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Abstract Sufficient conditions are obtained for uniform stability and asymptotic stability

of the zero solution of two-dimensional quasi-linear systems under the assumption that the
zero solution of linear approximation is not always uniformly attractive. A class of quasi-
linear systems considered in this paper includes a planar system equivalent to the damped
pendulumx”’ + h(t)x + sinx = 0, whereh(t) is permitted to change sign. Some suitable
examples are included to illustrate the main results.
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1 Introduction and motive

The purpose of this paper is to give some sufficient conditions for the zero solution of a
class of two-dimensional quasi-linear systems to be uniformly stable and asymptotically
stable (for the definition, see Section 2).

Let xp(t) be any solution on & t < « of the nonlinear system

X' = F(t,x), (N)

where the prime denotel/dt, andF = (Fy,F), F is continuous int,x) € [0,%) x R? and
has continuous first-order partial derivatives with respect to the componentsPotting
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y = X—Xp(t), we can transform syster] into the quasi-linear system

y =A)y-+f(t,y), (Qu)

whereA(t) = Fx(t,Xo(t)), Fx(t,Xo(t)) is the continuous matrix whose element in itle
row andj th column isdF /9x;(t,Xo(t)) (i=1,2; j = 1,2). Under the assumption thiis a
continuous function irft,y) with the property

[f(t,y)ll
lyl—o [yl

-0 1.1)

uniformly int, so thaff(t,0) = 0, if the zero solution of QL) is uniformly stable or asymptot-
ically stable, then the same will be true of the solutig(t) of (N) (referto [2, pp. 160-161]).
For this reason, the stability of the zero solution of quasi-linear systems, su@iahéas
been studied by a considerable number of authors from old times. For example, the reader
is referred to the classical books [2-5, 8, 9, 16, 24].
If f(t,y) has the property (1.1), then it may be expected the zero solutid@l)fshows
the same stability behavior as the zero solution of the linear approximation

y =A(t)y. (L)

In the case that the zero solution is uniformly asymptotically stable for sydtgnthe
expectation is actually fulfilled, in other words, we may neglect the perturbed tey of

(QU) in the study of stability. The most fundamental theorem of this type is as follows (for
example, see Theorem 1.7 in [8, pp. 59—61] or Theorem 2.4 in [9, pp. 86—-87]):

Theorem A If the zero solution of(L) is uniformly asymptotically stablehen the zero
solution of (QL) is uniformly asymptotically stable

The concept of uniform asymptotic stability is a combination of the concepts of uniform
stability and uniform attractivity (we give the definitions in the first paragraph of Section 2).
The two “uniformity” for system () are essential roles in proving Theorem A. We cannot
drop the term “uniformly” in the statement of Theorem A. Indeed, by a rather intricate
analysis, Perron [21] has proved that even the asymptotic stability of the zero solutign of (
does not imply that the zero solution @I is asymptotically stable in the case that

A(t):(_a _ 0 ) 1.2)
0 sinlogl+t)+coslogl+t)—2a

0
ft,y) = (x2>'

For detailed arguments, see the classical books [1, pp. 42-43], [2, pp. 169-170], [5, p. 71],
[27, pp. 92-93], [29, pp. 315-317], etc.

To be precise, in Perron’s example, the zero solution is asymptotically stable for system
(L), but it is neither uniformly stable nor uniformly attractive. This means that the matrix
A(t) given by (1.2) is not suitable at all for the zero solution QL] to be uniformly stable
or asymptotically stable, namely, the qualityA&ft) is too poor for uniformly stability or
asymptotic stability of the zero solution d[).

where 1< 2a< 1+¢e ™ and
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The following question then arises: what happerif has a better quality? What kind
of condition onA(t) will guarantee uniform stability and asymptotic stability of the zero
solution of QL) under the assumption that the zero solutionLgfi§¢ uniformly stable and
asymptotically stable?

