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Abstract

This paper considers a Lotka-Volterra predator-prey model with predator receiving an envi-
ronmental time-variation. For such a system, a unique interior equilibrium is shown to be
globally asymptotically stable if the time-variation is bounded and weakly integrally positive.
Our result tells that the equilibrium can be stabilized even by nonnegative functions that make
the limiting system structurally unstable. Numerical simulations are also shown to illustrate
the result and to suggest that cases with time-variation acting on predator have larger-scale
convergence to the equilibrium than population dynamics with time-variation acting on prey.
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1. Introduction

Theoretical study on predator-prey systems in mathematical ecology has a long history
starting with the pioneering work of Lotka and Volterra. Their model is described by ordinary
differential equations for a prey with population densiyt) and a predator with population
density P(t) as follows:

N’ = (a —bP)N,

P' = (—c+dN)P,

where the prime denote¥dt and parameters, b, ¢, andd are assumed to be positive. This
model has a single positive equilibrium poif{/d, a/b), which is a center, i.e., a “neutrally
stable” equilibrium surrounded by a family of periodic orbits whose amplitudes depend on the
initial population sizes.

A time-variational component of the environment is one of the processes that the Lotka-
Volterra equations ignore. Realistically, constant per capita birth and mortality rates are highly
unlikely for most natural populations; rather they are usualy subject to environmerntal fluc-
tuations. Supposing that predators have a carrying capacity and are more effective to receive
time-variation of the environment than their prey, we may discuss a general version of model
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(LV) in which —c is modified to—c = &(t) — n(t) P, where&(t) andn(t) are continuous
functions withn(¢) > 0. In a simplest way, we will consider the following modified system of
(LV)

N' = (a —bP)N,

P'" = (—c+ ah(t) — bh(t)P + dN)P,

whereh(t) is continuous and nonnegative for> 0. Because of some technical setting,
the modified model E) still has the same interior equilibriutta/d, a/b) uniquely. Let, for
example,h(t) = 1/(1 + t). Then, what behavior of solutions is expected for systé&n®(
Noting that the limiting equations of{) becomeg V'), will we observe a long-time behavior
of the solution which converges to periodic orbits surrounding the gejiat a/b) or not?

In this paper, we give answer for this question in a more general way. For this purpose, we
define a family of functions. We say a nonnegative functiaa weakly integrally positivé

(E)

/]QS(t)dt =00

for every setl = U[Tn,an} such thatr, + 6 < 0, < 741 < 0, + A for somed > 0

n=1
andA > 0. A simple example of weakly integrally positive functionsis®¢, 1/(1 + t), or
sin?t/(1 +t) (see [3, 4, 5, 11, 12, 13)). Itis easy to see that the family of weakly integrally
positive functions includes certain nonnegative functions which convergaso — oo; e.g.,
it includes the decreasing function with this property.

Needless to say, we consider modg) (n the first quadranf(V, P): N > 0 andP > 0},
and then the initial data is in the first quadrant. The interior equilibriumifié said to
be globally attractiveif it attracts any solution of £) with the initial data. Moreover, if the
interior equilibrium of ) is stable, then it is said to bgobally asymptotically stableWe
have the following:

Theorem 1. Suppose thak(t) is bounded and nonnegative for> 0. If h(t) is weakly in-
tegrally positive then the interior equilibrium(c/d, a/b) of (£) is globally asymptotically
stable

Theorem 1 tells that the equilibrium point oF) can be stabilized even by nonnegative
functions that make the limiting system df equal to(LV").

The organization of this paper is as follows. In Section 2, we introduce a Lyapunov func-
tion to prove stability on the interior equilibrium and examine properties of certain functions
which will be used in proving our main theorem. We prove global attraction on the interior
equilibrium in Section 3. In [14], based on the same mddgl’), the authors have con-
sidered a predator-prey model where only prey (not predators) receive time-variation of the
environment to obtain the same type of result as Theorem 1. Using numerical simulations,
in Section 4, we illustrate Theorem 1 and suggest that the time-variation acting on predator
has larger-scale convergence to the equilibrium as compared with the case of a time-variation
acting on prey. We summarize our findings in Section 5.



2. Lyapunov’s function

Letz = —log(bP/a) andy = —log(dN/c). Then, our modelf) can be transformed into
the system
¥ =c(l—e?)—ah(t)(l—e™),

y=—a(l—e"). @

The interior equilibrium(c/d, a/b) of (E)) corresponds to the zero solution(t), y(t)) = (0, 0)
of (1). To prove Theorem 1, we have only to show two conclusions:

(i) the zero solution of (1) is stable;
(i) all solutions of (1) tend to the origifD, 0) as time increases.

