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Abstract

In this paper the following three-dimensional nonlinear system is considered:

0
= g
=5 (z,y),

0
y = —5-Hlwy) + 1)z

o= g<t>§yﬂ<x, y) — h(t)z,

where variable coefficientg(t), ¢(t) andh(t) are continuous and bounded for

t > 0, but not assumed to be positive. This system contains a subsystem de-
scribed by a Hamiltonian function. Under the assumption that all orbits of the
Hamilton system near to the origin are isolated closed curves surrounding the ori-
gin, sufficient conditions are given for the zero solution of the above-mentioned
three-dimensional system to tend to the origin as oco. Our main result is com-
pared with the famous Routh-Hurwitz criterion through an example. Some other
examples are included to illustrate our main results. Finally, some figures of a
positive orbit are also attached to facilitate a deeper understanding.
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1. Introduction

Let B, = {(z,y) € R%: 0 < 2® +y? < p?} foranyp > 0 and letH (z,y) be
a continuous function o, having continuous first partial derivatives. Suppose
there exist constants;, as, f1, S, vy andp with 0 < ay < an, 0 < 1 < Sa,
~v > 0and0 < p < 1 such that

ar(2® + %) < H(z,y) < oz (2 +97), (C1)
2 2 8 a 2 2
51($ +y)Sﬂﬂa—xH($7y)+ya—yH($7y)§52($ +y), (Cy)
im 2H(az )= lim QH(QS )=0 (Cs)
@00 0z Y T wysn ay Y T ’
N 0
ol < uly] implies aly| < |2 (). @
Then, in a neighborhood of the origff, 0), all solutions of the system
7’ = §H (7,9),
ya (1.1)
'= ——H
y 5 11 (2,)

are periodic, namely, all orbits near to the origin are isolated closed curves sur-
rounding the origin. Hence, the zero solution of (1.1) is uniformly stable, but not
attractive (for the definition, see Section 2).

One of the most simple examples of (1.1) is the pendulum system without

friction,
' =y,

(1.2)

Yy = —sinx.

In this case, we may considéf(z,y) = 1 — cosz + y?/2. Hence, forp > 0
sufficiently small, conditions(;)—(C,) are satisfied withy; = 1/4, ap = 1/2,

f1 =1/2, 6, = 1,7 = 1 andu = 1. To take another example of (1.1), we
consider the Lotka—\Volterra system

X' =aX — bXY,
Y = — ¢V +dXY



onR%, R, = (0,00), whereq, b, ¢ andd are positive constantsy andY are

the densities of the prey and predator, respectively. adLet —log(bY/a) and

y = —log(dX/c). Then, we can transform the Lotka—\Volterra system into the
system

(1.3)

which has the form of (1.1) with
H(z,y)=ale*+x—1)+cle?+y—1).

It is clear that forp > 0 sufficiently small, conditions(;)—(C,) are satisfied
with a; = min{a, c}/4, as = max{a,c}, /1 = min{a, c}/2, f = 2max{a, c},

v = ¢/2andp = 1. Itis easy to find other nonlinear phenomena described by
system (1.1) in pure and applied science.

All solutions (x(t),y(t)) of (1.1) do not converge to the origin. Then, can
x(t) andy(t) converge to zero by adding the third variable to system (1.1)? To
deal with this problem, we consider the three-dimensional time-varying nonlinear
system

;- 0
Tr = 8_yH<x’y)a
=~ () + (D), a4
S =~ g5 H(w9) = h(D)-

Our problem bears some relation to automatic control theory. If subsystem (1.1) is
linear and the coefficientf(t), g(t) andh(t) are constants, then the well-known
Routh-Hurwitz criterion may be useful for our problem. However, if system (1.4)
contains a nonlinear subsystem, such as system (1.2) or (1.3), then the Routh-
Hurwitz criterion is of no use to system (1.4) directly. Even if subsystem (1.1)
is linear or linearization of (1.1) is possible in a neighborhood of the origin, the
Routh-Hurwitz criterion cannot be applied to system (1.4) which has time-varying
coefficients. As to the Routh-Hurwitz criterion, for example, see [1, 2, 3, 9, 10,
12].