To answer our question mentioned above,we develop an idea of Sugie and Onitsuka [25].
They have considered a system of the form

X = —e(t)x+ f(t)gp(y),
Y =-90)@((x) —h)y,

wherep>1, 1/p+1/p* =1, @(2) d:‘3f|z|q‘22 (g=porq=q; et), f(t), gt) andh(t)

are continuous fot > 0, and defined the crucial weakly integrally positive functip(t)
(playing the same role of the functiai(t) in the present paper). Systel() is referred to

as a half-linear system. In the special case that?, systemld L) becomes the linear system
(L). However, systemHL) does not correspond to the quasi-linear syst@iy) {n any case.
Hence, we cannot apply results in [25] to systéph. In [25], the functiony(t) is assumed

to be nonnegative fdr> 0. We would like to be able to deal with a possibly sign-changing
function g (t). For this purpose, we improve the assumptionydf) to assumptions which
are stated in the term of the positive peut(t) and the negative pagi_(t) of g(t).

In Section 2, we prove the main theorem with some lemmas. To explain an advantage of
the main result, we consider a damped pendulum equation and apply our main result to the
equation in Section 3. In addition, we compare a result obtained from our main theorem with
results of Hatvani [10]. For illustration of our main result, we take some concrete examples
and draw positive orbits of examples in Section 4.

(HL)

2 Uniform stability and asymptotic stability

To begin with, we give some definitions. The zero solution QL) is said to bestable
if for any € > 0 and anytg > O, there exists &(¢,tp) > 0 such that||lyo|| < o implies
ly(t;to,Yo)|| < € for all t > to. The zero solution isiniformly stableif it is stable andd
can be chosen independenttef The zero solution is said to Bsymptotically stabléf

it is stable and there existsd@(to) > 0 such that]yg|| < & implies ||y(t;to,yo)|| — O as
t — c0. The zero solution isniformly attractiveif &y in the definition of asymptotic stability
can be chosen independentt@fand for everyn > 0 there is @l (n) > 0 such thaty > 0
and ||yo|| < & imply ||y(t;to,Yo)|| < n if t >to+T(n). The zero solution igniformly
asymptotically stablé it is uniformly stable and is uniformly attractive.

Consider a system of differential equations of the form

X =f(b)y,
Y =—9(t)(x—=y(x)) —h(t)y,

whereh(t) is piecewise continuous df, »), and f (t) andg(t) are non-diminishing piece-
wise continuous ofD,«); y(X) is continuous in the neighborhoodx#f= 0. We say thaip(t)

is piecewise continuousn [0, «) if there exists a sequendg, } such thatp(t) is continuous

on each of the open subintervéls, tn.1), and we say thap(t) is non-diminishing piecewise
continuouson [0, ») if it is piecewise continuous and each length of the open subintervals
(tn,th+1) is not less than somé> 0. We assume that

f(t)gt)>0 fort>0 and Iirﬂoionff(t)g(t) >0 (2.1)

(E)
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and
lim Iyl =0. (2.2)
-0 [X|

Note that the coefficient§(t), g(t) andh(t) are allowed to change sign and the nonlinear
function y(x) is not assumed to be the signum conditignix) > O if X # 0. A typical case
of (E) is the system

X =y,

y = —sinx—h(t)y.

In this casef (t) = g(t) = 1 andy(x) = x—sinx.
In addition, we assume thgft)/ f (t) is differentiable fort > 0. Let

_ LONEUAY
w0 =200+ g ()
and define
o (t) =max{0, (1)} and _(t) = max{0,~y(t)}.

We here introduce concepts that play major roles in this paper. A nonnegative fupction
is said to bentegrally positiveif

[ ovdi=e

o

for every setl = U [Tn, On] such thatr, + w < gp < Tny1 for somew > O (refer to [6, 10—

n=1
14,19, 28]). The integral positivity is rather stringent restriction than

t
tI|_r>130/ @(s)ds= co.

If, in addition, the set satisfiesty, 1 < gn + Q for someQ > 0, the functiong is said to
beweakly integrally positiveFor example, 1(1+t) and sirft /(1+t) are weakly integrally
positive, but they are not integrally positive (refer to [12, 25, 26]).

Remark 2.1The notions given in Hatvani [12] are more general than the above-mentioned
integral positivity and weak integral positivity. Roughly speaking, for two nonnegative func-
tionsa(t) andb(t), if certain assumptions are satisfied, theeis called integrally positive

with respect td or weakly integrally positive with respect o A function ¢ is weakly in-
tegrally positive (in the sense described above) if and onyisf weakly integrally positive

with respect tdo = 1 (in the sense of [12]).