Define
f(z)=e*+2z—1 and g(z)=|1—e?|

for z € R. Note that

d
9(z) = | = f(2)].
It is easy to check that(0) = 0 andf(—z) > f(z) for z > 0. Hence, it turns out that
0<f(2) < f(=a) for |z[ <o (2)

with « > 0. The functionf(z) is increasing forz > 0 and decreasing for < 0. Let
w= f(2) o f(z)sgnz and denote the inverse function By (z). Then, we see that
0<—fY—w)< fHw) for w>0. 3)

It is also clear thay(z) is increasing for: > 0 and decreasing for < 0 with g(0) = 0,
lim, o g(2) = 1, lim,,_« g(2) = oo andg(—=z) > g(z) for z > 0. Hence, it follows that

g(z) > g(la) >0 for |z]| >« (4)
and
0<yg(z) <g(—a) for |z|<a (5)

with « positive.
As a suitable Lyapunov function for system (1), we adopt

V(z,y) = af(x) +cf(y).

Obviously, V (z,y) is positive definite and’(0,0) = 0. DifferentiatingV'(z,y) along any
solution of (1) gives ‘

Vit z,y) = —a*h(t)g*(x(t))
on [0,00) x R% Hence, by means of a well-known Lyapunov-type theorem, we have the fol-
lowing result (as to the Lyapunov-type theorem, see Theorem 1.7 in [10, p. 14] or to Theorem
8.21in[15, p. 32)).

Proposition 2. If h(t) is nonnegative fot > t,, then the zero solution ofl) is uniformly
stable

We obtained the first conclusion that we desired. In the next section, we will show the
second conclusion, that is, the global attraction of solutions of (1).
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3. Global attraction

Let (z(t),y(t)) be any solution of (1) with the initial tim& > 0 and let
u(t) = V(x(t),y(t)) = af(x(t) + cf(y(?)) (6)
fort > t,. Then, we obtain
V(1) = —a®h(t)g*(=(t) <0,

and thereforey(t) is nonincreasing fot > t, and it has a limiting value, > 0. Hence, there
exists al’ > t, such that

vo < w(t) <2vuy for t >T. (7)
From (6) and the property thdt{z) — 0 asz — 0, we conclude that all solutions of (1) tend
to (0,0) ast — oo if and only if vy = 0. Assuming additional conditions dr{t), we can show
that the case in which, > 0 does not occur.

Proposition 3. In addition to the assumptions in Propositignf 4(¢) is bounded and weakly
integrally positive then all solutions of(1) tend to the origin(0, 0) as time increases

Before proving Proposition 3, we examine the property of the first component of the solu-
tion (x(t),y(t)) of (1).

Lemma 4. If h(t)is bounded andy is positive thenz(¢) does not converge to zero ais» .

Proof. Suppose that(¢) converges to zero as— oco. Then, for a sufficiently smal > 0,
there exists 47 > T such that

lz(t)] <e for t >T. (8)

Hence, it follows from (2) thab < f(z(t)) < f(—e¢) fort > T;. By this inequality with (6)
and (7), we obtain

cf(y(t)) = v(t) —af(z(t)) = vo — af(—¢)
for ¢t > T;. Sincev is positive andt is small enough, we may consider thgt— af(—¢) is
positive. Letuy = (vo — af(—¢))/c > 0. Then, there are two cases that we should consider:
@) y(t) > f(u) > 0fort > T1; (b) y(t) < f~(—ug) < 0fort > Ty. Sinceh(t) is
bounded, there existsia> 0 such thatih(t)| < h fort > 0. We first consider the case (a).
From (5), we see that

w'(t)

0(1 _ e—y(t)> _ ah(t)(l _ e—m(t))
e(1 =) — ahg(a(t))

> (11— exp(=f(w)) ) — ahg(—2) &\

fort > Ty. Sinceuy is positive and is small enough), is a positive number. This contradicts
the assumption that(¢) converges to zero as— co. We next consider the case (b). Similarly,
we obtain

v

/(1)

IN

c(1- e_y(t)) + ahg(x(t))
< —c(exp(—f 7 (~w) ) — 1) + alg(—2) £ -k,



fort > T1, where\, > 0. This is also a contradiction. The lemma is thus proved. O
We are now ready to prove Proposition 3.

