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Abstract Sufficient conditions are obtained for uniform stability and asymptotic stability
of the zero solution of two-dimensional quasi-linear systems under the assumption that the
zero solution of linear approximation is not always uniformly attractive. A class of quasi-
linear systems considered in this paper includes a planar system equivalent to the damped
pendulumx′′ + h(t)x′ + sinx = 0, whereh(t) is permitted to change sign. Some suitable
examples are included to illustrate the main results.
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1 Introduction and motive

The purpose of this paper is to give some sufficient conditions for the zero solution of a
class of two-dimensional quasi-linear systems to be uniformly stable and asymptotically
stable (for the definition, see Section 2).

Let x0(t) be any solution on 0≤ t < ∞ of the nonlinear system

x′ = F(t,x), (N)

where the prime denotesd/dt, andF = (F1,F2), F is continuous in(t,x) ∈ [0,∞)×R2 and
has continuous first-order partial derivatives with respect to the components ofx. Putting
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y = x−x0(t), we can transform system (N) into the quasi-linear system

y′ = A(t)y+ f(t,y), (QL)

whereA(t) = Fx(t,x0(t)), Fx(t,x0(t)) is the continuous matrix whose element in thei th
row and j th column is∂Fi/∂x j(t,x0(t)) (i = 1,2; j = 1,2). Under the assumption thatf is a
continuous function in(t,y) with the property

lim
∥y∥→0

∥f(t,y)∥
∥y∥

= 0 (1.1)

uniformly in t, so thatf(t,0)≡ 0, if the zero solution of (QL) is uniformly stable or asymptot-
ically stable, then the same will be true of the solutionx0(t) of (N) (refer to [2, pp. 160–161]).
For this reason, the stability of the zero solution of quasi-linear systems, such as (QL), has
been studied by a considerable number of authors from old times. For example, the reader
is referred to the classical books [2–5, 8, 9, 16, 24].

If f(t,y) has the property (1.1), then it may be expected the zero solution of (QL) shows
the same stability behavior as the zero solution of the linear approximation

y′ = A(t)y. (L)

In the case that the zero solution is uniformly asymptotically stable for system (L), the
expectation is actually fulfilled, in other words, we may neglect the perturbed termf(t,y) of
(QL) in the study of stability. The most fundamental theorem of this type is as follows (for
example, see Theorem 1.7 in [8, pp. 59–61] or Theorem 2.4 in [9, pp. 86–87]):

Theorem A If the zero solution of(L) is uniformly asymptotically stable, then the zero
solution of (QL) is uniformly asymptotically stable.

The concept of uniform asymptotic stability is a combination of the concepts of uniform
stability and uniform attractivity (we give the definitions in the first paragraph of Section 2).
The two “uniformity” for system (L) are essential roles in proving Theorem A. We cannot
drop the term “uniformly” in the statement of Theorem A. Indeed, by a rather intricate
analysis, Perron [21] has proved that even the asymptotic stability of the zero solution of (L)
does not imply that the zero solution of (QL) is asymptotically stable in the case that

A(t) =

(
−a 0

0 sin log(1+ t)+coslog(1+ t)−2a

)
, (1.2)

where 1< 2a< 1+e−π , and

f(t,y) =

(
0

x2

)
.

For detailed arguments, see the classical books [1, pp. 42–43], [2, pp. 169–170], [5, p. 71],
[27, pp. 92–93], [29, pp. 315–317], etc.

To be precise, in Perron’s example, the zero solution is asymptotically stable for system
(L), but it is neither uniformly stable nor uniformly attractive. This means that the matrix
A(t) given by (1.2) is not suitable at all for the zero solution of (QL) to be uniformly stable
or asymptotically stable, namely, the quality ofA(t) is too poor for uniformly stability or
asymptotic stability of the zero solution of (QL).
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The following question then arises: what happens ifA(t) has a better quality? What kind
of condition onA(t) will guarantee uniform stability and asymptotic stability of the zero
solution of (QL) under the assumption that the zero solution of (L) is uniformly stable and
asymptotically stable?