Our main result is stated as follows:

Theorem 2.1 Suppose that conditiorf2.1)and(2.2) hold. Suppose also that(f), g(t) and
h(t) are bounded for t 0. If g(t) has the properties

Y4 (t) is weakly integrally positive (2.3)

/O "W (t)dt < oo, (2.4)

then the zero solution (E) is uniformly stable and asymptotically stable
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Before giving the proof of Theorem 2.1, we prepare some lemmas.

Lemma 2.2 Suppose that conditiof2.4) holds Let \t) be nonnegative and piecewise con-
tinuously differentiable offtp, «) for someg > 0. If

V() <@ (tvt) for t >to,

then V(t) is absolutely integrable

Proof Integrating the both sides &f(t) < _(t)v(t) fromtg to 0, we have

v <uto)exp( [ v Oct).
to
and therefore,
v <utoyexs( [ v 0dt)y (0.
0
Since the right-hand side of this inequality is nonnegative foty, we get

V.0 <toyexs( [ v Oct) 0.

Integrating both sides fromg to «, we obtain

t:0\/+ (t)dt < v(to) exp( /:LIL (t)dt) /t:olpf (t)dt.

Hence, by (2.4), we have
Vv (t)dt < co.
to

On the other hand, sina&t) > 0 fort > to, we get
“V (t)dt < v(to) + / V, (t)dt < o.
Jtg Jig

We therefore conclude that
[ Vot= [0 0+v- o)<,
to to
as required. This completes the proof of Lemma 2.2. a

Define «
ro9= [ .

Then, we have the following lemma.
Lemma 2.3 If y(x) satisfies conditiof2.2),then
XY= 3% T (%) >0

for |x| sufficiently smal(the equalities hold if and only if x 0).
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Proof From (2.2) it follows that for ang > 0, there exists @(¢) > 0 such that
—elx] < y(x) < elx| for |x| <p. (2.5)

Hence, we obtain . .
—Ex2 < (x)< Ex2 for |x| < p. (2.6)

We may assume without loss of generality that 1 andp < 2(1—¢€)/(1+¢€). Then, we
have

%xz—l'(x) >0 for |x < p.

If0 <x< p, then by (2.5) and (2.6), we get

1 1 £ 1
X—y(x) — §x2+l'(x) > X— EX— Exz— Ex2 > éx{Z(l— g)—(1+e)p}>0.
Similarly, if —p <x <0, then
1

1 1
X— y(x)—i—ixz—l'(x) <X—ex+ R+ i <

Xt éx{2(1—£)—(1—|—£)p} <o0.

We therefore conclude that
x—y(x)| > %xz—l'(x) for |x| < p.
Thus, the proof of Lemma 2.3 is complete. ad
We are now ready to prove the main result.

Proof of Theorem 2.1We will divide the proof into two parts: (&) uniform stability of the
zero solution; (b) asymptotic stability of the zero solution. The proof of part(a) is carried
out by means of a classical Lyapunov’s direct method (as to the direct method of Lyapunov,
for example, see [8, 9, 15, 20, 23, 30]). The significant thing is to demonstrate part (b) rather
than part (a).

Part (a): Define

V(t,x,y) = %xz— I (x)+ %(tt))yz

Ut xy) =V(txy) exp(— / tws)ds)

and

on D. From (2.1) and the boundednessfdf) andg(t), we can choose numbeks> 0 and
K > 0 such that
f(t)

(
kgng for t > 0. 2.7)

LetL :/ Y_(t)dt (because of (2.4), such arexists). Then, we have
0

(%XZ —r )+ IQ(Y2> e <V(txyet <U(txy)

VXY < R T 0+ 5
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DifferentiateV (t, x,y) along any solution offf) to obtain

Vi) (t,xy) = _%w(t)%yz = %wi(t)%y{

By Lemma 2.3, we get .
Vie) (txy) < Y-tV (L, xy)
for (t,x,y) € D, |x| sufficiently small. Hence, we have

. . t
U (txy) = (Ve (t.6y) — WOV (X))} exp(f / w_<s>ds) <0

for (t,x,y) € D, |x| sufficiently small. ThuslJ (t,x,y) is positive definite and decrescent, and
U(E) (t,x,y) is nonpositive. We therefore conclude that the zero solutiof pf uniformly
stable by using a Lyapunov-type theorem due to Persidski [22] (refer also to Theorem 1.7 in
[23, p. 14] or to Theorem 8.2 in [30, p. 32]).