The purpose of this paper is to discuss what kind of condition on time-varying
coefficientsf(¢), g(t) and h(t) will guarantee that the zero solution of (1.4) is
uniformly stable and asymptotically stable.



The plan of this paper is as follows. In Section 2, we state our main result on
the uniform stability and asymptotic stability of the zero solution of (1.4). To this
end, we introduce a characteristic function which used the coefficféntsg(t)
andh(t). We also make several assumptions on the coefficients. In Section 3,
we give the proof of our main result. Since the proof is somewhat long, we show
a brief outline of the proof. For illustration of our main theorem, we take some
concrete examples in Section 4. We consider the case in which subsystem (1.1) is
linear and clarify the relation between the Routh-Hurwitz criterion and our main
result. Also, we consider the case where linear approximation cannot be carried
out. Moreover, we draw some figures of a positive orbit of the final example.

2. Statement of the main result

Consider a system of differential equations of the form

0
x’:a—yH(:L’,y),
y, = _%H(l”y) + f(t)Z, (E)
g2 x,y) — h(t)z
2 = g0 H(r.0) = A0

where the coefficientg(¢), g(¢) andh(t) are continuous ang(t)/f(t) is differ-
entiable fort > 0.

Let x(t) = (z(t),y(t), 2(t)) andxg = (o, Yo, 20) € R3, and let|| - || be the
Euclidean norm. We denote the solution &f) through(ty, xo) by x(t; to, x0). It
is clear that systemK) has the zero solutior(¢) = 0.

The zero solution is said to tstable if for any e > 0 and anyt, > 0, there
exists ad(e,ty) > 0 such that|x,|| < & implies||x(t;ty,xo)|| < € for all t > t,.
The zero solution is said to heniformly stablaf it is stable andy can be chosen
independent ofy. The zero solution is said to lagtractive if for anyt, > 0, there
exists aly(tp) > 0 such that|x,|| < dy implies||x(t;to, Xo)|| — 0 ast — oo. The
zero solution of ) is said to beasymptotically stabld it is stable and attractive.
The asymptotic stability and the attractivity are completely different concepts in
nonlinear systems, such aB)((refer to the books [1, 2, 3, 4, 5, 11, 17]).

We also assume thg(t) andg(t) are bounded fot > 0 and that

f(t)g(t) >0 for t>0 and liggff(t)g(t) > 0. (Cs)

4



Then there exist positive numbetrsand K such that

kgwgf( for t > 0. (2.2)

g(t)

In fact, sincef(¢) andg(t) are bounded fot > 0, there exist constants > 0 and
c2 > 0 such that
[f(D) <er and [g(t)] < c (2.2)

for ¢t > 0. Because of((s), there exists a3 > 0 with
f(t)g(t) >c3 for t >0. (2.3)
Hence, it is clear that

f@) _ fg@) _ cs

= > — for t > 0.
gt) @) T 4

We can find a number; > 0 satisfying

lg(t)| > ¢4 for t>0.
If the assertion is false, then there exists a sequéhgetending tooo such that
lg(t,)] = 0 as n — oo.
It then follows from (2.3) that
|f(t,)| = 00 asn — oo.

This contradicts (2.2). We therefore conclude that

f@) _ 1£(@)]

&1
—t == < — for ¢t>0.
g) 19t T a

Letk = c3/c2 andK = ¢;/c4. Then we obtain inequality (2.1).

From ;) and (2.1), we can guarantee that all solutias of (£) are con-
tinuable in the future.

