) }
Jiaa(@) = g(x) Pmaa(x) {6g9(z) " g2 () g1 ()G (x) — 2012(2) G () — 291 () G2 ()

—2G1(2)ga(2) — 29(2)Gra(x)} + g(2) man (@) {201 (2)G (@) + g(2)G1(2)} ,



Jio(z) = g(z) *maoa(x) {69($)7192($)2G(I) + 9(2)Ga2(x) — 2g22(2)G(z) — 4g2(2)Ga(x) }

+g(2) *maza(2)G(@) — 29(x) Pmaze(2) {g2(2)G (2) - g(2)Ga(x)}
where
Mmasa(z) = —1600 x 800{800(z3 — 0.5)> — 3(x5 — 0.5)} exp(—400(zs — 0.5)?)
and
Magea () = —1280000{ —640000(z2 — 0.5)* 4+ 4800(z2 — 0.5)% — 3} exp(—400(z5 — 0.5)?).

We focus on functions

h4
Ty o)
and
8
Bl 0’ (©

calculated from (1) and (3). The functions in (2) and (4) are also used in comparison of variances.
Here, it is necessary to determine the bandwidth parameter h. We consider the bandwidth parameter as

the minimizer of AMISE:

4 1 1
ha = angmin {5 ) e+ o [ e s

h>0 0

and

8 1 1 P *
hps = ar%;rglin{];G/o B(cp(z)|J1,<p)2f(z)dz+$/o W&(@(z))ﬂz)dz}.

By differentiate with h, we obtain

o=

hip = || n7® (7)

| atenas
T(e(e)Vdz

0



and

O~

R(p \K )
. / |K, RO 2P|

/ B ‘Jl,@) dz

ol
—~
oo
=

In fact, by estimating integrals using Monte Carlo method we utilize

M
M Z e(z()))
=

her = v n=s 9)

Z e(z()))

and

M

(z()) | K,
Z ;j)) e (el
~ =1 J ’

>
>}
nn
I
3|
©l=
—~
—_
o
=

1]%

MZB(<P(Z(J'))|J1,<P)2

j=1

where each z(; is generated uniformly on [0,1], 1 < j < M and M = 10000.

4.2 Case of a Power Function

We consider the situation where the local chart is

z
p(2) = pa(z) =
z
and 0 < z < 1. For the case a = 3, the true curve m(p3(z)) achieves its maximum at z = 1/2, as

displayed in Figure 1. By using ps(z), we have p;'(z) = xq, g(z) = \/a%g((kl) +1, Go(z) = 1 and

T (pz1(2)|pa) = [axy™* 1]T. The g(x) and mao(z) are both functions containing only x5. Thus, we obtain

T (p3 " (@)|pa)TVPm(2) T (p3 " (2)|pa) = maa(x),
T(px (@)]pa) V2 (2)T (05  (2)|pa) = J122(2),
() = (o — 1)22273
A= g9(x)
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Figure 1. True curve of m and the local chart p3. The manifold X is the image of p3 and is embedded in the plane y = 0 in
R? as a thick solid curve. The true curve of m(p3(z)) is drawn as a thin solid curve on embedded X.

and

_ o= {0 =B lg(e)? 3 e)}
puale) = P |

For our consideration, we utilized the case @ = 3 and n = 1000, and used ﬁLL = 0.01688 and EDS = 0.02275
calculated by (9) and (10). Functions (1), (2), (3) and (4) have been regarded as univariate function with z
by plugging x = p3(z). According to Figure 2, a bias reduction occurs around z = 1/2. In particular, the
squared bias of the DS estimator is smaller than that of the LL estimator at point 0.5 in panel (b) of Figure
2. Note that solid curves in panels (a) and (b) are close to the dashed curves on the intervals [0.3,0.4] and
[0.6,0.7]. However, the placement of the solid curve and the dashed curve is the opposite on the interval
[0.4,0.5] and [0.5,0.6]. Panel (c) displays the difference in asymptotic variances, in which the DS estimator
has a slightly bigger variance than that of the LL estimator. The reason for this could be considered to be
the fact that the variance of the DS estimator includes a convolution K % K. However, from the view of the

asymptotic MSE in panel (d), the DS estimator is superior in the sense of smaller MSE around of z = 1/2.

5 Practical Performance

This section investigates bias reduction of the DS estimator using simulated and real data. In both cases,

our aim is to confirm that the DS estimator can trace sudden variations hidden in data.

5.1 Simulation

The purpose of this simulation is to verify the bias reduction of the DS estimator for sudden variation by
estimating bias with the simulated data. We utilize m, K, p3 used in Section 4 in this simulation. Data

sets are generated by the following fixed design. First, we generated n = 1000 points uniformly from the

11
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Figure 2. Comparison of leading terms by Theorem 1 between the DS estimator (solid line) and LL estimator (dashed line)
in the case of n = 1000 and local chart p3. Here, the leading terms are used as the function with z by = p3(z) and each
bandwidth parameter is hzz, and hpg. Panel (a) displays (1) and (3), panel (b) displays (5) and (6), panel (c) displays (2) and
(4) and panel (d) displays (5) + (2) and (6) + (4). We focus on the interval [0.3,0.7] to emphasize the difference.
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interval [0, 1] as Z, denoted {z; € [0,1]|z; ~ U(0,1),1 <14 < n}. The predictor X is defined as {(x1;,z2;) €

®1F L N(0,1),1 < i <

%

R?|(214, 22;) = ¢(2:),1 < i < n}. In each step k, we generate n random errors {e

k)

n}, and then the response variable Y is obtained as {yfk) € R|y£k) = m(z14,T2;) + ag ,1 <i < n} Let

D) = {(mu,xgi,ygk)) € R3|1 < i < n} be the simulated data in step k. By the shape of m, the simulated

data sets seem to have the structure of sudden variation around z = 0.5 for the case of ¢ = p3. For example,

DW is shown in Figure 3. We compose mpg(x, h; D*)) and mpr, (z, h; D*)) by using D*). We iterate above

0805 o 0,

- i J\‘L“L—LJ
( N . H

\\\x'\j R

AN e

_k L P f\

Figure 3. Example of simulated data showing D) for the case of ¢ = p3, in which the predictors are embedded.

steps from k£ =1 to N = 10000 and calculate the following two values:

N
= =~ 1 _ 7
Bias[mpr(z,hrr)] = N ZmLL(% hrp; D®) —m(x) (11)
k=1
and
— ~ 1 N >
Bias[mps(xz,hps)] = N ZWLDS(% hps; D®) —m(x), (12)
k=1

where h L and h ps are the optimal values used in Section 4. We implemented this simulation 5 times, and
then calculated the mean of the obtained (11) and (12), which are displayed in Figure 4.

In the left panel (a) of Figure 4, it can be seen that the solid curve (DS) nears the horizontal dotted line
(y = 0) around the vertical dotted line (z = 0.5). From this we can claim that the reduction of estimated
bias of the DS estimator occurs around the vertical dotted line. The right panel (b) of Figure 4 shows that
the DS estimator supported on the 1-dimensional manifold X has a smaller bias around the point of sudden
variation x = p3(0.5), which can also be observed in panel (a). From the this result, we can consider that bias
reduction for the DS estimator on an unknown manifold also occurs around the point of sudden variation.

Next, we compare this simulation and the theoretical results from Figures 2. We compare panel (a) of

Figure 2 with panel (a) of Figure 4. The following facts can be observed: the curve of estimated bias has a

13
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Figure 4. Comparison of (11) and (12). Panel (a): (12) (solid) and (11) (dashed) with = = p3(z), drawn as the curve of z; (b):
(12) (thick) and (11) (thin) with z = p3(z) in R3; In (b), the solid curve on y = 0 denotes X, and the mark x means the point
of sudden variation.

similar shape to the curve of asymptotic bias in Figure 4 for each estimator, although the scales of curves
(11) and (12) in Figure 4 differ to those of (1) and (3) in Figures 2 because each theoretical bandwidth
used in this simulation might be much smaller than the optimal bandwidth for each simulated data set D).
Reduced bias for the DS estimator has certainly occurred, as it is observed that the curve of (12) is closer
to zero than the curve of (11) around z = 0.5 in Figure 4. These two points correspond to places where
the magnitude of asymptotic bias for the DS estimator is smaller than that of the LL estimator in Figure 2.
It can be confirmed from the above facts that data sharpening is an efficient smoothing technique endowed

with the property of bias reduction.