Part (b): Recall that (2.2) yields (2.5). It follows from part (a) that for any 0, there
exists ad(p(g)) > 0 such thatg > 0 and||yo|| < o imply

Iy(t;to,yo)ll <p for t >to, (2.8)

wherep(¢) is the number given in (2.5). For brevity's sake, we w(ité),y(t)) = y(t;to, o)
and define
f(t)

u(t) = myz(t) and v(t) =V(t,x(t),y(t)).
Then, we have
v(t) = %xz(t) — I (x(t)) +u(t) > %xz(t) — I (x(t))+ gyz(t) (2.9)
and
V() = —@(t)u(t) < g (t)v(t) (2.10)

for t > to. As proved in part(a)U’(t,x(t),y(t)) < 0 for t > to. Hence,U (t,x(t),y(t)) is
nonincreasing fot > to, and therefore, it has a nonnegative limiting valge From (2.4),
we see that(t) has a limiting valuei = uge- > 0. If v = 0, then by (2.9) and Lemma 2.3,
the solution(x(t), y(t)) tends to(0, 0) ast — . This completes the proof of part (b) (we may
choosed as the numbedy in the definition of asymptotic stability). Hereafter, we consider
only the case in whickgp > 0.

From (2.7) and (2.8), we see th#t) is bounded fot > tg. Henceu(t) has the inferior
limit and the superior limit. First, we will show that the inferior limit oft) is zero, and we
will then show that the superior limit af(t) is also zero.

Suppose that limirf,.u(t) > 0. Then, there exist ag; > 0 and aT; > tp such that
u(t) > & fort > T;. From (2.10) and Lemma 2.2 it follows that

0> / V/(t)[dt :/ \w®)|u(t)dt > / e (O)u(t)dt > el/ W, (t)dt.
to to to T
This contradicts (2.3). Thus, we see that liminfu(t) = 0.
Suppose that limsyp,, u(t) > 0. From (2.1) and the boundednesg(tf) andh(t), we

can choose numbegs> 0 andh > 0 such that

lg(t))>g and |h(t)|<h (2.11)
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fort > 0. Since the limiting valugg of v(t) is positive, there exists® > to such that

3
0< V—ZO <v(t) < % for t > Tp. (2.12)

LetA =limsup_,,u(t), and lets; > 0 be so small that, < A /2 and

ﬁ\/zliz<g(v—20782>. (2.13)

Noticing that liminf_,, u(t) = 0 < limsup_,,, u(t), we can find two divergent sequences
{tn} and{on} with T, < Ty < Oy < Tns+1 such thau(t,) = u(on) = &,

ut) > & for T, <t < op, (2.14)
0<ut) <& for gp <t < Tni. (2.15)
From (2.11) and the second equation in syst&) e obtain
Y ®)] > |g) (x(t) — y(x(t)))| ~ Ih(t)y(t)] > glx(t) - y(x(t)] ~ Rly()|

fort > to. It follows from (2.8) thatx(t)| < p fort > to. Hence, by Lemma 2.3, we have

X(t) = y(x(t))| > %Xz(t) =)

fort > to. By (2.7), (2.9), (2.12) and (2.15), we get

ly(t)] < \/%s \/@7 (2.16)
1 2

S0 =T (x(t) = v(t) — u(t) = ‘LZO —e

for o <t < 1hy1. We therefore conclude that

IX(t)fv(x(t))lzv—;fs;z and |)/(t)\29(%752>7ﬁ\/zl‘52d:ef|\/|

for on <t < 1y41. From (2.13), we see thM is a positive number. Note thit is indepen-
dent ofn. Sincex(t) is continuous, we may assume without loss of generality that

