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GLOBAL ASYMPTOTIC STABILITY FOR PREDATOR-PREY
SYSTEMS WHOSE PREY RECEIVES TIME-VARIATION

OF THE ENVIRONMENT
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Abstract. A predator-prey model with prey receiving time-variation of the en-
vironment is considered. Such a system is shown to have a unique interior equi-
librium that is globally asymptotically stable if the time-variation is bounded
and weakly integrally positive. In particular, the result tells that the equilibrium
point can be stabilized even by nonnegative functions that make the limiting sys-
tem structurally unstable. The method that is used to obtain the result is an
analysis of asymptotic behavior of the solutions of an equivalent system to the
predator-prey model.

1. Introduction

Predator-prey systems in nature apparently persist stably while the most basic
models and experiments show their instability (see, for example, [8, 17, 23, 31]). This
gap suggests that our insight is not enough to understand mechanisms acting in
nature which stabilize population dynamics. To resolve the gap, theoreticians and
experimentalists have made a long list of such processes (see, the books [6, 14, 18,
21]).

The basic theoretical tool in these investigations is the system of Lotka-Volterra
equations for a prey with population density N(t) and a predator with population
density P (t):

(LV )
N ′ = (a− bP )N,

P ′ = (− c+ dN)P,

where the prime denotes d/dt and parameters a, b, c, and d are assumed to be
positive. This model is often criticized because its single positive equilibrium point
is a center, i.e., a “neutrally stable” equilibrium surrounded by a family of periodic
orbits whose amplitudes depend on the initial population sizes. Also, the slightest
change to the model’s structure typically results in qualitatively different behavior.
For example, if a decreases linearly with prey density the equilibrium point is stable;
on the other hand, introducing a saturating (Type II) functional response turns the
equilibrium into an unstable spiral point (see [9]). This structural instability means
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that the model cannot make any predictions that are robust enough to be tested.
After all, we know that model (LV ) does not adequately describe even the most
highly controlled experiments.

Structural instability can, however, be used to our advantage. In effect, it allows
us to use the Lotka-Volterra equations as an exquisitely sensitive balance, with
which we can determine the effects of the processes that it ignores. So, when we
say that a Type II functional response is destabilizing, we mean that it destabilizes
the equilibrium point in model (LV ). Similarly, when we say that the presence of a
carrying capacity for the prey tends to be stabilizing, we mean that it stabilizes the
equilibrium point. There is a long tradition of using the Lotka-Volterra equations
in this way (see [22]).

A time-variational component of the environment is one of the processes that
the Lotka-Volterra equations ignore. Realistic models should take account of sea-
sonal effect. Constant per capita birth and mortality rates are highly unlikely for
most natural populations; rather thay are usually subject to seasonal fluctuations.
Supposing that prey have a carrying capacity and are more effective to receive time-
variation of the environment than their predators, we may discuss a general version
of model (LV ) where only a is modified to a = β(t) − δ(t)N with continuous and
nonnegative functions β(t) and δ(t).

In this paper, in a simplest way, we consider a predator-prey model of the form

(E)
N ′ = (a+ ch(t)− dh(t)N − bP )N,

P ′ = (− c+ dN)P,

where h(t) is continuous and nonnegative for t ≥ 0 and a, b, c, and d are positive
constants. It is clear that the modified model (E) still has a unique interior equi-
librium point (c/d, a/b). Needless to say, we only have to consider model (E) in
the first quadrant {(N,P ) : N > 0 and P > 0}. Hence, the initial data is in the
first quadrant. The interior equilibrium of (E) is said to be globally attractive if it
attracts any solution of (E) with the initial data. Moreover, if interior equilibrium
of (E) is stable, then it is said to be globally asymptotically stable.

To state our main result, we define a family of functions. We say a nonnegative
function ϕ is weakly integrally positive if∫

I

ϕ(t)dt = ∞

for every set I =
∞∪
n=1

[τn, σn] such that τn + δ < σn < τn+1 ≤ σn + ∆ for some

δ > 0 and ∆ > 0. A simple example of weakly integrally positive function is sin2 t,
1/(1 + t), or sin2 t/(1 + t) (see [12, 13, 27–29]). It is easy to see that the family of
weakly integrally positive functions includes nonnegative functions which converge
to 0 as t → ∞.

Theorem 1. Suppose there exists an h such that 0 ≤ h(t) ≤ h for t ≥ 0. If h(t) is
weakly integrally positive, then the interior equilibrium (c/d, a/b) of (E) is globally
asymptotically stable.

Theorem 1 tells that the equilibrium point of (E) can be stabilized even by such
nonnegative functions that make the limiting system of (E) structurally unstable.
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The organization of this paper is as follows. In Section 2, we introduce a trans-
formation and establish a proposition on Lyapunov’s stability. Also, we eximane
properties of certain functions which will be used in proving our main theorem. We
prove the main theorem in Section 3 and summarize our findings in Section 4.