We here introduce a concept that plays an important role in this paper. A
nonnegative function is said to beveakly integrally positivef

/1 é(s)ds = o0
5



o

for every setl = U[Tn,an] such thatr,, + A < 0,, < Twy1 < 0, + A for some
n=1

A > 0andA > 0. For example, we can cite/(1+t) orsin®t/(1+t) as a weakly

integrally positive function (for example, see [6, 7, 8, 13, 14, 15, 16]) i$

weakly integrally positive, then it naturally satisfies that

lim /t¢(s)ds = 0.

t—o00

Note that if¢ is weakly integrally positive and
/¢(s)ds = Z/ z(s)ds < 00
I n=1YTn

for two sequenceér, } and{o,} with 7, < 0, < 7,11 < 0, + A, then

liminf(o,, — 7,,) = 0.
n—oo

Sinceg(t)/ f(t) is differentiable fort > 0, we may define
_ HOFEIONY
o =200+ 26 57)
We also denote
Yy (t) = max{0,¢(t)} and _(t) = max{0, —(t)}.

In addition to C7)—(C5), we assume that

| o-tois < ()
0
and

4 (t) is weakly integrally positive. ()

Then we have the following main result.
Theorem 2.1. Let f(t), g(t) and h(t) be bounded fot > 0. Suppose that con-

ditions (C1)—(C;) are satisfied Then the zero solution dfF) is uniformly stable
and asymptotically stable



Let (z(t),y(t), 2(t)) be any solution of ) with the initial timet¢, > 0 and
define

29(t)
Then, we have
V10) = k020 < (O A0 < v (0lt) @4

fort > t,. Let .
\Il(t):/lb_(s)ds.
to

Then, because of(};), there exists ar. > 0 such that¥(¢t) < L fort > t,.
Integrating (2.4) front, to oo, we have
v(t) < wv(ty)er,
and consequently,
V() < w(to)elyp_(t).
Since the right-hand side of the above inequality is positive fert,, we see that

(v/)+(t) < wlto)e V(1)

Integrate both sides fromg to oo to obtain

/Oo(v’)+(s)ds < w(ty)e"L < 0.

to
On the other hand, sinagt) > 0 for t > ¢,, we get
/too(v’)_(s)ds = /too(v’)+(s)ds —/toov’(s)ds < /too(v/)Jr(s)ds +v(tg) < o0.
Pu:ting the two inte;ral estimationsotogether, Weohave

/t:o|v’(t)|dt = /t:o((v’)+(t) + (V)_(t))dt < oc. (2.5)

Sincew(t) is nonnegative fot > ¢, andv’(¢) is absolutely integrable, it turns out
thatv(¢) has a nonnegative limiting value.
The above argument can be summarised as follows.

Lemma 2.2. Under condition(Cs), the derivative ofv(t) is absolutely integrable
and thereforev(t) has an nonnegative limiting value

v



3. Proof of the main result

Before giving the full proof of Theorem 2.1, it is helpful to mention its broad
outline. The proof is divided into four parts. To begin with, we will show that

() the zero solution of £) is uniformly stable.

We next show that the zero solution aof) is asymptotically stable by way of
contradiction. For this purpose, we define
f@)

u(t) = mz (t),

and then prove
(i) liminf, o u(t) = 0;
(i) limsup,_, . u(t) = 0.

The proof of part (ii) is simple, but part (iii) needs a detailed demonstration.
Part (iii) is the core of the proof of Theorem 2.1. Using cylindrical coordi-
nates(x,y,z) — (r,0,z) by x = rcosf andy = rsinf, we transform system
(E) into an equivalent system. We examine any solutioi), 6(t), z(t)) of the
transformed system in detail. We particularly pay attention to the movement of
(r(t),0(t)) and show thatr(t),0(t)) stays in an annulus during certain time in-
tervals. From parts (ii) and (iii), we see tHat, ., u(t) = 0. Using this fact and
repeating the same argument as in part (iii), we show that

(iv) z(t) does not converge to zero s> co.
However, because(t) converges to zerg;(t) also converges. This contradicts
part (iv).