5.2 Real Data: directional data

We demonstrate here the applicability of the DS estimator to real data. To study the bias reduction, we
investigate the fitting of the DS estimator. If the fitting of the DS estimator is better than that of the LL
estimator, this indicates that the DS estimator can trace the sudden variation of data because of the bias
reduction. We used the sets of directional data tabulated in Tables 1.1 and 1.2 in [8], and the data of angle
and velocity for 199 winds included in the R package “NPCirc” [10].

Table 1.1 is the frequencies of the vanishing angles of 714 nonmigratory British mallards with 0° defined
as north. Table 1.2 shows the orientation of the least projection elongations of sand grains in thin sections,
cut parallel to laminations, of Recent Gulf Coast beach sand. The aforementioned tables in [8] include

frequencies for each 18 subintervals of degree divided from the interval of degree [0°,360°]. We regard the

14



middle value of each bin of subinterval as the observation of the predictor and the height of bin as the
observation of the response variable.

We denote each data set as D; = {(z,yx)|l < k < n;} and note that each xj, is embedded in the unit
circle ¥ = {z € R?| ||z|| < 1}. Dy and D; correspond to Tables 1.1 and 1.2 in [8], respectively, with sample
size n; = 18(i = 1,2). D3 designates the data from* NPCirc” with sample size ng = 199, and D, is based
on D3 without data (2.60,8.4). Although the local chart ¢ is unknown for practical situation of real data,

we exploit the local chart as follows for the purpose of expressing estimators graphically.

cos 0

sin 6

with 6 € [0, 27) because Dy’s are sets of circular data. Note that the LL and DS estimators can be composed
without the local chart.
To determine the bandwidth parameter h, we implemented the following leave-one-out cross validation

for the LL and DS estimators:

n

1 (i 2
RSSp(h) =~ {y — il (@, h)} (13)
=1
and
BN _(—i) 2
RSSps(h) = - Z {Z/z —Mmpg (T4, h)} (14)
=1

for each value of h and each data set, where ﬁlgbf) (x4, h) is the DS estimator based on the data without
(x4,9:), evaluated at = x; and ﬁl(L_Li)(zi, h) is defined similarly. We utilized the bandwidth parameter h as

the minimizer of RSS:

hLL = arg—minRSSLL(h) (15)
h>0
and
hps = arg-minRSSpg(h). (16)
h>0

The curve of RSS and the chosen value of h for each Dy, are exhibited in Figure 5. Actual values of (15) and

(16) as well as corresponding minimum of (13) and (14) are tabulated in Table 1.
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Table 1: The optimal bandwidths (15) and (16), and the minimum values of (13) and (14).

DATA hrr hDS RSSLL(hLL) RSSDs(hDS)
D1 0.394 0.504 210.714 199.277
Do 0.357 0.449 357.091 341.957
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L

800 1000
L L

300
600

200
400

(a) D1 (b) D2

Figure 5. RSS as the function of bandwidth h. The solid curve is (14), the dashed curve is (13) and the vertical lines are the
minimizers hrr, (15) and hpg (16) of (13) and (14), respectively, in both panels.

We first look at the obtained regression curves in Figure 6. Panel (a) shows the curves of the DS estimator
and LL estimator based on the unit circle in R3. Since the predictors in Dy were observed on the interval
of degree [0°,180°], panel (b) displays the same curves based on the half unit circle. We can see that the
two curves of the LL and DS estimators are almost the same. A possible reason is that the sample size
n = 18 is small for each D;. However Figure 5 and Table 1 reveal that the DS estimator is better than the

LL estimator from the perspective of the best RSS for each Dy.

Figure 6. The DS estimator and LL estimator in R3. The thin curve is the LL estimator, the thick curve is the DS estimator,
the dotted points are data, and the solid line on the bottom plane is X.

To compare the DS estimator and LL estimator with changing bandwidth, we compose two estimators

using the same h in an interval including (13) and (14). The results are shown in Figure 7. Panels (a) and
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(b) show the curves of the LL and DS estimators by D, while panels (c¢) and (d) display those by Ds. The
thin curves show the estimator using the optimal bandwidths, and the two horizontal dotted lines indicate
the range of the maximums of the LL estimators with different bandwidths.

From panels (a) and (b) of Figure 7, we can observe that the range of maximums of the LL estimator
for different bandwidths is wider than that of the DS estimator. This difference in the range of maximums
indicates that the performance of the LL estimator for sudden variation largely changes depending on band-
widths, while a similar performance of the DS estimator is observed regardless of the values of bandwidths
which are not largely different from the optimal one.

In panels (c) and (d) of Figure 7, we observe a sudden variation appearing around the interval [1.5,2.0].
From panels (¢) and (d), the range of maximums in panel (d) seem to be almost the same as the range of
maximums in panel (c¢) in contrast to panels (a) and (b). One difference between panel (a) and panel (c)
is the variance of data around the peak. That is, data around the peak in panel (a) is dense whereas data
around the peak in the panel (c) like as sparse. However, examining panels (c¢) and (d), the maximums of
the DS estimators are bigger than those of the LL estimators with the same h. In other words, even if the
data seem to be sparse in a sudden variation, the DS estimator can trace the sudden variation better than
the LL estimator.

The block is our focus in panels (¢) and (d), and actually the place where the data and curves increase
slowly. It can be observed from panel (c) that one of the LL estimators is far from optimal one, but panel
(d) shows the DS estimator behaving stably in the same area. Thus, it can be claimed that the DS estimator
performs more stably than the LL estimator in the area where the data varies slightly.

By summarizing the above considerations, the curve of the LL estimator is significantly affected by
changing the bandwidth h whereas the curves of the DS estimator are changed at the place of a sudden
variation by changing h. Further, the DS estimator can indicate the shape of a sudden variation better than
the LL estimator with the same h. This suggests the effect bias reduction is present when using the DS
estimator.

Next we address the results for D3 and D4. Optimal bandwidths and RSS values are tabulated in Table

Table 2: The optimal bandwidths (15) and (16), and the minimum values of (13) and (14).

DATA hrr hDS RSSLL(hLL) RSSDs(hDS)
D3 0.424 0.534 14.853 14.856
Dy 0.369 0.422 14.663 14.666

Table 2 and Figure 8 show that there is no significant difference between the LL estimator and DS
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Figure 7. Comparison of the DS estimator and LL estimator with changing the bandwidth. Estimators are shown as the
functions of the angle 6. The thick curve in (a), (¢): the LL estimator with h = hrr, the thick curve in (b), (d): the DS
estimator with h = hpg. The dashed solid and thin solid curves in all panels are estimators with listed values of bandwidths.
The dotted points are data. The blocks in all panels are our attention area and the horizontal dotted lines are indicating the
range of the maximums of the LL estimators for listed differenced bandwidths.
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Figure 8. RSS as a function of bandwidth h. The solid curve is (14), the dashed curve is (13) and the vertical lines are the
minimizers hrr, (15) and hpg (16) of (13) and (14), respectively, in both panels.

estimator when considering RSS values. Note that the placement of hy; < hpg for the data sets D3 and Dy
are the same for D; and Ds.

Figure 9 shows the curves of the estimator drawn by z = (#) in R2. From panel (a) of Figure 9, we can
observe that the data includes a sudden variation in the interval [1.5,3.5] and its variation in the interval
is smaller than those outside of the interval. By closely looking at the blocked area in panel (a), the DS
estimator behaves nearer the data as compared to the LL estimator, which might be understood as the effect
of bias reduction.