Proof of Proposition3. As mentioned in the top paragraph of Section@) has a limiting
valuevy,. We will show thatv, = 0. By way of contradiction, we suppose that > 0. It
follows from (6) and (7) thaf (z(t)) < 2v,/a. Taking account of (3), we see that

lz(t)| < fY(2u/a) for t>T. (9)

Hence, there exist the lower limit and the upper limit.oft)|.

If the lower limit of |x(¢)| is positive, then we can finda > 0 and aZ; > 7 such that
|z(t)| > ~ for t > Ty. Hence, it follows from (4) thag?(x(t)) > g*(v) for t > Ty. Using this
inequality, we have

v'(t) = —a’h(t)g*(x(t)) < —a’g*()h(t)
for ¢t > T». Taking into account that'(t) < 0 for ¢, < t < T5, we obtain

t

—olte) < v(t) — vity) = / v (s)ds < —a2g2(’y)/ h(s)ds.

to Ts

On the other hand, sindgt) is weakly integrally positive,

t
/ h(s)ds — oo ast — oc.

Ts

This is a contradiction. Thus, we see that inf; .., |z(t)| = 0.

Combining the conclusion of Lemma 4 and the above fact, we see that the upper limit of
|z(t)| is positive. Letu = limsup,_, . |=(t)|. Recall thaih(t)| < h fort > 0. We choose to
be small enough as follows: < & < min{x/2, —f ' (—vo/a)};

?9(—6) <1—exp (—fl(m»; (10)

c

ah (o) < exp<_ f(mD . (12)

and

C

Sinceg(—¢) approaches zero and the right-hand sides of (10) and (11) approach positive num-
bers as — 0, such are exists. Letwy = (v — af(—¢))/c. Then,w, is positive, because
0<e<—f(—vp/a).

Sinceliminf; ,o |z(t)] = 0 < p = limsup,_,, |z(t)|, we can find two sequences of
intervals|r,,, o,,| and[t,,, s,,| with [t,,, s,] C [T, 0,.], T < 1, andr,, — oo asn — oo such that
()| = [2(0n)| = & [2(tn)] = 1/2, |2(sn)| = 3p/4 and

|z(t)| > e for 7, <t <oy, (12)
lz(t)| <e for o, <t < T4, (13)

1 3
Jh < lz(t)] < s for ¢, <t <s,. (14)
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Using (13) instead of (8) and following the same process as in the proof of Lemma 4, we
conclude that there existsa> 0 such that

|2'(t)] > v for o, <t <71

Tn41
/ x’(t)dt‘

Tn4+1
= [ WOz v (s - ),
On

Hence, together with (9), we can estimate that

2/ (200/a) = |a(To0)| + |2(0n)| =

namely,7, 1 < o, + A for n € N, whereA = 2/~ (2vy/a) /v.
It follows from (4) and (12) that

g(z(t)) = g(e) > 0 for 7, <t < o

Sinceh(t) is nonnegative fot > 0, we see that

vo — v(ty) = /toov’(t)dt

0

_ e /t )Pt < a2 @)Y / Uit

0

Hence, we obtain
(to) — vo
t)dt < ) 15
Z/T 2(5) <0 (15)

If there exists & > 0 such thav,, — 7, > d for n € N, then

i / )t =

becauséi(t) is weakly integrally positive and,.; < o, + A for n € N. This contradicts
(15). Thus, we see théin inf, ,.. (o, — 7,) = 0. Since[t,, s,] C [1,, 0,], it turns out that

liminf(s,, —t,) = 0. (16)
Using (3), (6) and (7) again, we obtain
y(t)| < f~'(2vo/c) for t>T.

From this estimation and (5), we see that

9(t) < g(=F7(2u/e)) for t=1T. (17)
By (5) and (15), we also estimate that

g(@(t)) < g(=3A/4) for ¢, <t <s,.
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Hence, together with (17), we get

/(8)] < eglu(t)) + ahg(a(t)
< cg(—1(2u0/0)) + alig(~31/4) < p

fort, <t < s,. Thisyields that
1
0 < 2n=lalsa)l = lo(ta)] < fa(sn) — 2 (ta)]
/nx'(s)ds < / n|:1:’(s)|ds < p(sp —tn)
tn tn

for n € N, which contradicts (16). This contradiction was caused because it had been assumed
thatv, was positive. We therefore conclude that= 0.
The proof of Proposition 3 is then complete. O

As mentioned in Section 2, our modéf)is equivalent to system (1) by the transformation
r = —log(bP/a) andy = —log(dN/c). Hence, Theorem 1 is obtained from Propositions 2
and 3.