To answer our question mentioned above,we develop an idea of Sugie and Onitsuka [25].
They have considered a system of the form

x′ =−e(t)x+ f (t)φp∗(y),

y′ =−g(t)φp(x)−h(t)y,
(HL)

wherep > 1, 1/p+1/p∗ = 1, φq(z)
def
= |z|q−2z (q = p or q = q∗); e(t), f (t), g(t) andh(t)

are continuous fort ≥ 0, and defined the crucial weakly integrally positive functionψ(t)
(playing the same role of the functionψ(t) in the present paper). System (HL) is referred to
as a half-linear system. In the special case thatp= 2, system (HL) becomes the linear system
(L). However, system (HL) does not correspond to the quasi-linear system (QL) in any case.
Hence, we cannot apply results in [25] to system (QL). In [25], the functionψ(t) is assumed
to be nonnegative fort ≥ 0. We would like to be able to deal with a possibly sign-changing
functionψ(t). For this purpose, we improve the assumption ofψ(t) to assumptions which
are stated in the term of the positive partψ+(t) and the negative partψ−(t) of ψ(t).

In Section 2, we prove the main theorem with some lemmas. To explain an advantage of
the main result, we consider a damped pendulum equation and apply our main result to the
equation in Section 3. In addition, we compare a result obtained from our main theorem with
results of Hatvani [10]. For illustration of our main result, we take some concrete examples
and draw positive orbits of examples in Section 4.

2 Uniform stability and asymptotic stability

To begin with, we give some definitions. The zero solution of (QL) is said to bestable,
if for any ε > 0 and anyt0 ≥ 0, there exists aδ (ε, t0) > 0 such that∥y0∥ < δ implies
∥y(t; t0,y0)∥ < ε for all t ≥ t0. The zero solution isuniformly stableif it is stable andδ
can be chosen independent oft0. The zero solution is said to beasymptotically stableif
it is stable and there exists aδ0(t0) > 0 such that∥y0∥ < δ0 implies ∥y(t; t0,y0)∥ → 0 as
t → ∞. The zero solution isuniformly attractiveif δ0 in the definition of asymptotic stability
can be chosen independent oft0, and for everyη > 0 there is aT(η) > 0 such thatt0 ≥ 0
and ∥y0∥ < δ0 imply ∥y(t; t0,y0)∥ < η if t ≥ t0 + T(η). The zero solution isuniformly
asymptotically stableif it is uniformly stable and is uniformly attractive.

Consider a system of differential equations of the form

x′ = f (t)y,

y′ =−g(t)
(
x− γ(x)

)
−h(t)y,

(E)

whereh(t) is piecewise continuous on[0,∞), and f (t) andg(t) are non-diminishing piece-
wise continuous on[0,∞); γ(x) is continuous in the neighborhood ofx= 0. We say thatφ(t)
is piecewise continuouson [0,∞) if there exists a sequence{tn} such thatφ(t) is continuous
on each of the open subintervals(tn, tn+1), and we say thatφ(t) is non-diminishing piecewise
continuouson [0,∞) if it is piecewise continuous and each length of the open subintervals
(tn, tn+1) is not less than somed > 0. We assume that

f (t)g(t)> 0 for t ≥ 0 and liminf
t→∞

f (t)g(t)> 0 (2.1)
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and

lim
|x|→0

|γ(x)|
|x|

= 0. (2.2)

Note that the coefficientsf (t), g(t) andh(t) are allowed to change sign and the nonlinear
functionγ(x) is not assumed to be the signum conditionxγ(x) > 0 if x ̸= 0. A typical case
of (E) is the system

x′ = y,

y′ =− sinx−h(t)y.