2. Transformation

Changing variables

x = − log(bP/a) and y = − log(dN/c),

we can transform model (E) into the system

(1)
x′ = c(1− e−y),

y′ = − a(1− e−x)− ch(t)(1− e−y).

System (1) has the zero solution (x(t), y(t)) ≡ (0, 0), which corresponds to the
interior equilibrium (c/d, a/b) of (E). The above transformation is a one-to-one
correspondence from the first quadrant {(N,P ) : N > 0 and P > 0} to the whole
real plane {(x, y) : x ∈ R and y ∈ R}. Hence, the interior equilibrium (c/d, a/b)
of (E) is globally attractive if and only if every solution (x(t), y(t)) of (1) tends to
(0, 0) as time t increases.

To prove Theorem 1, we have to derive two conclusions: the zero solution of (1)
is stable; any solution of (1) approaches the origin (0, 0). It is easy to show the
stability of the zero solution of (1) by using a Lyapunov-type theorem. For details
about the direct method of Lyapunov, see the books [1, 4, 10, 11, 16, 19, 20, 26, 33, 34]
for example.

Proposition 2. If h(t) is nonnegative for t ≥ 0, then the zero solution of (1) is
uniformly stable.

Proof. As a suitable Lyapunov function, we choose

V (x, y) = af(x) + cf(y),

where f(z) = e−z + z − 1 for z ∈ R. Since
d

dz
f(z) = − e−z + 1,

f(z) is increasing for z ≥ 0 and decreasing for z ≤ 0. Hence, f(z) > 0 = f(0) for
z ̸= 0. This means that V (x, y) is positive definite and decrescent. Differentiate
V (x, y) along any solution of (1) to obtain

V̇(1)(t, x, y) = −c2h(t)
(
1− e−y

)2 ≤ 0

on [0,∞)×R2. We therefore conclude that the zero solution of (1) is uniformly stable
by using a Lyapunov-type theorem due to Persidski [25] (refer also to Theorem 1.7
in [26, p. 14] or to Theorem 8.2 in [33, p. 32]). □

In order to prove the attraction of any solution of (1), it is helpful to describe the
properties of functions f(z) and

g(z) =
∣∣1− e−z

∣∣
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for z ∈ R. It is clear that the inequality f(−z) ≥ f(z) holds for z ≥ 0, with equality
if and only if z = 0. Hence, we see that

(2) 0 ≤ f(z) ≤ f(−α) for |z| ≤ α

with α positive. Let f−1(w) be the inverse function of w = f(z)sgnz. Then, f−1(w)
is increasing for w ∈ R and f−1(0) = 0. Hence, f−1(w) is positive for w > 0 and
negative for w < 0. Since f(−z) > f(z) > 0 for z > 0, we see that

(3) 0 < −f−1(−w) < f−1(w) for w > 0.

Also, f−1(w) tends to ∞ as w → ∞ and it tends to −∞ as w → −∞. Since

d

dz
g(z) =

{
e−z if z ≥ 0

− e−z if z ≤ 0,

g(z) is increasing for z ≥ 0 and decreasing for z ≤ 0. Hence, g(z) > 0 = g(0)
for z ̸= 0. It is easy to check that limz→∞ g(z) = 1, limz→−∞ g(z) = ∞ and the
inequality g(−z) ≥ g(z) holds for z ≥ 0, with equality if and only if z = 0. Hence,
we see that

(4) g(z) ≥ g(α) > 0 for |z| ≥ α

and

(5) 0 ≤ g(z) ≤ g(−α) for |z| ≤ α

with α positive.

3. Proof of the main result

We are now ready to prove Theorem 1.

Proof of Theorem 1. By means of Proposition 2, we conclude that the zero solution
of (1) is stable. We will prove that every solution of (1) tends to the origin.

Let (x(t), y(t)) be any solution of (1) with the initial time t0 ≥ 0 and let

(6) v(t) = V (x(t), y(t)) = af(x(t)) + cf(y(t)).

Then, we have
v′(t) = −c2h(t)g2(y(t)) ≤ 0 for t ≥ t0,

namely, v(t) is nonincreasing for t ≥ t0. Hence, v(t) has a limiting value v0 ≥ 0. If
v0 = 0, then from (6) we see that the solution (x(t), y(t)) tends to (0, 0) as t → ∞.
This completes the proof. Thus, we need consider only the case in which v0 > 0.
We will show that this case does not occur.

Since v(t) tends to a positive value v0 as t → ∞, there exists a T1 ≥ t0 such that

(7) 0 < v0 ≤ v(t) ≤ 2v0 for t ≥ T1.