4. Numerical results

To give numerical results on the main theorem for systéi e first use a set of param-
eter valuess = 1,b = 0.1, c = 1, andd = 0.08. Choose

__B
14+t

h(t) B>0.
Thish(t) converges t ast — oo but is weakly integrally positive i > 0. Then, the interior
equilibrium is(12.5,10) and, from Theorem 1, it is globally asymptotically stableit> 0.
Figure 1 shows phase-plane plots of prey versus predatgr foil, where spiral convergence
is observed. Note that the initial data(i&(0), P(0)) = (20,1). If 5 = 0, we have periodic
orbits whose amplitudes depend on the initial population sizes (see dotted lines in Figs. 1 and 2
for the same initial data).
In [14], the authors discussed another modified systeni o) @s follows:

N’ = (a+ ch(t) — dh(t)N — bP)N,

(18)
P'=(—c¢+dN)P

to show that a unique interior equilibrium is globally asymptotically stable if the time-variation
h(t) is bounded and weakly integrally positive, which is the same type of result as Theorem 1
here. To run simulations for comparison of the result in [14] with Theorem 1, choose the same
parameters = 1, b = 0.1, ¢ = 1, andd = 0.08 and the same functioh(¢) = 1/(1 +¢) as
Figure 1. Using the same initial dat&’(0), P(0)) = (20, 1), we obtain spiral convergence to
the equilibrium in phase-plane plots of prey versus predator (see Fig. 2). As shown in Figs. 1
and 2, the former looks larger-scale than the latter in the solution convergence.
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Figure 1. Anillustration on the stabilizing effect bft) for system £) witha = 1,b = 0.1, ¢ = 1, andd = 0.08.
A solid line is plotted forh(t) = 1/(1 + t), while a dotted line is plotted fd¥(¢) = 0.
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Figure 2. An illustration on the stabilizing effect &{¢) for system (18) witha = 1, b = 0.1, ¢ = 1, and
d = 0.08. A solid line is plotted forh(t) = 1/(1 + t), while a dotted line is plotted fdi(¢) = 0.

Next, in order to illustrate how the weak integral positiveness(of is sufficient in Theo-
rem 1, we will show an example. Use another set of parameter valges = ¢ = d = 1 for
system £). In this case, the interior equilibrium {8, 1). Choosing a function which is not
weakly integrally positive, for example, givenag) = 1/(1 +t)?, we observe a solution that
evolves slowly to a periodic solution and the interior equilibrium is not globally asymptotically
stable (see Fig. 3 for the initial data/ (0), P(0)) = (1, 2)).

5. Concluding remarks

The neutral stability of £V') implies that the population state once changed by an external
factor cannot return to the original one. Also, the slightest change to/thg'q structure
typically results in qualitatively different behavior (see [2]). For these mathematical facts,
(LV) is calledstructurally unstableHowever, it is desirable that models describing periodical
population behavior observed in nature involve robust properties such that population states
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Figure 3. An illustration that an interior equilibrium is not globally asymptotically stablgf is not weakly
integrally positivea = b = ¢ = d = 1, andh(t) = 1/(1 + t). This positive solution converges to a periodic
orbit surrounding the interior equilibriuffi, 1).

strayed away from the orbit will return to the original orbit as time passes. In fact, predator-
prey systems in nature apparently persist stably (in spite of being affected by external factors).
This gap suggests that our insight is not enough to understand mechanisms acting in nature
which stabilize population dynamics. To resolve the gap, theoreticians and experimentalists
have made a long list of such processes (see, [1, 6, 7, 8, 9]).

Realistic models should take account of a time-variational component of the environment,
which is one of the processes that the Lotka-Volterra equations ignore. Our result of this paper
presents an example that population dynamics can be stabilized for one of simplest situations
in which only predators have a carrying capacity and predators are more effective to receive
time-variation of the environment than their prey. What we mention here is that the global
stabilization of the equilibrium is realized even for nonnegative time-variational functions that
make the limiting system structurally unstable. We also numerically suggested difference in
the solution convergence between systeifis dnd (18). We ran additional simulations for
the numerical work, with various combinations of parameters (data not shown). From these
results, it might be a qualitative structure present in a predator-prey pair that time-variation
acting on predator leads larger-scale convergence to equilibrium than time-variation acting on
prey.

As a simplest way for the growth of predator receiving an environmental time-variation,
we put the sameé(t) into per capita birth and mortality rates in systef).( Our result here
is greatly indebted to such a technical setting which makes the modified model still have a
unique interior equilibrium pointc/d, a/b). It is a more biologically practical scenario to
develop these considerations into a model that provides different time-variational functions on
per capita birth and mortality rates of the predator, which will be left for future work.
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