In this case,f (t) = g(t) = 1 andγ(x) = x−sinx.
In addition, we assume thatg(t)/ f (t) is differentiable fort ≥ 0. Let

ψ(t) = 2h(t)+
f (t)
g(t)

(
g(t)
f (t)

)′

and define
ψ+(t) = max{0,ψ(t)} and ψ−(t) = max{0,−ψ(t)}.

We here introduce concepts that play major roles in this paper. A nonnegative functionφ
is said to beintegrally positiveif ∫

I
φ(t)dt = ∞

for every setI =
∞∪

n=1

[τn,σn] such thatτn+ω ≤ σn < τn+1 for someω > 0 (refer to [6, 10–

14, 19, 28]). The integral positivity is rather stringent restriction than

lim
t→∞

∫ t
φ(s)ds= ∞.

If, in addition, the setI satisfiesτn+1 ≤ σn+Ω for someΩ > 0, the functionφ is said to
beweakly integrally positive. For example, 1/(1+ t) and sin2 t/(1+ t) are weakly integrally
positive, but they are not integrally positive (refer to [12, 25, 26]).

Remark 2.1The notions given in Hatvani [12] are more general than the above-mentioned
integral positivity and weak integral positivity. Roughly speaking, for two nonnegative func-
tions a(t) andb(t), if certain assumptions are satisfied, thena is called integrally positive
with respect tob or weakly integrally positive with respect tob. A functionφ is weakly in-
tegrally positive (in the sense described above) if and only ifφ is weakly integrally positive
with respect tob≡ 1 (in the sense of [12]).

Our main result is stated as follows:

Theorem 2.1 Suppose that conditions(2.1)and(2.2)hold. Suppose also that f(t), g(t) and
h(t) are bounded for t≥ 0. If ψ(t) has the properties:

ψ+(t) is weakly integrally positive; (2.3)∫ ∞

0
ψ−(t)dt < ∞, (2.4)

then the zero solution of(E) is uniformly stable and asymptotically stable.
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Before giving the proof of Theorem 2.1, we prepare some lemmas.

Lemma 2.2 Suppose that condition(2.4)holds. Let v(t) be nonnegative and piecewise con-
tinuously differentiable on[t0,∞) for some t0 ≥ 0. If

v′(t)≤ ψ−(t)v(t) for t ≥ t0,

then v′(t) is absolutely integrable.

Proof Integrating the both sides ofv′(t)≤ ψ−(t)v(t) from t0 to ∞, we have

v(t)≤ v(t0)exp

(∫ ∞

t0
ψ−(t)dt

)
,

and therefore,

v′(t)≤ v(t0)exp

(∫ ∞

t0
ψ−(t)dt

)
ψ−(t).

Since the right-hand side of this inequality is nonnegative fort ≥ t0, we get

v′+(t)≤ v(t0)exp

(∫ ∞

t0
ψ−(t)dt

)
ψ−(t).

Integrating both sides fromt0 to ∞, we obtain∫ ∞

t0
v′+(t)dt ≤ v(t0)exp

(∫ ∞

t0
ψ−(t)dt

)∫ ∞

t0
ψ−(t)dt.

Hence, by (2.4), we have ∫ ∞

t0
v′+(t)dt < ∞.

On the other hand, sincev(t)≥ 0 for t ≥ t0, we get∫ ∞

t0
v′−(t)dt ≤ v(t0)+

∫ ∞

t0
v′+(t)dt < ∞.

We therefore conclude that∫ ∞

t0
|v′(t)|dt =

∫ ∞

t0
(v′+(t)+v′−(t))dt < ∞,

as required. This completes the proof of Lemma 2.2. ⊓⊔

Define

Γ (x) =
∫ x

0
γ(ζ )dζ .

Then, we have the following lemma.