PROOF OFTHEOREM2.1. (i): Recall that(’s) implies (2.1), namely,

0<k§m§K for ¢t > 0.
g(t)
Define " K
M, :min{al,g} and Mgzmax{ag,g}.

To prove uniform stability of the zero solution ofY, for a givene € (0, p), we
select



Recall thatL is a positive number satisfying(¢) < L fort > t,. Needless
to say,0 < . Letty, > 0 andxy = (zo,vo, 20) be given. We will show that

%ol = /22 + y2 + 22 < § andt > t,imply ||x(t; to, x0)|| < €. For convenience
of notation, we writex(t) = x(t; tg, xo) and(xz(t), y(t), z(t)) = x(t).
Suppose that there exigts> t, with ||x(¢,)|| = € and

Ix(t)|| <e<p for to <t <ty

where p is the constant given in the first paragraph of Section 1. Note that
(x(t),y(t)) € B,forty <t <t. Let

o(t) = H(x(t),y(1)) + %z%w

fort > ty. Then, from ;) and (2.1) it turns out that
v(t) > aq (2*(t) + y*(t)) + ng(t) > Mx*(t) (3.1)
forty <t < t;. Next, we define
w(t) =v(t)exp(—W(t)) for t > to.

Then, by (2.4) we have

so that
v(t) exp(—¥(t)) = w(t) < wlto) = v(lo)
fort > t,. Hence, we obtain

v(t) < {H($0,y0) + 2]5(]((25;0)) zg} el for t > t.

Since(xzg, yo) € B,, it follows from (C;) and (2.1) that

v(t) < {ag(xg +y5) + f(to) 28} el < Myeh5? = M, e
29(to)

fort > ty. Hence, together with (3.1), we have

Ix(t)|| <& for to <t <t.

9



This contradicts the assumption thiat(t, )| = . Thus, we see that
Ix(®)|| <e<p for t >t (3.2)

and therefore, the zero solution af) is uniformly stable. This completes the
proof of part (i).

Hereafter, we will show that the zero solution &f)(is asymptotically stable.
To this end, it is enough to show that it is attractive, namely) converges to
0 ast increases. By means of Lemma 2.2, the functigh) has a limiting value
vg > 0. If vy = 0, then by (3.1), the solutior(¢) tends to0 ast — oco. This
completes the proof. Hence, the remainder is the case in which0. We will
demonstrate that this case does not occur.

For the sake of simplicity, let

_ M) o

u(t) = 3752 (1),
Then, we have (t) = H(z(t),y(t)) + u(t) andv( ) = —¢(t)u(t). From (2.1)
and (3.2), we see thai(t) is bounded. Hencey(t) has the inferior limit and the
superior limit.

(i): We will show that the inferior limit ofu(t) is zero. Suppose that
li{n inf u(t) > 0.

Then there exist apy > 0 and al; > t, such that(t) > ¢, for ¢t > T;. Hence,
by (2.5) we have

oo>/ [v'(s ]ds-/ [(s)|u(s ds>/ Vi (s)u(s)ds > e OOzM(s)ds

This contradicts). Thus, we see thaim inf, ., u(t) = 0. This completes the
proof of part (ii).
(iii): We next show that the superior limit af(¢) is zero. The proof is by

contradiction. Suppose that® lim SUpP;_,., u(t) > 0. Sincef(t) andh(t) are
bounded for > 0, there exist numberg > 0 andh > 0 such that

f@) < f and |a(t)| <h (3.3)
for ¢t > 0. As we have shown in Section 2, there exisgsa 0 such that

g(t)] > g for t >0. (3.4)

10



Sincew(t) tends to a positive value, ast — oo, we can choose &, > t, such

that 3
0< % <o(t) < % for t > T. (3.5)

Judging from the inequality expression @éf,], we can exchange the number
(1 with a positive smaller one. In fact;¢) implies that