X(t) —y(x(t)) > V—zo— g for op <t <thj1. (2.17)

Recall thag(t) is assumed to be non-diminishing piecewise continuoy8,or). Hence,
there are two cases to consider:g{)) is continuous ofion, Tn+1]; (i) g(t) is discontinuous
oN [On, Th+1)- Let N be the number of discontinuous pointsgdf) on (on, Tnt1) and letpy,
Us, ..., Uns1 be the discontinuous points withy < o < 3 < --- < Uns1 < Tpe1. Write
M1 = On andpni2 = Tnr1. Of course, in case (iN = 0 and(p1, H2) = (On, Tnt+1)- In case (i),
g(t) is continuous fot € (i, Ki+1) withi=12,... N+ 1. In any case, because of (2.11),
we see thag(t) > g or g(t) < —g on each subintervaly;, giy1) with i =1,2,...,N+41.
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If there exists & < {1,2,...,N+1} such thatg(t) > g on (yj, Kj+1), then by (2.16) and
(2.17), we have

y(t) (1) (x(t) — y(X(t))) — h(t)y(t)

Vo

(E - 82) +1h®)[ly(®)]

< —g(%o —82) +E\/Z|i2: -M

for pj <t < pj11. Integrate the above inequality from to uj. 4 to obtain

=-9
<-9

Iy(Hj+2)] + [y(pj)| >

/ ‘j"“ﬂt)dt\ > (31— ).

Similarly, if there exists g € {1,2,...,N+ 1} such thag(t) < —g on (uj, yj+1), then by
(2.16) and (2.17), we get

y(t)>M for pgj <t < pj,a,
and thereforely(uj1)| + |y(Uj)| = M(Uj+1— Hj). We therefore conclude that

V(K1) + y(ki)| = M (i1 — pi)

foralli e {1,2,...,N+1}. Adding up these inequalities and using (2.8), we obtain

N-+1
2(N+1)p > |y(0n)|+2 Zz V(R + [y(Tasa)|

N+1
>M Zl(lJiH— i) = M(Tns1— 0n),
is

namely,

2(N+1)p
M

By means of Lemma 2.2 with (2.10) and (2.14), we have

Tni1 < Opn+

o> / "V (b)[dt > /:M)umdt > e [t

[

wherel = | [, on]. Consequently,
n=1
/ W, (t)dt < oo. (2.18)
|

Suppose that there exists art> 0 such thaoy, — 1, > w for eachn € N. As proved above,
Tnt1— On <2(N+1)p/M % for anyn € N. Hence, from (2.3), we see that

[ at =
|
This contradicts (2.18). Hence, there is no suck 0, and therefore,

liminf(g,—1h) =0. (2.19)

N—o00
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Since liminf_, u(t) = 0 and limsup_,u(t) = A > 0, we can select two divergent se-
quencegty} and{sy} with T, < tn < s < tp41 such thau(t,) = A /2, u(s,) = 3A /4 and
A 3A
5 <u(t) < vy for th <t < s
Since& < A/2, we may consider thdtn,sy] C [Th, 0n] for n € N (if necessary, we can
change{tn} and{on} into suitable subsequences{af,} and{on}). Hence, by (2.19), we
have
“nmJQf (sh—tn) =0. (2.20)
From the boundedness bft), we can choose a numbér> 0 such thatf (t)| < f fort > 0.
Hence, together with (2.5), (2.8) and (2.9), we get

U (t) = V(1) — Oy (x(t) — y(x(1)))
< VO + Fly@ 1 (Ix(®)] + [ v(x(1)])
< V)| +Tp%(1+¢)

fort > to. Integrating this inequality fror, to s,, we obtain

"Sn
= u(s) ~utt) < [V Oldt+Tp?+e) (st
for eachn € N. This contradicts (2.20). Thus, we conclude that 0, and therefore,
limsup_,, u(t) =0.
Since liminf_. u(t) = limsup_,, u(t) = 0, it follows that lim_,. u(t) = 0. Hence, there
exists alz > tg such that
ult) <& fort>Ts.