Lemma 2.3 If γ(x) satisfies condition(2.2),then

|x− γ(x)| ≥ 1
2

x2−Γ (x)≥ 0

for |x| sufficiently small(the equalities hold if and only if x= 0).
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Proof From (2.2) it follows that for anyε > 0, there exists aρ(ε)> 0 such that

−ε|x| ≤ γ(x)≤ ε|x| for |x|< ρ. (2.5)

Hence, we obtain

−ε
2

x2 ≤ Γ (x)≤ ε
2

x2 for |x|< ρ. (2.6)

We may assume without loss of generality thatε < 1 andρ < 2(1− ε)/(1+ ε). Then, we
have

1
2

x2−Γ (x)≥ 0 for |x|< ρ .

If 0 ≤ x< ρ, then by (2.5) and (2.6), we get

x− γ(x)− 1
2

x2+Γ (x)≥ x− εx− 1
2

x2− ε
2

x2 ≥ 1
2

x
{

2(1− ε)− (1+ ε)ρ
}
≥ 0.

Similarly, if −ρ < x≤ 0, then

x− γ(x)+
1
2

x2−Γ (x)≤ x− εx+
1
2

x2+
ε
2

x2 ≤ 1
2

x
{

2(1− ε)− (1+ ε)ρ
}
≤ 0.

We therefore conclude that

|x− γ(x)| ≥ 1
2

x2−Γ (x) for |x|< ρ.

Thus, the proof of Lemma 2.3 is complete. ⊓⊔

We are now ready to prove the main result.

Proof of Theorem 2.1We will divide the proof into two parts: (a) uniform stability of the
zero solution; (b) asymptotic stability of the zero solution. The proof of part (a) is carried
out by means of a classical Lyapunov’s direct method (as to the direct method of Lyapunov,
for example, see [8, 9, 15, 20, 23, 30]). The significant thing is to demonstrate part (b) rather
than part (a).

Part (a): Define

V(t,x,y) =
1
2

x2−Γ (x)+
f (t)

2g(t)
y2

and
U(t,x,y) =V(t,x,y)exp

(
−
∫ t

0
ψ−(s)ds

)
on D. From (2.1) and the boundedness off (t) andg(t), we can choose numbersk > 0 and
K > 0 such that

k≤ f (t)
g(t)

≤ K for t ≥ 0. (2.7)

Let L =
∫ ∞

0
ψ−(t)dt (because of (2.4), such anL exists). Then, we have(

1
2

x2−Γ (x)+
k
2

y2
)

e−L ≤V(t,x,y)e−L ≤U(t,x,y)

≤V(t,x,y)≤ 1
2

x2−Γ (x)+
K
2

y2.
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DifferentiateV(t,x,y) along any solution of (E) to obtain

V̇(E)(t,x,y) =−1
2

ψ(t)
f (t)
g(t)

y2 ≤ 1
2

ψ−(t)
f (t)
g(t)

y2.

By Lemma 2.3, we get
V̇(E)(t,x,y)≤ ψ−(t)V(t,x,y)

for (t,x,y) ∈ D, |x| sufficiently small. Hence, we have

U̇(E)(t,x,y) =
{
V̇(E)(t,x,y)−ψ−(t)V(t,x,y)

}
exp

(
−
∫ t

0
ψ−(s)ds

)
≤ 0

for (t,x,y) ∈ D, |x| sufficiently small. Thus,U(t,x,y) is positive definite and decrescent, and
U̇(E)(t,x,y) is nonpositive. We therefore conclude that the zero solution of (E) is uniformly
stable by using a Lyapunov-type theorem due to Persidski [22] (refer also to Theorem 1.7 in
[23, p. 14] or to Theorem 8.2 in [30, p. 32]).

Part (b): Recall that (2.2) yields (2.5). It follows from part (a) that for anyε > 0, there
exists aδ (ρ(ε))> 0 such thatt0 ≥ 0 and∥y0∥< δ imply

∥y(t; t0,y0)∥< ρ for t ≥ t0, (2.8)

whereρ(ε) is the number given in (2.5). For brevity’s sake, we write(x(t),y(t)) = y(t; t0,y0)
and define

u(t) =
f (t)

2g(t)
y2(t) and v(t) =V(t,x(t),y(t)).