~ 0 0
Br(z® +y7) < l’%H(l’ay) + yﬁ—yH(x,y) < Bo(2® + y7)

for anyﬁl < p1. Hence, we may assume without loss of generality that

fav
< =
B12 NG
Lete, > 0 be so small that, < v/2,
_daee B (3.6)
k)(UO — 262) 2f
s 7T7 40(282 9 2052
t _ | — — 3.7
an<2 204 k(vo—2€2)>>ﬂ vy — 285’ (3.7)
Y A [ (3.8)
k)(Uo — 282) 1 \/§ ’ .

whereay, (51, 52), (7, 1), k ande are the numbers given (), (Cs), (Cy), (2.1)
and (3.2), respectively. Because: inf, ,,, u(t) = 0 < v = limsup,_, ., u(t), we
can find two divergent sequencgs, } and{o,,} with T, < 7, < 0,, < 7,41 such
that
u(t) > eq for 7, <t <o,
(3.9)
0<u(t)<e for o, <t <7041

andu(r,) = u(o,) = 2. From (2.1), we see thai(t) > kz*(t)/2 fort > t,.
Hence, by (3.9) we have

2 2
VW§¢#@§-%fm%gg%% (3.10)

11



Letz = rcosf andy = rsin f. Then we can rewrite system’j as the form

r’ = ﬁH(m,y) cosf — agﬂ(x, y)sinf + f(t)zsinb,
T

dy
0 = f(;f)z cosf — 7‘_12 {x%f[(z, y) + y(%H(:z:, y)} , (E)
2 = —g(t)(%H(x,y) — h(t)z.

Let (r(t),6(t), (t)) be the solution of £) corresponding tox(¢). Using (3.2),
(3.5), (3.9) and (), we obtain

vy — 260 < 2(v(t) — u(t)) = 2H (2(t), y(t)) < 20(2*(t) + y*(t)) < 20’
foro, <t < 7,41, SO that

Vo — 2¢e9

<r(t)<e for o, <t <741 (3.12)
2042

Taking into account of (3.10) and (3.11), we see that the soltien, 6(t), z(t))
of (F) stays in the thin disc

D:{(r,e,z): v02 €2 <r<e —-w<6<m and ’Z|§W/%}
Q2

for o, <t < 7,41 Itfollows from (Cs), (3.3), (3.10) and (3.11) that

Lf(@)]]=(@)]
— B2 < —T — B

: [f@O1]=()] + | 4as
Sg(t)ST—51<f M—ﬁl
foro, <t <, Let
_g 7 [ e P
w-= 51 f k’(UQ — 282) and Wt = 62 + f k’(UQ — 282) '

Then, from (3.6), we can estimate that

%<w_<61§62<w+<@2+

_7 40&282
k(vo — 252)

B
2

NN V]

< 5P (3.12)

12



and
—wy <0(t)< —w_<0 for o, <t <741 (3.13)

Define a planar regioft by

Vg — 2e9

TTW_ w_
= : ——<h< —— )%,
Q {(r,&) 50, <r<e and 20, _9_7r(1 251>}

The region(2 is non-empty because < ;.
We will show that

Tatl — On < i—ﬂ for n € N. (3.14)

If the assertion is not true, then there existsigne N such thatr,,, .1 — 0,, >
37 /w_. Consider the movement ¢f(¢), 6(t)). Then, from (3.11) and (3.13), we
see thatr(t), 6(t)) stays in the annulus

Vo — 252

A:{@ﬁy

<r<e and—w<9§7r}39
2012

for o,, <t < 7,,+1 and it moves clockwise. Integrating (3.13) frem), to 7,,,+1,
we obtain

Tno+1
0(0ny) — O(Tng+1) = —/ i 0'(s)ds > w_(Tngs1 — Ong) > 3T.