As in the same argument of the preceding paragraph, we conclude that
[x(t) — y(x(t))| > V—zo —g fort>Ts.
We may assume without loss of generality that
X(t) — y(x(t)) > V—ZO —& fort>Ts (2.21)

Sinceg(t) is non-diminishing piecewise continuous [fh), there exists a greatest lower
bound of lengths of subintervals on whigft) is continuous. Letl be the greatest lower
bound. We may consider that> 2/d, whereh is the number given in (2.11). Chooge> 0
with g

e l(® g). (2.22)

From (2.7) and the fact that lim. u(t) = 0 it turns out thay(t) also tends to zero ds— c.
Hence, there exists & > Ts such thaty(t)| < &3 for t > T4. By (2.11) again, we can find
an interval[a,b] C [T4, ) such thag(t) > g or g(t) < —g for a<t < b. In the former, by
(2.11) and (2.21), we have a a

=9t (x(t) +1h(®)[ly(®)]
0

9(%* )+h83< 2(3-2)

| /\
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for a <t <b. Hence, we obtain
b
262> (o) -yta)l = | [ V(0

:/ab\)/(t)|dt> %(V—zof&)(bfa) > %(V—zofsa)d.

Sinceh > 2/d, it follows thates > g(vo/2— &) /(2h). This contradicts (2.22). We can carry
out the latter in the same manner as the former and we then reach a contradiction. Thus,
the case ofip > 0 does not happen. We therefore conclude that the zero solutid) o (
asymptotically stable.

The proof of Theorem 2.1 is now complete. a

When we apply a Lyapunov-type theorem on asymptotic stability to a concrete problem,
we have to find a Lyapunov function whose total derivative is negative definite. As such a
theorem, we can quote the following result given by Haddock [7] (his original result can be
applied ton-dimensional nonlinear systems).

Theorem B Suppose that there exist positive numbers A and M suchjB{ax)|| < M for

all (t,x) € [0,) x S(A), S(A) = {x: ||x|| < A}. Suppose also that there exists a differentiable
function V: [0,0) x G — [0,»), G is an open subset @2, which satisfies the following
conditions

() V(t,0)=0;

(i) V(t,x) >0 forall (t,x) € [0,0) x S(A);
(i) the total derivative'/(N)(t,x) is negative definite
Then the zero solution dN) is asymptotically stable

Haddock [7] also showed that under the assumptions of TheorénitB) is positive
definite. Hence, Theorem B is essentially the same as Theorem 4 of Maratschkow [17]
though it is a little easier to use (see also [18]).

In general, it is very difficult to compose a Lyapunov function satisfying the assump-
tion (ii) of Theorem B. This is a weak point of Theorem B. Since the Lyapunov functions
V(t,xy) andU(t,x,y) given in the proof of Theorem 2.1 are energy functions for system
(E), it is safe to say that they are appropriate. However, the total deriva}r(nga(sl;,x) and
U<N)(t,x) are not negative definite. Hence, we cannot prove Theorem 2.1 by means of The-
orem B.

The linear approximation o) is system ) with

A(t)—( ° fm) (2.23)
~\—gt) —h)) '

Needless to say, Theorem 2.1 can be applied to this linear systéi),If(t) andh(t) are
bounded fot > 0 and they satisfy conditions (2.1), (2.2) and (2.3), then the zero solution of
(L) with (2.23) is uniformly stable and asymptotically stable, in other words, the m#(rjx
given by (2.23) has a better quality. Theorem 2.1 shows th#gt jfhas such a good quality,
then the zero solution of the quasi-linear system

/_( 0 f(t)) +< 0 >
"\ —hwy) " ety
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namely systemK), is uniformly stable and asymptotically stable for arbitrary nonlinear
functiony(x) satisfying condition (2.1). This is an answer to our question raised in Section 1.