Hence, by (6), we have

f(y(t)) ≤ 2v0
c
,

namely,
f−1(−2v0/c) ≤ y(t) ≤ f−1(2v0/c)

for t ≥ T1. From (3), we see that

(8) |y(t)| ≤ f−1(2v0/c) for t ≥ T1.
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Since |y(t)| is bounded, it has an inferior limit and a superior limit. First, we will
show that the inferior limit of |y(t)| is zero, and we will then show that the superior
limit of |y(t)| is also zero.

Suppose that lim inft→∞ |y(t)| > 0. Then, there exist a γ > 0 and a T2 ≥ t0 such
that |y(t)| > γ for t ≥ T2. It follows from (4) that g2(y(t)) ≥ g2(γ) for t ≥ T2.
Hence, we have

v′(t) = −c2h(t)g2(y(t)) ≤ −c2g2(γ)h(t)

for t ≥ T2. Integrating this inequality from t0 to t, we obtain

− v(t0) ≤ v(t)− v(t0) =

∫ t

t0

v′(s)ds ≤ −c2g2(γ)

∫ t

T2

h(s)ds,

which tends to −∞ as t → ∞ because h(t) is weakly integrally positive. This is a
contradiction. Thus, we see that lim inft→∞ |y(t)| = 0.

Suppose that lim supt→∞ |y(t)| > 0. Let λ = lim supt→∞ |y(t)|. Let ε be so small
that 0 < ε < −f−1(−v0/c),

(9)
ch

a
g(−ε) < 1− exp

(
−f−1

(
v0 − cf(−ε)

a

))
and

(10)
ch

a
g(−ε) < exp

(
−f−1

(
cf(−ε)− v0

a

))
− 1.

Since g(−ε) approaches zero and the right-hand sides of (9) and (10) approach
positive numbers as ε → 0, we can find such a positive number ε. Also, we may
assume without loss of generality that ε < λ/2.

As proved above, the inferior limit of y(t) is zero. Hence, we can choose two
intervals [τn, σn] and [tn, sn] with [tn, sn] ⊂ [τn, σn], T1 < τn and τn → ∞ as n → ∞
such that |y(τn)| = |y(σn)| = ε, |y(tn)| = λ/2, |y(sn)| = 3λ/4 and

(11) |y(t)| ≥ ε for τn < t < σn,

(12) |y(t)| ≤ ε for σn < t < τn+1,

(13)
1

2
λ < |y(t)| < 3

4
λ for tn < t < sn.

By (2), (6), (7) and (12), we have

af(x(t)) = v(t)− cf(y(t)) ≥ v0 − cf(−ε)

for σn ≤ t ≤ τn+1. For the sake of brevity, let w0 = v0 − cf(−ε). Then, w0 is
positive, because 0 < ε < −f−1(−v0/c). There are two cases to consider: (a) x(t) ≥
f−1(w0/a) > 0 for σn ≤ t ≤ τn+1; (b) x(t) ≤ f−1(−w0/a) < 0 for σn ≤ t ≤ τn+1. In
case (a), using the second equation in system (1) with (5) and (12), we obtain

y′(t) = − a
(
1− e−x(t)

)
− ch(t)

(
1− e−y(t)

)
≤ − a

(
1− e−x(t)

)
+ chg(y(t))

≤ − a
(
1− exp

(
−f−1(w0/a)

))
+ chg(−ε)

def
= −µ1
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for σn ≤ t ≤ τn+1. From (9), we see that µ1 is positive. Note that µ1 is independent
of n. Similarly, in case (b), we have

y′(t) = − a
(
1− e−x(t)

)
− ch(t)

(
1− e−y(t)

)
≥ − a

(
1− e−x(t)

)
− chg(y(t))

≥ a
(
exp
(
−f−1(−w0/a)

)
− 1
)
− chg(−ε)

def
= µ2

for σn ≤ t ≤ τn+1. From (10), we see that µ2 is also positive and independent of n.
Let µ(ε) = min{µ1, µ2} > 0. Then, in either case, we get

|y′(t)| ≥ µ for σn ≤ t ≤ τn+1.

Using this inequality and (8), we can estimate that

2f−1(2v0/c) ≥ |y(τn+1)|+ |y(σn)| ≥
∣∣∣∣∫ τn+1

σn

y′(t)dt

∣∣∣∣
=

∫ τn+1

σn

|y′(t)|dt ≥ µ (τn+1 − σn),

or τn+1 ≤ σn +∆ for n ∈ N, where ∆ = 2f−1(2v0/c)/µ.

Let I =
∞∪
n=1

[τn, σn]. Then, it follows from (11) that |y(t)| ≥ ε for t ∈ I. Hence,

by (4), we have
g(y(t)) ≥ g(ε) > 0 for t ∈ I,

and therefore,∫ ∞

t0

v′(t)dt = −c2
∫ ∞

t0

h(t)g2(y(t))dt ≤ −c2g2(ε)

∫
I

h(t)dt.