0

Hence,r(t),0(t)) makes at least one and a half rotation in the intelpyal, 7,,, 1 1]-
For this reason, we can find two numberandb with o,,, < a < b <7,,4+1 such
thatf(a) — 6(b) = n(1 —w_/f) and

(r(t),0(t)) € Q for a <t <b. (3.15)
By (3.12) and (3.13), we have
O(a) —0(b) <wi(b—a) < gﬁg(b —a),

so that

20(0) = 0)) _ 21(fr—w ) _ 2B —w)
33 35152 Bify

b—a> (3.16)

13



It follows from (3.6) that

mo- ] dase
251 N 2 51 k’(’UO —252)

T I b _ T

~3(-55) %

Hence, together with (3.15), we obtain

[vg — 269 . TwW_ [vg — 269 . @ 1 Jvg— 29
t) > > =
|y( )| 20(2 S 261 20{2 i 4 \/§ 20{2

fora <t < b. Since we can rewrite (3.8) as

h(B1 — w_) + f1f2 < f_\%;

we have _
I Jvg — 2e9 - h+ BB/ (B —w-) [2e

V2V 2a 97 ko
We therefore conclude that

h+4 BiBa) (B —w_) [2e
> —_
g7 k

ly(t)]

for a <t <. (3.17)

Using (3.15) again, we obtain
TW_—
z(t)] < ecos—— for a <t <b.
[2(0) 35 <t<

Hence, by (3.7) we have

_ 2 t
lx(t)]| < ccos 7 < e @2 lv(®)
261 vy — 29 tan (mw_ /(

25)) < ply(t)]

fora <t < b, and therefore, by({,) we get

(b)) < '%H@m,y(m! for a<t<bh (3.18)

14



From the third equation ofK) with (3.3), (3.4), (3.10), (3.17) and (3.18), we
obtain

12'()] = gD y(B)] — [R(t)]]2(2)

- h+5162 ﬁl—w 262 262
97 ‘/__ N

Prfe @ >0 (3.19)

:51—w— k

for a <t < b. Sincez’(t) is continuous for > t,, we see that

/abz'(s)ds _ /ab|z'(s)\ds.

Hence, by (3.10), (3.16) and (3.19), we have

2 k 2 2
222 2 @)+ 0 2 [ olds > 5P 22— a) > 222,

which is a contradiction. Thus, (3.14) holds.

[e.9]

Let] = U[Tn,an} From (2.5) and (3.9), we see that

oo>/\v ]ds>/w+ ds>52/w+

Hence, it follows from ;) and (3.14) that

liminf(o,, — 7,,) = 0. (3.20)
t—o00
Sincelim inf; ., u(t) = 0 < v = limsup,_, . u(t), we can choose two sequences
{t,} and{s,} with Ty, < t, < s, < t,11 such thatu(t,) = v/2, u(s,) = 3v/4
and

v 3v
§<u(t)<Z for t, <t < s,.

Sincee, < v/2, we may consider that,, s,,| C |7, 0,] for n € N (if necessary,
we can exchangér,} and{o,} into suitable subsequences{af,} and{o,}).
Hence, by (3.20) we have

liminf(s, —t,) = 0. (3.22)

n—oo

15



SincedH (z,y)/0y is continuous, it follows from ;) and (3.2) that there
exists an > 0 such that

0

a—yH(x(t),y(t))‘ <1 for t >t

Hence, together with (3.3), we have
u'(t) = 0'(t) = fO)2'()=(t) < W' (O] + [f ()] @)]]z(2)]

< (2] +7‘(%H(x(t),y(t)) [z < W' ()] + fle

for t > t,. Integrating this inequality from, to s,,, we get
v o _
2 = Ju(on)] = fulta) < [ 0/(S)lds + Tle(sn 1)
tn
for eachn € N. This contradicts (3.21), thereby completing the proof of part (iii).

(iv): From parts (ii) and (iii) above, we see thhin, ., u(t) = 0. Since
u(t) > kz2(t)/2 for t > to, we have

lim z(t) = 0. (3.22)

t—o00

Because:(t) converges to zero ds— oo, we can choose &; > t, such that
0< U(t) < &9 for ¢ > Tg.