Although we assume the boundednesd @), g(t) andh(t) in Theorem 2.1, we can
remove the assumption by changing variables

T=%F def/ V(9)g(s)ds and z= %y
We assume that
f(t)gt) >0 fort>0 and tﬂr;gﬁ?(t) = oo, (2.1

instead of condition (2.1). Thenr/dt = 1/ f(t)g(t) and there exists the inverse function
F (1) satisfying limy_..# (1) = . By a straightforwards calculation, we can trans-
form system E) into the system

d ~

(E)

where =d/dr and

i W(F (1)
"= 2T e )

For the sake of convenience, let

Thenh(t) = Y(t)/2. If y(x) satisfies condition (2.2), art#(t) is bounded fot > 0 and has
the properties:

W, (t) is weakly integrally positive; (2.3)

/(; W (t)dt < oo, 2.4y

then we can apply Theorem 2.1 to syst(ﬁrj. Hence, the zero solution Qﬁ) is uniformly
stable and asymptotically stable. If, in additigit)/ f (t) is bounded fot > 0, then the zero
solution of E) is uniformly stable and asymptotically stable.

In summary, we have the following result.

Theorem 2.4 Suppose that condition®.1)’, (2.2), (2.3)' and (2.4)". Suppose also that
g(t)/f(t) and¥(t) are bounded for & 0. Then the zero solution dE) is uniformly stable
and asymptotically stable

Remark 2.2If at least one off (t), g(t) andh(t) is unbounded, then Theorem 2.1 and Theo-
rem B are inapplicable for systerg), On the other hand, Theorem 2.4 can be applied even
to that case.
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3 Damped pendulum

Let us consider a pendulum with time varying friction described by the equation
X"+ h(t)X +sinx=0, (P)
whereh(t) is continuous fot > 0. Then, we can rewrite equatioR)(as the system

o 0 1 0 a1
Y _<1h(t))y+ (xsinx) G-

with y = t(x,y). System (3.1) is of typedL). In the special case thaft) = 2/(1+t), we
can find a fundamental matrix for the linear approximation

, 0 1 (3.2)
A —h(t) Y '
A fundamental matrix for system (3.2) wittft) = 2/(1+t) is given by
sint cost
B 1+t 1+t
P(t) = cost sint sint cost

1+t (1+t)2 1+t  (1+t)2

From considerations of the fundamental matrix, we see that the zero solution of (3.2) with
h(t) = 2/(1+t1) is uniformly stable and asymptotically stable, but it is not uniformly attrac-
tive; accordingly, it is not uniformly asymptotically stable. Hence, in this case, Theorem A is
inapplicable to system (3.2), and therefore, we cannot decide whether or not the equilibrium
x =X = 0 of (P) is uniformly stable or asymptotically stable.

However, it is true that the equilibrium oP) with h(t) = 2/(1+t) is asymptotically
stable. In fact, by means of Hatvani’s result [10, Corollary 3.1], we can verify that )if
is nonnegative and weakly integrally positive, then the equilibriunPdig asymptotically
stable (see also [11]).

Theorem 2.1 is also useful for verifying the fact above. Comparing system (3.1) with
systemE), we see thaf (t) = g(t) = 1 andy(x) = x—sinx. Hence, conditions (2.1) and (2.2)
are satisfied. IR(t) = 2/(1+t), then itis easy to show thdt, (t) =4/(1+t) andy_(t) =0;
accordingly,y(t) has the properties (2.3) and (2.4). Thus, it follows from Theorem 2.1
that the zero solution of (3.1) is uniformly stable and asymptotically stable. Of course, the
equilibrium of P) is uniformly stable and asymptotically stable.

In the above results [10, 11], the frictidift) is assumed to be nonnegative for 0.
Is the assumption essential to show the asymptotic stability of the equilibriuR) ®fThe
answer is in the negative. There are cases in which the equilibriur®)a (uniformly
stable and asymptotically stable even if there exists a seqyérjcsuch thah(t,) < 0. For
example, consider system (3.1) with

sift  cogt
hit)=—— .

1+t (1+4t)2
Then, it is easy to verify thaty(t) = 2h(t) and @(t) has the properties (2.3) and (2.4).
Hence, by Theorem 2.1, the zero solution is uniformly stable and asymptotically stable,
and therefore, the equilibrium oPJ is uniformly stable and asymptotically stable. In this
exampleh(t) is negative at = nritfor n € N. Hence_(t) = 2h_(t) £ 0.