Next, we address the result of D4, which is made by deleting an observation (2.60, 8.4) indicated by A
from D3. The estimators by optimal bandwidths are shown in panel (b) of Figure 9, where it can be observed
that the DS estimator is below the LL estimator in the interval [1.5, 3.5] including a sudden variation of data.
Hence, we see that, due to bias reduction, the DS estimator can trace the sudden variation better than the
LL estimator.

We observe from comparing panels (a) and (b) of Figure 9 that the minimum of the DS estimator
is smaller than that of the LL estimator, although both estimators are pulled up by the data A. In other
words, even if the DS estimator is affected by a possible outlier, it has a tendency to trace a sudden variation.

This can be understood as an effect of bias reduction.

6 Conclusion

In this paper we have proposed the DS regression estimator on an unknown low-dimensional manifold. It
has been proved theoretically in Theorem 1 that the DS estimator has a reduced bias compared to the LL
estimator even in the situation where the covariates are embedded in the manifold. In Sections 4 and 5, we

have confirmed numerically that such a bias reduction certainly occurred for simulated data as well as some
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(a) Estimators by D3 (b) Estimators by D4

Figure 9. The DS estimator and LL estimator drawn in R? by x = ¢(0). The dashed curve is the LL estimator, the solid curve
is the DS estimator, and the dotted points are data. A is the outlier point.

real data sets.

We have also developed asymptotic normality of the DS estimator in Theorem 2. This asymptotic
normality makes it possible to construct an approximate point-wise confidence interval or confidence band
of the regression function as was discussed in [13], which is our future problem.

We have not fully discussed the problem of “data-based bandwidth selection”. This usually can be
accomplished via the minimization of AMISE as suggested in Section 4. To do this we need a fine estimate

of the unknown local chart ¢ and its derivatives, which is also another important issue to be tackled.

7 Proof

For a C* function g : R - R, a = (a1,--- ,a,) € RP, i= (i1, -+ ,i,) with 4, nonnegative integer, we define

ai = a[zil .. .a;p’ ‘i| pry ZZ:l Z‘k7

and
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for |i| = j. We denote j-th differentials (1 < j < ¥) of g(x) over a segment a as

o =Y [ 7 | (2)

lil=5 \ 1

Using this notation, m(X;) can be expressed as

m(X;)

3 i
1 1 4 )
ma)+ 3 G i)+ 5 |G-t () mi
j=1 li|l=4 1 y=z+t;(X;—x)

4
1 1
m(z) + ; ﬁdjxi_xm(x) + Ir(x +t(X; — 1))

for some 0 < t; < 1, where

@ = S e (2) o

|i|=4 1

—d§(

y=a

_am(z).

We define b(x) = E[mrr(z,h)| X1, -, Xn] — m(x). Then b(X;) can be expressed as
1
b(X;) = b(x) + Vb(x)(X; — x) + 5(XZ- — )V (x + 5 (X; — 2))(X; — 2)

for some 0 < ¢ < 1. For 0, § € R, we use the notations

Op(hanﬁ)
0,(h*nP1,) = : € RP,
Op(h*n?)
Op(h”“nﬁlg) = O,(h*nf1,)T and
Op(h*n”) -+ Op(h®n?)
Op(ho‘nﬁlplg) = p X p matrix.
Op(hen®) - Oy(hen?)

Similar to the notations utilized in Section 4, for smooth function 7(z), we shall use 9; and 9;; to denote

the partial derivatives evaluated at a by variables corresponding to those indices ¢ and j throughout in this
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section:

0 0?

zZ=a

and so on.

7.1 Proof of Theorem 1

By putting m = [m(X1) - --m(X,)]T, we have

" L | am(@) r(z 4+t (X1 — 7))
m(z 1 ) 1
Vm(z)| =27 |
dg(n_xm(x) r(z 4 t, (X, — )
Therefore,
Elmpp(z,h)| Xy, -, Xy
= XTW,X,) ' XITW,m
L | Faem(@) | |era-o)
Jj=2 .
dy _ m(x) r(z+t, (X, — 7))
= 1
=m(@) +3_ 5 By(x) + 3 R(@)

By E[Y;| X1, -+, Xn] = m(X;) and the definition of b(z), we have

1 1
J

Elri|Xy,---,X,] = EY;—mrp(Xi,h)[ X1, -+, Xy

b(x) =

M=

Il
)

By introducing b = [b(X7) - - - b(X,,)]T, we see that

b= x, | " 4 Loue) + Lrue,
Vb(x) 2 2
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where

(X1 = )7 (V20 + 1 (X1 — ) = V(@) (X — )
Rb(l‘) = . 5
(X1 — )T (V2b(z + (X1 — 2)) — V2b(2)) (X1 — )
(X1 — 2)TV2b(2) (X, — @)
Qp(z) =
_(Xl —2)TV2(z) (X, — )
Along the same line as the calculation of E[mpr(x, h)| X1, -, Xn],

Elrpp(z, h)| Xy, -+, Xy)
E[r| X1, -+, X,]
= el (X7 W, X,) ' XTW,
Elr[ X1, X
L IXTWLX,) X,
b(x)
Vb(x)

1 1

= —e(XTW,X,) ' XTw, | X, + in(x) + 5R,,(x)
1

= —b(z) — §ef(XwTWwa)_1X§WI(Qb(x) + Ry()).

By combining above equalities, we have

Emps(xz,h)| X1, ,X,] = Elmpp(x,h)| Xy, -, Xp]+ Efrpr(z, h)[ X, -, X

() + () — b(e) — 5ol (XTWLX0) ™ XTW(@u(x) + Ro(x)

LT XTW, X)X T WL (Q(2) + Ry(x)).

= m(x)— B

Here our focus goes to el (XZW,X,) 1 XIW,Qp(x). We see that

LXTWLQu()

(X1 — 2)TV20(z) (X, — )
= LXTding(Kn(X1 ~ @), -, Kn(X, — )

(X, —2)TV2b(2)(X,, — x)
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" (X; —2)TV2b(2)(X; — 2)Kp(X; — )
i=1 (Xz — l‘)Tva(.ﬁ)(Xl — x)Kh(X, — x)(Xl — .’I})

(X; — )T (Z %vZ‘Rj(x) + Lv?mx)) (X; — 2)Kn(X; — 2)

j=2""

1
=2 .
i=1 T Z L oo L oo

and note that Ry(x) = h%J1(z) 4+ 0,(h?) as was shown in [2]. By assumptions in Section 3.1 and the law of
large numbers,

n

% Z(Xi —2)"V2Ry(2)(Xi — 2) Kp(X; — )
_ 2t i(xi —2)TV2 1 (2)(X; — ) Kp(X; — 2) + 0, (h47PTH)
i=1

= hPHA (2) B(z] 1, @) (1 + 0p(1))

and

% (X — )TV Ra(e) (X; — 2) K (X; — ) (X — )

= W23 (X = ) VR (@) (X; - ) K (X — 2) (X~ )(1+ o0y (1)

K2

i=1

= 0, (h 7771,

On the other hand, we have from Lemma 2 that

LS (X a)” (Z VR, () + i,vm(x)) (X, — ) K (X, — 2)
i=1 j=3" ’
= Op(h*77%2) + Op(h777) + 0, (h'77*7)

= Op(h?77%?),
n 4

% > (Xi—a2)" (Z %VQRJ.(:;;) + Lv%(:;;)) (X; — 2)Kp(X; — x)(X; — )
i=1 j=3"" ’

= Op(hd7p+6 1p).
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Hence, we obtain

Ai(x)B(x|Jq, 2
%XngQb(x) _ hd7p+4 1( ) ( | 1 SD)/ + Op(1p+1)
0

Using Lemma 1, we finally reach

T (XTW, X,) ' XTW,Qy ()

-1
1 1

=el (XITWIXI> —XIW,Qu(x)
n n

—hpd<[A1(x)1 Al(ar)1142(:1:)TA:»,(3:)1}4r [%(1) Op(lg)D

Ai(@)B(al ), 0)/2
xhiorr [ 1 +0p(1p11)
0

h4

= 5 Bl J1,0)(1+ 0,(1)),

which gives the bias expression in Theorem 1.