Since ∫ ∞

t0

v′(t)dt = lim
t→∞

v(t)− v(t0) = v0 − v(t0),

we obtain ∫
I

h(t)dt ≤ v(t0)− v0
c2g2(ε)

< ∞.

Hence, from the assumption that h(t) is weakly integrally positive and the estimation
that τn+1 ≤ σn +∆ for n ∈ N, we see that lim infn→∞(σn − τn) = 0. Since [tn, sn] ⊂
[τn, σn], it turns out that

(14) lim inf
n→∞

(sn − tn) = 0.

By (6) and (7), we have

f(x(t)) ≤ 2v0
a

,

namely,
f−1(−2v0/a) ≤ x(t) ≤ f−1(2v0/a)

for t ≥ T1. From (3), we see that

|x(t)| ≤ f−1(2v0/a) for t ≥ T1.

Hence, by (5), we obtain

(15) g(x(t)) ≤ g
(
−f−1(2v0/a)

)
for t ≥ T1.
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Using (5) and (13), we have

g(y(t)) ≤ g(−3λ/4) for tn ≤ t ≤ sn.

Hence, together with (15), we get

|y′(t)| ≤ ag(x(t)) + chg(y(t))

≤ ag
(
−f−1(2v0/a)

)
+ chg(−3λ/4)

for tn ≤ t ≤ sn. Letting ν = ag(−f−1(2v0/a)) + chg(−3λ/4) and integrating this
inequality from tn to sn, we obtain

1

4
λ = |y(sn)| − |y(tn)| ≤ |y(sn)− y(tn)|

=

∣∣∣∣∫ sn

tn

y′(s)ds

∣∣∣∣ ≤ ∫ sn

tn

|y′(s)|ds ≤ ν(sn − tn).

This contradicts (14). We therefore conclude that lim supt→∞ |y(t)| = λ = 0.
In summary, y(t) tends to zero as t → ∞. Hence, there exists a T3 ≥ T1 such that

(16) |y(t)| < ε for t ≥ T3.

Using (16) instead of (12) and following the same process as in the above argument,
we see that

|y′(t)| ≥ µ for t ≥ T3.

This inequality yields

|y(t)− y(T3)| =
∣∣∣∣∫ t

T3

y′(s)ds

∣∣∣∣ = ∫ t

T3

|y′(s)|ds ≥ µ(t− T3),

which tends to ∞ as t → ∞. This contradicts the fact that y(t) tends to zero as
t → ∞. Thus, the case of v0 > 0 cannot happen.

The proof of Theorem 1 is now complete. □

4. Discussion

System (1) is rewritten as a quasi-linear system of the form

x′ = A(t)x+ f(t,x),

where

x =

(
x

y

)
, A(t) =

(
0 c

− a −ch(t)

)
and

f(t,x) = f(t, x, y) =

(
c(1− y − e−y)

− a(1− x− e−x)− ch(t)(1− y − e−y)

)
.

The nonlinear part f(t, x, y) is a higher-order term with respect to x and y, and the
linear approximation for system (1) is

(17) x′ = A(t)x.

It is known that under all of the assumptions in Theorem 1, the zero solution of (17)
is asymptotically stable, but it is not always uniformly asymptotically stable. For
example, if h(t) = sin2 t, then the zero solution of (17) is uniformly asymptotically
stable. On the other hand, if h(t) = 1/(1 + t) or h(t) = sin2 t/(1 + t), then the
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zero solution of (17) is asymptotically stable, but it is not uniformly asymptotically
stable (for details, see [2, 13, 28]).

If the zero solution of a linear system is uniformly asymptotically stable, then the
zero solution of the corresponding quasi-linear system is also uniformly asymptot-
ically stable. As Perron [24] has proved, however, the asymptotic stability of the
zero solution of a linear system does not necessarily imply that the zero solution
of the corresponding quasi-linear system is asymptotically stable. As to Perron’s
example, see the books [3, pp. 42–43], [4, pp. 169–170], [5, p. 71], [30, pp. 92–93], [32,
pp. 315–317], etc.

Therefore, needless to say, even if the zero solution of (17) is asymptotically stable,
we cannot show that the zero solution of (1) is globally asymptotically stable. In this
paper, we exhibited a sufficient condition for the zero solution of (1) to be globally
asymptotically stable as Theorem 1. An advantage of Theorem 1 is here.

The same h(t) put into per capita birth and mortality rates for prey in (E)
is a technical setting that makes the modified model still have a unique interior
equilibrium point (c/d, a/b). From a biological point of view, however, they should
be different. Developing these considerations into a model that provides different
time-variational functions on per capita birth and mortality rates of the prey, which
is a more biologically practical scenario, will be left for future work.
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