As mentioned above, Theorem 2.1 has a big advantage of being applicable to the case

thath(t) is not necessarily positive for> 0.
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4 Example and simulation

To illustrate Theorems 2.1 and 2.2, we give two examples: the coefficfétitsg(t) and
h(t) of (E) are piecewise continuous in the first example, &ftJ andg(t) are piecewise
continuous buh(t) is continuous in the second example.

The result of Sugie and Onitsuka [25] quoted in Section 1 cannot be applied to the
quasi-linear systenH) unlessy(x) # 0 andf (t), g(t), h(t) are continuous for > 0. Hence,
in Examples 4.1 and 4.2 below, we cannot judge whether the zero solution is uniformly
stable and asymptotically stable by using the result in [25].

Letn e N and letr(t) be an on-off function defined by

0 if 2(n—1)n§t<2nn—%,
n(t) = 1

1 if 2nm— - <t<2nm
Then we have the following example.
Example 4.1Consider systenH) with

1. .
1+§smt if 2(n—1)m<t< (2n-1)m,
f(t) =

-1- %sint if (2n—1)m<t<2nm,

2 —sint if 2(n—1)m<t< (2n-1)m,
g(t)={

—24+sint  if 2n—1)m<t < 2nm,

h(t) — 1-2n(t) 2cosrt
1+t 3+cogmt
Then the zero solution is uniformly stable and asymptotically stable.

and y(x) =Xx—sinx.

Note thath(t) is piecewise continuous, arfdt) andg(t) are non-diminishing piecewise
continuous withd = 1. Itis clear that conditions (2.1) and (2.2) are satisfied, &y g(t)
andh(t) are bounded for > 0. Since

w(t) = 2h(t) + -V (9“) ) _2a-2n()

g(t) \ f(t) 1+t
we see that o1 )
v =220 ang = 210

Hence,y; (t) is weakly integrally positive and

00

A a 2 1
_(t)dt e — .
./o Y- <n;2nn2+n—l<;rm2<°°

n

Thus, by means of Theorem 2.1, we conclude that the zero solution is uniformly stable and
asymptotically stable.
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—1

Fig. 1 A positive orbit of Example 4.1.

In Figure 1, we draw a positive orbit of Example 4.1. The starting pgins (—0.8,0)
and the initial timeg is 0. The positive orbit seems to consist of two groups of circular arcs
whose central angles are obtuse: arcs that are longer horizontally than vertically and arcs
that are longer vertically than horizontally. The positive orbit alternately generates the two
arc groups and finally approaches the origin

In the above exampla)(t) is piecewise continuous for> 0. As shown in the following
example, however, it not always necessaryyigr) to be discontinuous.

Example 4.2Consider systenmH) with
2+t if 2(n—1) <t<2n-1,
—2—-t f2n-1<t<2n,
1+t if 2(n—1)<t<2n-1,
—1-t if2n-1<t<2n,
h(t) = \/iij: and y(x) =x—sinx.
Then the zero solution is uniformly stable and asymptotically stable.

Sincef(t), g(t) are unbounded, Theorem 2.1 cannot be applied to Example 4.2. We use
Theorem 2.2 in substitution for Theorem 2.1. From

f()gt) =/ (1+1)(2+1t) > V2

fort > 0, it follows that

T=F(t)= #v(lm(ut) félog(2t+3+ 2\/(1+t)(2+t)),
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which tends ta» ast — «. Hence, conditiorf2.1)’ holds. It is easy to verify that condition
(2.2) is satisfied and(t)/f (t) is bounded fot > 0. Since

[2+t 1
W =275+ (1+)(2+1)

pu o2 1
fot) 1+t {(1+t)(2+1)}%2

in this example. Hencél, (t) = W(t) and¥_(t) = O; accordingly, (t) is integrally posi-
tive and

and

W(t) =

'/OOOL.U,(t)dt:O.

We therefore conclude that the zero solution is uniformly stable and asymptotically stable.

0.5

Fig. 2 A positive orbit of Example 4.2.

Figure 2 indicates a positive orbit of Example 4.2. The starting pajris (0,1) and
the initial timetp is 0. The positive orbit moves round the originin a clockwise and a
counter-clockwise direction by turns, becadge) andh(t) change their sign. The positive
orbit approaches the origihas it goes up and down.
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