Next, we turn to the variance. We shall introduce the following notation
mps(x,h) = el (XITW,X,) 'XIw,(2I, - L)Y,
where L = [Ly--- L,])T and LT = elT(X):';iWXiXXi)_ng;iWXi. By Lemma 4 with z = X,

(1 — AQ(X,L) Ag(Xi)_1<X1 — XZ))Kh(X]_ — Xz)
L= - A(X;)™! : (1+op(1)).

(1— Ax(X;)TA3(X;) 1 (X — X,))Kn (X, — X;)

Simple but long calculations give

Varlmpp(z,h)| X1, , Xy)

= #v(w)Al(x)‘Qf(w‘l(w)) /]R K (T(¢™ @)|p)v)” do(1 + 0,(1)), (17)
e XTW, X)) ' XIW,LVLTW, X (XITW,X,) tes
= #v(w)fll(:ﬂ)“‘f(w‘l(w))?’ Rd{K * K(J (¢ () |p)v) F2du(1 + 0,(1)) (18)
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and

T XTW, X)) ' XIW, VLT W, X, (XIW,X,) ey
1 _ _
zmv(m)Al(x) 3f(<P 1(95))2

< [ K (e o) K KT @)lpo)do(1 + 0, (1) (19)
Using (17), (18) and (19), we have

Var[mps(z,h)| X1, , Xy]
= 4T (XTW, X)) ' XIW VW, X (XITW, X,) tey
—4eT (XITW, X)) ' XIW, VLTW, X, (XITW,X,) e
+eI (XITW, X)) ' XITW, LVLT W, X (XTI W, X,) " te;
= Wv(x)fll(w)‘2f(<p‘l(x))
4K -1 d A ()2 (o (2))2K * K (T (o~} 24
X o (T (e~ @)|p)v)” dv + » 1(@) " fle™ (2))"K x K(T (¢ (z)|p)v) dv

—/Rd AA1 (@) f (T @) E (T (07 (2)le)v) K * K(J(wl(x)lw)v)dv> (1+0p(1))

_ 1 R(=[K",¢)

- nhd R(:TJ|K, QD) Jg(.’B)(l +0P(1))a

which is the variance in Theorem 1. O

7.2 Proof of Theorem 2

We put u(x)? = eI(XIW,X,) ' XIW,,e = [e1--e,)7 and U,, = [u(X1) - u(X,)]T. Then we have
mps(z,h) =u(x)T (21, —U,)Y and Y = m +¢e. By E[Y|X1,- -, X,] = m, we have

mps(z,h) = @)’ (2L, — Un)(m +e)
= w(x)T (2, - U,)m +u(z) (21, — Uy,)e
= EBlu(x)' 2L, —U)Y| X1, -, X,] +u(z)' (2L, — Uy)e
= Elmps(z,h)| X1, -, Xn] +u(@)T (2L, — Uy)e

4
= m(x)+ %B(xuh ©) +u(z)’ (21, — Uy )e + op(h*).
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By plugging above expressions as well as Vnhdo,(h*) = 0,(1), we have
h4
nhd (ﬁlps(x, h) — m(z) — ZB(;10|Jl7 go)) = Vnhdu(z)" (21, — Uy,)e + 0,(1).

Let vy,i(x) be the i-th element of Vnhdu(z)T (21, — U,), then

n

nhiu(z)" (21, —Upy)e = Y vnil@)es,

=1

E Zum(x)aiX17~-~,Xn] = 0
i=1

and
Var[vp(x)e)| X1, -, X,] = Vm(x)z.

We would apply Liapounoft’s central limit theorem to {vy,;(x)e; }1;, so that we aim to show that {v,;(z)e; }i,

satisfy the Liapounoff’s condition. The summation in the denominator is

ZV‘” [Vni(x)eil X1, -+, Xn] = Var Z”m'(w)gile"” »Xn

i=1 i=1
= nh®Warlu(z)T (21, — U,)e| X1, -, X,
= nhVar[mps(z,h)| X1, -, Xn]

= Op(1).
Let u;(z) be the i-th element of u(x). By the definition of v,;(z), we get

vni(z) = Vnhd (21, — Ua)T), u(z)

= Vnhd (2" {W(Xl) u,-(Xn)DU(w)
ui(X1)

— ok | 2ui(z) — u(z)” :
ui(Xn)

where e; is n-dimensional vector with its i-th element 1 and 0 otherwise. Similar calculations to obtain the
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bias of the LL estimator based on [u;(X1) - u;(X,,)]? yield that

UZ(Xl) d+2
u(z)” : = Ui($)+1h25i(x)+0p <h n >

2

1pP=d+2 g pp—d+2
+2nhp-d5i<x>+%< n )

= u(z)

where

Lemma 4 implies that

hP—d

wilz) = — Ar(2)7H(1 = Az (2)" As(2) HXG — 1)) Kn(Xi — 2)(1+ 0p(1))

and (n/nP~%4)S;(z) = O,(1) holds for all i(1 < i < n). Thus, we obtain

UZ(XI) —d+2
qui(a) —u(@? | 1| = ui(;v)+0p(hpn+ )

By Lemma 5 and assumptions in Section 3.1, we have

DB [{rmilw)ei}!|Xa, - X,

4(p—d

= (nh 2h Z {A1 1 — As(x) As(iv)_l(Xi —x))Kn(X; — x)}4

E [s?|X17... ,Xn} (1+0(1)) + (nhd)zOp <h4pn§d+8>

h4p 2d 1 . » \
= Z{A1 1= Ao(@) " As (@) M(Xs = 2) ) Kn(Xi — )
4p—2d

x(140(1)) + op (h - )

= E[54]h4pT% (h74p+df(g071(x)) + Op(h74p+d+1)) +o, <h422d>
4dp—d

= B (e @) + 0y <nhhd> o, (’thd>
— 0,
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as n — o0o. Therefore, Liapounoff’s condition

nh_)n;oE Z{yni(x)si}4‘X1,-~- ,Xn]/(ZVar[Vm(x)ai|X1,~-~ ,Xn]> =0

i=1

has been confirmed by choosing § = 2, from which it follows that

;V’”(m) B Valhu(z) (2, — Uy)e

= L2, N@©,1). O
\/Var[\/mu(x)@[n —Upn)e| Xy, -, Xn]

ZVar[Vm-(x)si]
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SUPPLEMENTARY MATERIAL

to
“Data Sharpening on Unknown Manifold”

Masaki Kudo and Kanta Naito

In this appendix we provide the following Lemmas to complete the proof of Theorems.

LEMMA 1. Let x € X. If the assumptions in Section 3.1 hold, then as n — oo and h — 0,

1 —1
<X§ WIXI>
n

= pp—d (

Proof. Direct but lengthy calculations yield that

Ay(z)~! -%mﬂ@@mmﬂriﬂn om%])
_Al(x)ilAB(x)ilAﬂx) h72A3(93>71 Op(lp) Op(hdlplg) '

E[Ky(X —xz)] = h¥PA(z)+ o(h?P),

E[Ky(X —2)(X —x)] = h¥ P2 Ay(x) + o(h4PT21,)

and

E[Kp(X —2)(X —2)(X —2)T] R Ag(z) + o(h7PT21,1T).