Then, we have

v(t) =
1
2

x2(t)−Γ (x(t))+u(t)≥ 1
2

x2(t)−Γ (x(t))+
k
2

y2(t) (2.9)

and
v′(t) =−ψ(t)u(t)≤ ψ−(t)v(t) (2.10)

for t ≥ t0. As proved in part (a),U ′(t,x(t),y(t)) ≤ 0 for t ≥ t0. Hence,U(t,x(t),y(t)) is
nonincreasing fort ≥ t0, and therefore, it has a nonnegative limiting valueu0. From (2.4),
we see thatv(t) has a limiting valuev0 = u0eL ≥ 0. If v0 = 0, then by (2.9) and Lemma 2.3,
the solution(x(t),y(t)) tends to(0,0) ast →∞. This completes the proof of part (b) (we may
chooseδ as the numberδ0 in the definition of asymptotic stability). Hereafter, we consider
only the case in whichv0 > 0.

From (2.7) and (2.8), we see thatu(t) is bounded fort ≥ t0. Hence,u(t) has the inferior
limit and the superior limit. First, we will show that the inferior limit ofu(t) is zero, and we
will then show that the superior limit ofu(t) is also zero.

Suppose that liminft→∞ u(t) > 0. Then, there exist anε1 > 0 and aT1 ≥ t0 such that
u(t)> ε1 for t ≥ T1. From (2.10) and Lemma 2.2 it follows that

∞ >
∫ ∞

t0
|v′(t)|dt =

∫ ∞

t0
|ψ(t)|u(t)dt ≥

∫ ∞

t0
ψ+(t)u(t)dt > ε1

∫ ∞

T1

ψ+(t)dt.

This contradicts (2.3). Thus, we see that liminft→∞ u(t) = 0.
Suppose that limsupt→∞ u(t)> 0. From (2.1) and the boundedness ofg(t) andh(t), we

can choose numbersg> 0 andh> 0 such that

|g(t)| ≥ g and |h(t)| ≤ h (2.11)
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for t ≥ 0. Since the limiting valuev0 of v(t) is positive, there exists aT2 ≥ t0 such that

0<
v0

2
< v(t)<

3v0

2
for t ≥ T2. (2.12)

Let λ = limsupt→∞ u(t), and letε2 > 0 be so small thatε2 < λ/2 and

h

√
2ε2

k
< g
(v0

2
− ε2

)
. (2.13)

Noticing that liminft→∞ u(t) = 0 < limsupt→∞ u(t), we can find two divergent sequences
{τn} and{σn} with T2 < τn < σn < τn+1 such thatu(τn) = u(σn) = ε2,

u(t)≥ ε2 for τn < t < σn, (2.14)

0≤ u(t)≤ ε2 for σn < t < τn+1. (2.15)

From (2.11) and the second equation in system (E), we obtain

|y′(t)| ≥
∣∣g(t)(x(t)− γ(x(t))

)∣∣−|h(t)y(t)| ≥ g|x(t)− γ(x(t))|−h|y(t)|

for t ≥ t0. It follows from (2.8) that|x(t)|< ρ for t ≥ t0. Hence, by Lemma 2.3, we have

|x(t)− γ(x(t))| ≥ 1
2

x2(t)−Γ (x(t))

for t ≥ t0. By (2.7), (2.9), (2.12) and (2.15), we get

|y(t)| ≤
√

2
k

u(t)≤
√

2ε2

k
, (2.16)

1
2

x2(t)−Γ (x(t)) = v(t)−u(t)≥ v0

2
− ε2

for σn ≤ t ≤ τn+1. We therefore conclude that

|x(t)− γ(x(t))| ≥ v0

2
− ε2 and |y′(t)| ≥ g

(v0

2
− ε2

)
−h

√
2ε2

k
def
= M

for σn ≤ t ≤ τn+1. From (2.13), we see thatM is a positive number. Note thatM is indepen-
dent ofn. Sincex(t) is continuous, we may assume without loss of generality that

x(t)− γ(x(t))≥ v0

2
− ε2 for σn ≤ t ≤ τn+1. (2.17)