Using this estimation instead of (3.9) and repeating the same process once more,
we see thatr(t),0(t)) remains in the annulud for ¢ > T3 and it rotates clock-

wise. Hence, we can find two divergent sequeregg and{b, } with 75 < a,, <

b, such that(a,) — 0(b,) = 7(1 —w_/B1) and(r(t),0(t)) € QL fora, <t <b,.

By the same argument as in the proof of part (iii), we obtain

2(0(a) = 0(b,) _ 2B —w)

b, — a, >
302 B152
for eachn € N and
2
12/ (t)] > ﬂlﬁl_ﬁi}_ % for a, <t <hb,.

16



Hence, we have

bn
2) — (0] = [ 1)l > 22 20, ) > 222

an ﬁl — W=

This contradicts (3.22). Thus, the casevpf> 0 does not happen. We therefore
conclude that the zero solution af’) is asymptotically stable.
The proof of Theorem 2.1 is thus completé.

4. Examples

Needless to say, our main theorem can be applied not only to nonlinear sys-
tems but also to linear systems. As an example, we may consider the linear system
with constant coefficients,

¥ = ax + by,
v =—cr—ay+ [z, 4.1)
7 = —agx — bgy — hz.

System (4.2) coincides with systerfYwith

H(z,y) = Cp? + ary + éyQ,
2 2
andf(t) = f, g(t) = g andh(t) = h.
We first consider the cage> 0. If be > a2, thenH(x,y) > a1(2? + 4?)
for a; > 0 sufficiently small. It is clear thatl (x,y) < as(z? + 3?) for ay > 0
sufficiently large. Note that

0 0

Hence, conditions((;) and (C,) are satisfied, provided that > a2. Since

0 0

%H(x,y) =cr+ay— 0 and a—yH(x,y) =ar+by —0

as(x,y) — (0,0), condition (C5) holds. It is clear that(,) is satisfied with
0 < p < min{l,|b|/|a|}. Becausef(t) andg(t) are constants, ifg > 0, then
condition (C5) is also satisfied. Moreover, it turns out thatt) = 24 for ¢t > 0.
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Hence, ifh > 0, theny () = 2h andvy_(t) = 0, and therefore, conditiong’)
and () hold.
We next consider the cage< 0. By changingy into —y, system (4.2) be-
comes the system
' = ax — by,

Y =cr—ay— fz, (4.2)
2 = —agx + bgy — hz,
which has the form of §) with

c b
H(z,y) = —51’2 + avy — §y2,

and f(t) = —f, g(t) = g andh(t) = h. Itis easy to verify that conditions
(C1)—(C~) are satisfied ibc > a?, fg < 0andh > 0.
Thus, by means of Theorem 2.1, we have the following example.

Example 4.1. If bc > a2, bfg > 0 andh > 0, then the zero solution of (4.2) is
asymptotically stable.

Remark 4.2. Since system (4.2) is autonomous, if the zero solution is stable,
then it is uniformly stable. Hence, the term “uniformly stable” is omitted in Ex-
ample 4.1.

System (4.2) is equivalent to the third-order equation
2" + ha'" + (bc — a® + bfg)x’ + (be — a*)hx = 0.

By using the Routh-Hurwitz criterion, it can be shown that the zero solution of
(4.2) is asymptotically stable if and only if the determinadis= h,

h (bc—a*)h
Ay = det =bfgh
1 be—a®+0bfg

and
h  (bc—a*)h 0
Az =det| 1 bc—a*+bfg 0 = bfgh*(bc — a?)
0 h (bc — a*)h
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are positive, namely, > 0, bfg > 0 andbc > a®. This condition is the same
as in Example 4.1. Hence, it is safe to say that our main theorem is considerably
sharp.