Using above results, we obtain
1 1 — Kn(X; — Kp(X; —2)(X; —
Lyx, - Ly w(Xi —2) WX X
n n = | Kp(Xi —2)(X; —2)T Kp(X; —2)(X; — 2)(X; — 2)

h2HA=P(Ay(z) + 0p(1,)) A2HP(As(z) + Op(lplg))

= pd-p (

By using (M +o(1p4117.,1)) "t = M~ +o(1p411] ) for (p+1) x (p+ 1) nonsingular M,
21T h
+[MU %M%ﬂ)

[ hd=P( Ay (z) + 0p(1)) h2+d—p(Az<x>T+op<1§>)]

Ai(z)  h2Ay(x)”

hQAQ(JJ) thg(l‘)

i op(1) Op(h21g)
Op(hzlp) Op(hzlplg) '

Al (33) h2A2($)T

h2Ay(z)  h2Asz(x) op(h*1y)  0p(h?1,1T)

1 —1
< X;FWIXQD) = hp—d<

n



A1 (ac) h2A2 (l’)T
thQ(w) h2A3(£L‘)

o e o)
— ppd Op opip ’
( i Lp(lp) Op(lplg)])

O [Ai@) T R A () 2 As(2) TS Ag(z)  —h2A (x) M Ag(2) TS
B —h2S 1 Ay(2) Ay (z) ! Sl

where

Ai(z)  h2As(x)T
h2A2 (.1‘) hQAg(x)

and S = h2A3(x) — h*A; (z) "L Aa(2) As(2)T. Using an asymptotic evaluation of S~ as
STh = hT(As(z) — hPAr(z) M Ag(x) Az (2)T) T = A2 (As(z) ! + 0p(1,10)),
we have
Wi AL(2) 2 A (2)T ST Az (2) = WP A1 (2) 2 Ax(x) " (A3(2) " + 0p(1p15)) Az(2)
= R2Ay(2) 2 Ax(2)T As(2) " As (@) + 0y (h21,17))
= Op(n?)
and
—h? A1 (2) M Aa(2) ST = —Au(e) T Aa(2)T (As(2) T+ 0p(1p15)
= —Ai(x) " As(2) T As(2) "t +0p(1]).

Above calculations are combined into

Al(ﬂf)_l + h4A1(13)_2A2(33)TS_1A2(£C) —hQAl ($)_1A2(SU)TS_1
—h2S_1A2(x)A1(SU)_1 S—1

| Ai(a)™ + Op(h?) — A1 ()7 Ag(2) T Ag(2) 7! + 0p(17)
__A1($)_1A3($)_1A2(33) + 0p(1p) h_2A3(3’3)_1 + Op(h_lelg)

Al(«%’)—l _Al(l’)_lAQ(a?)TAg(;p)—l
[~ A1(2) " Ag(@) " Ax(2) B2 As(z) !

+

Op(h?)  0p(1})
op(1p) Op(hdlplg) 7

from which, we finally obtain

(1XTWX >‘1: W(' Ay() ! —A1<x>—1A2<x>TA3<x>—1]
pe et |~ A1 (1)~ Ay(2) " o) h2Ag(2)7!
o) 0p(1])
i _Op(lp) Op(h_2fplg)]> . -
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LEMMA 2. Let z € X. Under the assumptions in Section 3.1, we have for j = 3,4,

el (XTWL X)X WaRy(@) = o, (h), (20)
—Z i — 1) V2R (x)(X; — 2) K, (X; — x) = 0p(h?7%0), (21)
*Z X, = 2) VER(@)(X; - 2)Kn(X; = 2)(X; = 2) = 0, (" 7¥TL,),  (22)
*Z =) V2R () (Xi — @) Kn (X — 2) = O,(h*77+2), (23)

where

r(z+ (X1 —x))
R(z) = el (XTW,X,) ' XxTW,
r(x 4 th(X, —x))
&, _,m()
Rj(x) = eriF(XgWwa)_ngWx

dj)'(nfxm(a:)

Proof. To prove (9), we start the following calculations of X! W, Ry(z)/n:

1
ﬁXgWxRb(x)

1 n
ZHZ

i=1

(X; — )T (V20(z + 5 (X; — 2)) — V2b(2))(X; — 2)Kp(X; — )
(Xi = )T (V?b(z + t](Xi — 2)) — V2b(2))(X; — ) Kp(Xi — 2)(X; — x)

045) “z)Kh(X IL')
;1 Z[ Wias) (Xi 1)K (X; - 2)(Xi - )

where we put

W(ap) (Yst) = {0apb(z + t(y — 7)) — Oapb(®)} (Yo — Ta)(ys — 5)

for y € X and 0 < t < 1. To derive the result of convergence in probability, we would

calculate

n

1
E| = wap(Xi,t) En(X; — 2)| = ZE [Wiap) (Xi, t]) K (X; — )]

n -
=1 —



and

n n

1 * 1 *
E|- D wias) (X, 1) Kn(X; — 2)(X; — 2) | = - > E [wap) (Xi, ) Kn(Xi — 2)(X; — 2)] .
=1 i=1

We shall check that wg) (y,t) is satisfying |wag (y,t)| < C(1 4+ ||y]|?) for some C' > 0.
Since the function m is C4, the function b is also C* and hence we have |0,5b(x + t(y —
x)) — 0apb(z)| < M for the maximum value M because above first term d,gb(z +t(y —x))

has continuous function with y on the compact region X. Using evaluations
vets] < 5 e+ 5) < 3 l?
and
[zays| < [wal max{|lyl*, 1} < |zal(1 + [lyl[*),
we observe that

(W) (¥ )] = [0apb(x + t(y = 2)) = Oapb(x)[|(ya — 2a)(ys — 5)|

IN

M(|yays| + |Tays| + [Yars| + [Tazpl)

IN

C(1+lyll?)

for C = M max,g{|za|, |Tazs|,1/2}. So we have just finished to check that assumption 6
in Section 3.1 holds for w(,s)(y,t) and therefore we can proceed to evaluate the expectation
for w(ap)(y,t) in the sequel. We see that b(x) = h*Ji(x) + 0,(h*) holds by the results in
2], and y € BY , ., tends to x as h tends to zero because ||y — z|| < h'~" holds, hence we
have 9,5b(x +t(y — 1)) — Oapb(x) = o(h?) for y € Bi,hl—n NAX. We obtain from evaluations
above

n

1 *
=~ B [wap) (Xi, 1) Kn(X; — )]
=1

=F [w(aﬁ)(Xht){)Kh(Xl — :L’)l(Xl S Bi,hl—" N X)}
+E [w(aﬂ) (X0, 8 Kp(Xy — 2)1(Xy € (B, N X)C)]

4



= FE [{0apb(x + t1(X1 — 7)) — 0apb(2) } (X1 — 2)a(X1 — 2)3

X Kp(X1 —2)1(X1 € B, , NX)| + o(h?PT)

St

— pd—p+4 aagb((p(()) + tT(‘P(hu) —¢(0))) — 8aﬁb<¢(0)) Pa(hu) — ¢a(0)
Rd h? h

o) —o5(0) <<p(hU) — (0)

- - > 1(u € BY), ) f(hu)du + o(h* P+

= o(hdPT,
Furthermore we have
1 & . _
- D B [wiap) (Xi, ) Kn(X; — 2)(Xi —x)] = o(h"PH51,),
i=1

holds because |wag) (y,t)(yy — z4)| < C(1 + |[yl[*)|yy — 24| < C(1 + [|y|[*)? for each

v € {1l,---,p}. Hence, we have (20) by the following calculations:
el (XIW,X,) ' XIW, Ry(2)
. 1y (X1 —2)T(V2(x + (X1 — 2)) — V2b(2)) (X1 — 2)
=ef <X§ Wwa> —XIw, :
n n
(Xn = 2)"(V2b(z + (X5 — @) = V2b(2))(Xp — @)

= Op(h*~ 17, }) [ A ]

op(hTPH51,)

= op(h").