Recall thatg(t) is assumed to be non-diminishing piecewise continuous on[0,∞). Hence,
there are two cases to consider: (i)g(t) is continuous on[σn,τn+1]; (ii) g(t) is discontinuous
on [σn,τn+1]. Let N be the number of discontinuous points ofg(t) on (σn,τn+1) and letµ2,
µ3, . . . , µN+1 be the discontinuous points withσn < µ2 < µ3 < · · · < µN+1 < τn+1. Write
µ1 =σn andµN+2 = τn+1. Of course, in case (i),N= 0 and(µ1,µ2)= (σn,τn+1). In case (ii),
g(t) is continuous fort ∈ (µi ,µi+1) with i = 1,2, . . . ,N+1. In any case, because of (2.11),
we see thatg(t) ≥ g or g(t) ≤ −g on each subinterval(µi ,µi+1) with i = 1,2, . . . ,N+ 1.
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If there exists aj ∈ {1,2, . . . ,N+1} such thatg(t) ≥ g on (µ j ,µ j+1), then by (2.16) and
(2.17), we have

y′(t) =−g(t)
(
x(t)− γ(x(t))

)
−h(t)y(t)

≤−g
(v0

2
− ε2

)
+ |h(t)||y(t)|

≤ −g
(v0

2
− ε2

)
+h

√
2ε2

k
=−M

for µ j < t < µ j+1. Integrate the above inequality fromµ j to µ j+1 to obtain

|y(µ j+1)|+ |y(µ j)| ≥
∣∣∣∣∫ µ j+1

µ j

y′(t)dt

∣∣∣∣≥ M(µ j+1−µ j).

Similarly, if there exists aj ∈ {1,2, . . . ,N+1} such thatg(t) ≤ −g on (µ j ,µ j+1), then by
(2.16) and (2.17), we get

y′(t)≥ M for µ j < t < µ j+1,

and therefore,|y(µ j+1)|+ |y(µ j)| ≥ M(µ j+1−µ j). We therefore conclude that

|y(µi+1)|+ |y(µi)| ≥ M(µi+1−µi)

for all i ∈ {1,2, . . . ,N+1}. Adding up these inequalities and using (2.8), we obtain

2(N+1)ρ > |y(σn)|+2
N+1

∑
i=2

|y(µi)|+ |y(τn+1)|

≥ M
N+1

∑
i=1

(µi+1−µi) = M(τn+1−σn),

namely,

τn+1 ≤ σn+
2(N+1)ρ

M
.

By means of Lemma 2.2 with (2.10) and (2.14), we have

∞ >
∫ ∞

t0
|v′(t)|dt ≥

∫ ∞

t0
ψ+(t)u(t)dt > ε2

∫
I

ψ+(t)dt,

whereI =
∞∪

n=1

[τn,σn]. Consequently,∫
I

ψ+(t)dt < ∞. (2.18)

Suppose that there exists anω > 0 such thatσn− τn > ω for eachn∈ N. As proved above,

τn+1−σn ≤ 2(N+1)ρ/M
def
= Ω for anyn∈ N. Hence, from (2.3), we see that∫

I
ψ+(t)dt = ∞.

This contradicts (2.18). Hence, there is no suchω > 0, and therefore,

liminf
n→∞

(σn− τn) = 0. (2.19)
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Since liminft→∞ u(t) = 0 and limsupt→∞ u(t) = λ > 0, we can select two divergent se-
quences{tn} and{sn} with T2 < tn < sn < tn+1 such thatu(tn) = λ/2, u(sn) = 3λ/4 and

λ
2
< u(t)<

3λ
4

for tn < t < sn.