To illustrate Theorem 2.1 from a different point of view, we will take another
example. Define

2zy(2” — y°)
x? 4+ y?
Letx = rcosf andy = sin#. Then we have

H(z,y) =2 4+9° + , H(0,0) = 0. (4.3)

H(rcosf,rsin®) = 1> + 2 cos 0 sin f(cos § — sin® §)r?
= (1 + 2cos fsin A cos 260)r?
= (1 + sin 26 cos 20)r?

1
= (1 + 5 sin49) r.

Hence, H (z,y) is continuous at the origin and conditiof,( is satisfied with
a; = 1/2 anday = 3/2. Since

0 0
condition (C5) is satisfied with3; = 1 and, = 3. By a simple calculation, we

obtain
2(zty + 42%y® — o°)

215[(%4;) =2z +

ox (22 + y?)?

and o) 2(x — 423y* — wy?)
9 H(z,y) =2
3y (z,y) =2y + TR

for (z,y) # (0,0). Hence, we can verify that
0 0
im —H(z,y)= lim —H(x,y)=0;
(z,y)—(0,0) ox ( y) (z,y)—(0,0) 8@/ ( y)
that is, condition ;) holds. We can estimate that
2(|z° + 42 Plyl* + |=[lyl*)
(I2 + y2)2
2(|z° + 4z Plyl* + |=[lyl*)
ly[*

0
“H > 2yl —
’83/ (x,y)'_ Y|

> 2[y| -
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for |y| # 0. Lety > 0 and0 < p < 1 be numbers satisfying = 2(1 — u —
43 — pi°). Then, it turns out that < |x| < uly| implies|0H (z,y)/dy| > ]yl
We therefore conclude that conditiofiy) also holds.

Let f(t), g(t) andh(t) be constanty, g andh, respectively. Thenfg > 0
andh > 0 imply that conditions (’5)—(C’;) hold. Thus, by virtue of Theorem 2.1,
we have the following example.

Example 4.3. Consider systemK) with (4.3), andf (), g(¢) andh(t) being con-
stantsf, g andh, respectively. Iffg > 0 andh > 0, then the zero solution ofx)
is asymptotically stable.

Remark 4.4. The Routh-Hurwitz criterion is inapplicable to systeR) @iven in
Example 4.3, because we cannot find the corresponding linear approximation.

Example 4.5. Consider systemHK) with (4.3). Suppose that(t) = ¢g(t) =
h(t) = 1/(2+sint). Then the zero solution of) is uniformly stable and asymp-
totically stable.

SinceH (z,y) is the same as that of Example 4.3, we see that conditi@y)s (
(Cy) hold. The difference between Examples 4.3 and 4.5 is whether the coeffi-
cients converge or not. In Example 4/5¢), ¢(t) andh(t) oscillate periodically
betweenl /3 and1, and therefore, they do not converge to any constants. Itis easy
to verify that f(¢t)g(t) > 1/9, ¥, (t) = 2h(t) > 2/3 andy_(t) = 0 fort > 0.
Hence, conditions({;)—(C~) are satisfied.

In the figure on the next page, we draw a positive orbit of Example 4.5 and its
projections onto the-y plane, they-z plane and the:-z plane. The initial time
to = 0 and the starting poirttzo, yo, 20) = (1, 1, 1). The positive orbit approaches
the origin(0, 0, 0) by regular but somewhat complicated motion.

Althoughh(t) is positive fort > 0 in Example 4.5, the positivity df(¢) is not
necessarily required for our main theorem. For example, let

sint  cos’t

=T T v ¢4

Then conditions (s) and ;) are satisfied, buk(t) is negative at = nx for
n € N. Hence, we can rewrite Example 4.5 as follows.

Example 4.6. Consider systemK) with (4.3) and (4.4). Suppose thitt) =
g(t) = 1/(2+sint). Then the zero solution of) is uniformly stable and asymp-
totically stable.
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Figure 1: A positive orbit of Example 4.5.
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