Next, our focus goes to
. 1y r(z+t1(X1 —x))
R(z) = €F <X§ WxXx> ~XTw,
n n
r(x 4t (X, —x))
It follows that
. r(x 4+t (X5 —x))
~XIw,
n
r(x 4 th (X, — x))



1 r(z+t1 (X1 — x))
= Engiag(Kh(Xl —x), -, Kp(Xp —2x)) :

r(x 4t (X, — x))

p n
’

- Z 1 Z T(apys) (Xiy ti) Kn(X; — x)
n -

W 1 [ty (X0 ) KR (X = 2)(X — )

where T'(aBv6) (ya t) = D(aﬁfyS) (yv t) (yoz - l’a)(yﬂ - xﬂ)(y’y - z'y)(yé - -7:5) and D(aﬁ*yé) (y, t) =
Oapysm(x + t(y — x)) — Oapysm(z) for y € X and 0 < ¢t < 1. We shall evaluate

E[r(apy6)(X1,t1) Kp(X1 — 7)]. By the evaluation same as w,3)(y,t), we obtain
|r(a575) (yv t)’ < N|w(a6) (y7 t)w("/é) (y7 t)| < N02(1 + ||y||2)2

for some N > 0. By assumptions in Section 3.1, we see that
E [r(am(s)(thl)Kh(Xl - ;1:)]
= B [F(apoty (X1, 1) En(X1 — 2)1(X € (B, 01 )]
+E [r(aw) (X1, ) Kn(X1 — 2)1(Xy € (B iy N X )C)]
—E [r(aw)(@(Z), t)Kn(0(Z) = (0))1(p(2) € (BY )1, N X D}

B [ (9(2), 1) En(0(2) = p(0)1((2) € (B, 0 X))

_ pPHE [D(aw)(@(z)’ 7fl)wa(Z) ; va(0) p5(Z) ; ©5(0) p1(2) ]; ©(0)

<ol eil0 e (AD 2O g e g, ) +oti o

Since

Diaprs)(p(hu), t1) = Baprsm(z + ti(p(hu) — ¢(0))) = Bapysm(z) = o(1),

as h — 0 and by noting that (¢, (hu) — ¢4(0))/h = O(1), we obtain

s [D<am)<¢<z>, ) fel?) = 2a@ 2al?) =200 en2) = en0) sl 2) = 2a(0)

x K (M) 1(Z € Bg{hl_n)]
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B /Bd Di(apys)(p(2), 1) K (SO(Z);SO(O))

0,h1=7

 $al2) = 2a(0) 98(2) = £(0) £1(2) = £1(0) 95(2) = #5(0) .
h h h h

_pd /Bd D (apys)(p(hu), t1) K (W)

0,h—"

 Pall) — 94 (0) wp(hu) — ©5(0) py(hu) — 4(0) ps(hu) — s(0)
h h h h

f(hu)du
= o(h%).

Thus, we have

n

E r(z 4 t;(X; — 2))Kp(X; — x)| = o(h47PH).

i=1

S|

By the law of large numbers,

1 ZT((«T + tz(Xz _ JZ))Kh(Xz — x) = Op(hd*p+4)

n -
=1

holds. From the same calculations, we have
BN d—p+5
- > r(@ 4 t(Xi — ) Kn(X; — 2)(X; — ) = 0p(hTPH51,)
i=1

because there exists N > 0 such that [r(agys)(y,t)(ye — )| < N(1 + |y||?)? for all

a,f,7,0,e € {1,--- ,p}. So we obtain

r(x+t1 (X —x))
1 .

n

1

-1
xT mex> Eng W,

R = o ( .
r(x 4+t (X, — )
oy iy
a,B,v,0=1  i=1

op ( hd— p+4)
op(h*PH51,)

T(aﬁ,yg) (Xi, ti)Kh(Xi — .1‘)

= ¢f (1XTW X, )
" T(apys) (Xis ti) Kn (X — 2)(X; — )

= e{op(hp_d1p+11§+1)[
= op(h4).

Therefore, we finally have (21) and (22).



To prove (23), we shall evaluate R;(x) for j = 3,4. It is easy to confirm that

dj)‘ﬁ_xm(x) " ;
Lyrw, | :12[ d,_,m(@)Kn(X; = o) ]
ne o & _m(x)Kn(X; — 2)(X; — z)
d,, _,m(x)

hence, we obtain

Zd (@) K (X5 — :L')]

m(@)Kn(X1 —2)1(X1 € B, , N X)]

X1—x

_E [dj
+E [dg(l_xm(x)xh(xl — )Xy € (B, 0 X)c)]

=1 [y omak (BE=ED) 1z e ]+ ottt

(2)-¢(0)""

~ v [ HZ ( : ) <so<hu>h— w(O))i ( 2 >‘m(x)

x K (M) 1(u € BY ), ) f (hu)du + o(h*PF)
and

Zd _ m() Kn(Xi — a;)(Xi—a:)]

-

it (22O s e ) 22k o),

_ pd-ptitl / $
]Rd

li|=j

where we have used the assumption 6 in Section 3.1. By using (¢4 (hu) —pq(0))/h = O(1),

we get

1 n
ﬁ Z d%(i—xm(l')Kh(Xi — :L') = Op(hd—p-i-?))’
i=1

—Zd (@) KX —2)(Xs — ) = O,(hTPH1,),



1 n
Sk @)K (Xi—x) = Op(htrH)
i=1
and
1 n
n Z d%(i—xm(x)Kh(Xi —z)(X; —z) = Op(hd_p+51p) + Op(hd_p+41p) = Op(hd_p+41p)
i=1

by the assumption 6 in Section 3.1. Thus, we have

&, _,m(x)
T 1 T - 1 T o .
d&n_zm(x)

= e <1X§ WIXI> 1 S &, _om(x) Kp(X; — o)
! n = | dy,_ m()Ky(X; — 2)(X; — x)

—X

= elTOp(hpidlp—i-l 1§+1)

0, (h=r+7)
O, (h=P+i1,)

= Op(hj)7
so we obtain (23). O

LEMMA 3. Let x € X. Under the assumptions in Section 3.1, as n — co and h — 0, we

obtain

(1= As(2)T Ag(2) " (X1 — @) Kn(X1 — )|
= ——Ai(2)" : (1 + 0,(1)).
(1= Ax()T Ag(2) " (X — 2)) K (X — 7)

Proof. Using Lemma 1, we calculate
el (XITW, X))t xITw,
1 1
=l (Xf WmXx) ~XI'w,
n n

= A @)1 = As()T A5(0) 7 + 0p(1) }



X1[ Kp(X1 — ) Kp(X, — ) ]
n Kh(Xl—x)(Xl—x) Kh(Xn—:):)(Xn—x)

- (1 — As(a)T As )1 (Xy — 2) Kn(X1 — )]
= ——Ai(2)" :
(1 = Ag(@)7 Ag(a) " (X, — 2)) Kn(X,, — )
% (14 0p(1)). O

LEMMA 4. Let z € X and k € {1,2,3,4}. If ¢(z) is a p-dimensional vector function whose

elements are continuous functions of x, then as h — 0,
El(c(2)" (X — 2)) Kn(X — 2)") = O(h~PHHE),
Proof. By direct calculation, we obtain

El(e(a)"(X — 2))"Kp(X — x)']

X —z

4
— hE [(c(x)T(X — )" K ( ) (X e (B, ,nX ))]

X —z

4
+ W PE |(c(2)T (X — 2))*K < - > (X € (BN X)C)]

4
— hvE [(e(w)T«o(Z)—eo(o»)‘“K (P20 1z € B | o0

h

o(h 0)

4
—1 [ el ol poni (LAY ey oty
4
) = ))& (PP =) it o=+

= [ (el

0,h—7M

= htirth /B ) <C(x)TM>kK <M>4f(hu)du+o(hd4p+4)

0,h—"

= hTR £(0) /R (@ T Olp))" K (T (Olg)u)'du + o(h"= ) + o(h®=H). O

LEMMA 5. Let z € X.
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1. If function w* : X x X x X — R is continuous on Bg# X Bﬁu X Bg,#, then as h — 0,

E { (X1, X, X3)K <X5‘;X2) K <X3;Xl> K <X2h_ x) K <X1h_ m) (X1 — x)]

— O(h3d+1 1p)>

&

h h h

O(h3d+21 1T)

2. If function w’ : X x X — R is continuous on BY, x BE,, then as h — 0, for

6,5 €{1,2},

E [w’(Xl,XQ)K (X1 - X2> K (Xh_ x) K (th_ “’“> (X1 — x)] = O(h%+11,), (26)
i (555 (52 (3o
= O(h**21,1]). (27)

3. If function w : X — R is continuous on BE ,, then as h — 0,

E Xl—CL‘

\ )
w(Xl)K< ) (X1 —x)| = O(h¥'1,), (28)

E Xl—x

>2 (X1 —2)(X1—2)"| = Oon*?1,1]). (29)

w(Xl)K<

Proof. We introduce the following calculations before starting the proof of Lemma 5. By

applying Taylor’s theorem for each ¢, (hu) with variate h, we get

B2 3 d 93
a(h) = ©a(0) + hV e (0)Tu + —ul V20, (0 — Ul 2~ Pa
pallhu) = ¢a(0) + hVpa(0) u+ S-u” Vipa(O)u + ijkﬂuugw 5207027 (%) .
for some 0 < hy < h. We put
h & 8
a 7h = v feY 0 - 7 A o o Pa
Salu, h) = Su V2 pa (0)u + ”ijlu L o (2) L
By collecting ¢1(hu) - - - pp(hu), we obtain
u —_
Eo 22 = J(0lg)u+ h
Ep(u, )

11

(24)

o () () (5 (o]

(25)



Using above expansion and multivariate Taylor’s theorem, we have

51(11, h)
K (w(hu)h—w@ ) =K | JOu+h | | | = K(IO)u)+r(0,u,h), (30
&p(u, )
where
p 2 P
WOh) = Y Eal MK (T O + o > Ealun h)Es(u M)us K (o)
a=1 a,p=1
and
fl(ua h)
ug = J(0]p)u + soh
fp(U, h)

for some 0 < sgp < 10 Additionally we have

&(u,h) —& (v, h
p(hu) — p(h) i) = el

D~ F(0e) =0+ h

ép(u7 h) - fp('l), h)

So we get

e ()~ ot

h > = K(J0lp)(u—v))+ A0,u,v,h), (31)

where

MO u,v,h) = hYy {€alush) = Ea(v, 1)} aK (T (0lp)(u—v))
a=1

2 p
F D {Ealon ) — Ealv, W)} {Ealus 1) — Ealv, 1)} B (o)

anB:]-

and

&1(u, h) =& (v, h)
wo = J(0[p)(u —v) + toh :
gp(uv h) - gp(va h)

for some 0 < tg < 1.

12



We shall start the proof of Lemma 5. By direct calculation,

) [w*(Xl’XQ’Xg)K <X3;X2> . (X?);Xl) . (th_ x) . (th_ x) (K - $>]
o () () () (5

AKXy € B, XXy € B, XK € B, . NX)(X) — x)]
e (S () ) (55

L NX)N(Xz € (B, NX))1(X5 € (B, . NX))(X1 — g;)] .

=F

+E

Xl(Xl S <B§,h1

Above second term is

w* (X1, X2, X3) K <X3_X2> K (X3_X1> K <X2 — x) K (X1 - ‘7"> (X1 — )

E h h h h

:E,hl_"

x1(X1 € (B, NX))L(X2 € (B, N X)) (X5 € (B, - N X)C)] = o(h3411,)
because there exists C such that

[w*(y, 2, w) (Yo — a)l < C(L+ |lylI*)
for all y, z,w € X. By using (30) and (31), the first term can be calculated as

w*(p(Z1), p(Z2), 0(Z3)) K (‘P(Z:J)) ; 90(22)) K <80(Zs) ; 90(Z1)>

<K (W) K (W) (ps(21) — ¢p(0))

E

Xl(go(Zl) S BI; e 1 X)l(gO(ZQ) S BZ « N X)l((p(Zgg) S Bz,h“"* ﬂ.)()]

7hl 7h1*77

_ /Rdx]Rded W (0(21), (), (28 K (90(23) - sO(zz)> % <@(z3) - w(a))

e <¢(22)h— cp(())) K <¢(Z1); so(o)> (05(21) — 03(0)) £ (21) £ (22) £ (23)

13



xl(gp(zl) e B’

x,ht—n"

_ /RdXRdXRd W (p(21), 0(22), o(23)) K <s0(Z3) - sD(Z2)> X (90(23) - s@(zl))

i (£ A0 e (PELZEOY gy e adloatn) — 03(0)
x1(z1 € Bg,hlfn*)l(@ € B&hl,n*)l(@ € B(‘ihl,n*)dzlszdz;g

- * ©(23) — p(22)
- /sd 5 5 w*(p(21), p(22), p(23)) K (?)h2>

d d
x
0,R1=1* "o pl—n* "0 p1-m*

p(23) — p(21) p(22) — ¢(0) p(21) — (0)
i (PR e (BRI ) e (AR
X f(21) f(22)f(23)(pp(21) — ps(0))dz1dzodz3

) o(hus) — o(hus)
— p3d /Bd s w (so(hu1)790(hu2),90(h”3))K< h )

X
0,p—1* " T0,n—7 0,p—n*

i (Blts) )y (el = o0)) o (thn) —00)

N X)1(p(2) € B

et X)1(p(z3) € Bi,hlfn* N X)dz1dzedzs

h h h

x f(hur) f (huz) f (hus) (s (hur) — ©p(0))durdusdus
= hgd/ w*(p(hur), p(huz), e(hus)) f(hur) f (hug) f (hus)
R xR xR

CK <90(hu3) ; w(hu2)> i (w(huza) ; <p(hU1)> K (@(hm)h— ¢(0)> K <<P(hm)h— <p(0)>

x1(u1 € BY ) 1(ug € By ) 1(uz € By, _») (w5 (hur) — 0p(0))durdusdus

@(huy), p(hua), p(hus))

deded

h2
2 U?VZf(houl)lu)

h2
x ( f(0) + hu3 V £(0) §U2Tv2f(houz)u2

x [ £(0) + hul vV £(0) 2

),

X (f ) + huf'V £(0)
(

(

h2 T
U3 V2f(h0u3)U3>

X ( (0|90)(u3 - UQ)) + A(O,’LLg.UQ, h))
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X (K (T (0)(uz — ur)) + A0, uz.u1, h))
x {K (T (0]p)uz) + £(0,uz, h)}
x {K (T (0]p)ur) + £(0,u1, h)}

x1(uy € Bgvh_n*)l(UQ € Bg,h_n*)l(ug € Bg,h_n*)(ﬂpﬁ(hul) — p(0))durduadus,

of which the leading term is

h3df(0)3/ K (T (0lp)(uz — ug)) K (T (0]p) (uz — ur)) K (T (0l)uz)

R xR4xRd

XK (T (0lp)ur) 1(ur € By, )1(uz € By e )1(uz € By, )
X (pg(hur) — ¢g(0))duidusdus

_ h3d+1f(0)3/ K (T(0])(ug —u2)) K (J(0|p)(uz —u1)) K (J(0]p)us)

R xR4x R4
XK (T (0l¢)ur) L(ur € By )1 (ug € By )1 (uz € By )

 polhur) — ¢5(0)

- duidusdus
_ h3d+1f(0)3 /RdXRdXRd K(J(0]p)(us — u2))K (T (0]p)(ug — u1))

XK (T (0]p)u2) K (T (0lp)u1) Vg (0)urduidusdus (1 + o(1)).

Therefore, we obtain

> p(Z3) — <P(Zz)> K (w(Zs) - 90(21)>

w*(go(Zﬁ,go(Zz)’SO(ZS))K( A h

e (90(22)}1— 90(0)) " (@(Zl)h— <p(0)> (05(Z1) — 05(0))

x1(p(Z1) € BY NX)L(p(Z2) € BY

1—n* 1—mp*
Shl—=m Jhi=m

NX)1(p(Z3) € Bi,hl_,,* N X)]
— O(h3d+1 1p)’
which is in (24). The proof of (25) is same as (24).
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Next we prove (26). We have
X1 —X X9 — X1 —
Elw(X, XK (222 g (2220 g (22—0) (X, — 2)
h h h
X1 — Xy Xo—x X1 —xz
_ /
_E[w(Xl,XQ)K( . )x( . )x( . >
><1(X1 S BZ i’ N X)l(XQ S BZ i’ ﬂX)(Xl — ZL‘)]
X1 — X X9 — X1 —
+E{w'(X1,X2)K( 1h 2>K< 2h JU)K( 1h :c>

NX))I(Xz € (B, NX))(X — :c)]

X ].(Xl € (Bi,h}*”/

=F

etz (L) g () o)) (l2a) 200

K <‘P(Zl>h_‘/9@)> UZy € By 1)U (Z2 € BY 11y )(0(Z1) — w(O))]

+o(h?H11,).

The above leading term is

W (D21, o(Za) K (w(Zl) - 90(22)> i (w(Zz) - 90(0)> i (w(Zl) - 90(0)>

E
h h h

X]‘(Zl 6 Bg’h1771/)]‘(z2 E Bg7h177,/)(80/3(21) - (70,3(0))]

_ /RdXRd W (5(21), o(2)) KK («p(zl) = so(zz)> K (@(22); <p(0)> K (90(21)}1— @(0))

x1(p(21) € B, NX)1(p(22) € B, N X)(20)f(22)(0p(21) — 95(0))dzrd2s

B /Bd L We(z),9(22)) f (1) f(22) K (W)

X
o,p1=n" ""0,p1-n’'

K (W) K (W) (0(21) — 03(0))dz1dzy

et [ W), ) ) f e (2

0,h=n" " " o0,n—n"
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du1 dUQ

K (w(hm)h— s0(0)> K <g0(hu1)h— ¢(0)> 905(hu1)h— ©5(0)

= h2d+1/ {w'(0(0),9(0)) + (w'((hur), p(hug)) — w'(¢(0), ¥(0)))}
R4 xR
X ( £(0) + huf' v f(0) + h;ulTv? f(houl)m)
X ( £(0) + hul V £(0) + h;uQT v? f(houz)uQ>

x (K (T (0]p)(ur — uz)) + A0, u, uz, b))

X (K (T (0@)uz) + £(0, ug, h)) (K (T (0[¢)u1) + £(0,u1, h))

)<pﬁ(hu1) — ¢5(0)

0
Xl(U1 S Bd )1(U2 S Bd duidusdusg

0,h=" 0,h—7" h
= 1?1 (0(0),(0)) £(0)?
X /Rd y K (T (0]p)(u1 — u2))K (T (0]p)uz)dus K (T (0])u1) Vs (0)uidui (1 4 o(1)).

Thus we have

B /(X1 Xo) K (22722 o (X222 o (X122 (x| = o
o (55 (52 (5] o

h h h
which completes to derive (26).

Finally, (28) can be derived as

E |w(X)K (th_ “"’“’)2 (X1 — a:)]

— W w(0) £(0) / K (J(0lp)u)? T (0lp)udu(1 + o(1)).

R4

The proof of (29) is same as (28). O

LEMMA 6. Let z € X. Under the assumptions in Section 3.1, as n — oo and h — 0, we
obtain
el (XIW, X)) ' XIW,LVLTW, X, (X W, X,) ey

— #U(x)z%(x)*”xf((pfl(m))?) /RdK* K(j(Soil(CC)‘gD)’Ude(l +0,(1)),
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T (XITW, X ) XITW, VLT W, X, (XIW, X,) ey

1

Rd

X (14 0p(1)).

Proof. Lemma 1 implies that el (1/nXIW,X,)™! = O,(hP~1

VLT = [Ly--- L) VI[Ly-- Lyl = | : | V[L1--- L]

We have by using blockwise calculation that

) and we note that

= Wv(ﬂf)Al(ﬂf)_lf(sfl(fv))Q/ K (T(¢™H@)lp)v) K = K(T (97 (2)|p)v)dv

(33)

T
L XTW,LvITW, X, = [///” o
n M
where
1 n
M1 = ? 'Zl LlTVLth(Xi - x)Kh(Xj - :U)
1,j=
hd—2p _ _ _
= ——v()Ai(z) 2floH(@)? RdK*K(J(SO H@)|p)v)?du(1 + o(1)), (32)
1 n
My = 3 'Zl L;TFVLth(Xz‘ — ) Kp (X — 2)(X; — x)
1,j=
hd—2p+1
C o (M),
1 n
My = = 37 LTVIEN(XG = 2)Ki(X; = ) (X — ) (X; — 2)T
ij=1

hd—2p+2
= o (M ).

Using (32), (33) and (34), we obtain

T (XITW, X )\ XITW,LVLTW, X, (XITW, X,) Le;

1 1 1 -
=el <X§ Wwa> — XJW,LVL"W, X, <X§ Wme>
n n n
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1 -1
=: <X§ WxXx>
n

= (@) ([1 ~Aa(@)T As(@) | + 0,10 1))

" My M B Ay ()"
M Moz

T 1
A Ay < XTWX> e1
Mo Moo

1
—Az(z) 1 Ay(2)

+ Op(1p+1)>

= W72 A) (1) 211 (1 + 0p(1)) — 2R 72 Ay () 2ty Az () Az () (1 + 0p(1))

+ hPPT2A (1) 2 Ag ()T Az () o As(2) TH Aa(2) (1 + 0,(1))

Lv(fﬂ)Al(96)_41”(90_1(96))3 K« K(J (o7 (2)|g)v) dv(L + 0p(1)).

- nhd RA
Next we shall start the proof of (17). Notice that e; is a n-dimensional and e; is a
(p + 1)-dimensional.

el elve, --- elve,
InVLT:[elmen]TV[Ll-‘-Ln]: S| VI[Ly--- Ly = : . :
el elVL - elVL,

We have by using blockwise calculation that

1 T T 1 T T 811 SQTl
S XIW,vLI'W,X, = SXIW,LVL'W,X,= :
n n Sa1 S
where
Sy o= Z el VLiKp(X; — 2)Kp(Xj — )
t,j=1
hd—2p
= (@) Ar () (e (@)
/ z)p)v) K x K(JT (o~ (@)|)v)dv(1 +0p(1)),  (35)
1 n
Su = — Z VL Ky(X; — 2)Kp(X; — 2)(Xi — x)
pd—2p+1
- o). (30)
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1 n
Sap = nZ Z ef VLiKu(X; — ) Kp(X; — 2)(X; — 2)(X; — 2)"

1,j=1

hd—2p+2
_ op( ; 1plg). (37)

Using (35), (36) and (37), we obtain

T (XITW, X ) XITW, VLT W, X, (XIW, X,) ey

1 1 1 -t
=el <X§ WIXJC) — XTW, I,VLTW, X, (Xf WxXx> el
n n n

Su S§

1 —1
T T

—e - X W,X
! <n v x) Sa1 Sa

1 —1
<X§ Wsz> e1
n

= hP~ Ay ()" <[1 _A2(x)TA3(x)_1} + Op(lgﬂ))

L[S Sn hP=aA, (z) !
So1 S22

1
—Ag(.’L‘)flAQ (1‘)

+ Op(1p+1))

= W20 (@) 28111+ 0,(1) — 20 A (@) S As(@) ™ An() (1 4 0,(1)
+ h2p—2dA1 (z)_2A2(x)TAg($)_1322A3(m)_1A2(x)(1 +op(1))
= #v(x)Al(x)*lf (¢ (z))? /R K (T @le)0) K+ K(T (07 @)|p)v)do

X (14 0p(1)). O
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