Sinceε2 < λ/2, we may consider that[tn,sn] ⊂ [τn,σn] for n ∈ N (if necessary, we can
change{τn} and{σn} into suitable subsequences of{τn} and{σn}). Hence, by (2.19), we
have

liminf
n→∞

(sn− tn) = 0. (2.20)

From the boundedness off (t), we can choose a numberf > 0 such that| f (t)| ≤ f for t ≥ 0.
Hence, together with (2.5), (2.8) and (2.9), we get

u′(t) = v′(t)− f (t)y(t)
(
x(t)− γ(x(t))

)
≤ |v′(t)|+ f |y(t)|

(
|x(t)|+ |γ(x(t))|

)
< |v′(t)|+ f ρ2(1+ ε)

for t ≥ t0. Integrating this inequality fromtn to sn, we obtain

λ
4
= u(sn)−u(tn)≤

∫ sn

tn
|v′(t)|dt+ f ρ2(1+ ε)(sn− tn)

for eachn ∈ N. This contradicts (2.20). Thus, we conclude thatλ = 0, and therefore,
limsupt→∞ u(t) = 0.

Since liminft→∞ u(t) = limsupt→∞ u(t) = 0, it follows that limt→∞ u(t) = 0. Hence, there
exists aT3 ≥ t0 such that

u(t)< ε2 for t ≥ T3.

As in the same argument of the preceding paragraph, we conclude that

|x(t)− γ(x(t))| ≥ v0

2
− ε2 for t ≥ T3.

We may assume without loss of generality that

x(t)− γ(x(t))≥ v0

2
− ε2 for t ≥ T3. (2.21)

Sinceg(t) is non-diminishing piecewise continuous on[0,∞), there exists a greatest lower
bound of lengths of subintervals on whichg(t) is continuous. Letd be the greatest lower
bound. We may consider thath> 2/d, whereh is the number given in (2.11). Chooseε3 > 0
with

ε3 <
g

2h

(v0

2
− ε2

)
. (2.22)

From (2.7) and the fact that limt→∞ u(t) = 0 it turns out thaty(t) also tends to zero ast → ∞.
Hence, there exists aT4 ≥ T3 such that|y(t)| < ε3 for t ≥ T4. By (2.11) again, we can find
an interval[a,b] ⊂ [T4,∞) such thatg(t) ≥ g or g(t) ≤ −g for a≤ t ≤ b. In the former, by
(2.11) and (2.21), we have

y′(t)≤−g(t)
(
x(t)− γ(x(t))

)
+ |h(t)||y(t)|

≤ −g
(v0

2
− ε2

)
+hε3 <−

g

2

(v0

2
− ε2

)
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for a≤ t ≤ b. Hence, we obtain

2ε3 > |y(b)−y(a)|=
∣∣∣∣∫ b

a
y′(t)dt

∣∣∣∣
=
∫ b

a
|y′(t)|dt >

g

2

(v0

2
− ε2

)
(b−a)≥

g

2

(v0

2
− ε2

)
d.

Sinceh> 2/d, it follows thatε3 > g(v0/2−ε2)/(2h). This contradicts (2.22). We can carry
out the latter in the same manner as the former and we then reach a contradiction. Thus,
the case ofv0 > 0 does not happen. We therefore conclude that the zero solution of (E) is
asymptotically stable.

The proof of Theorem 2.1 is now complete. ⊓⊔

When we apply a Lyapunov-type theorem on asymptotic stability to a concrete problem,
we have to find a Lyapunov function whose total derivative is negative definite. As such a
theorem, we can quote the following result given by Haddock [7] (his original result can be
applied ton-dimensional nonlinear systems).

Theorem B Suppose that there exist positive numbers A and M such that∥F(t,x)∥ ≤ M for
all (t,x)∈ [0,∞)×S(A), S(A) = {x: ∥x∥<A}. Suppose also that there exists a differentiable
function V: [0,∞)×G → [0,∞), G is an open subset ofR2, which satisfies the following
conditions:

(i) V(t,0)≡ 0;

(ii) V(t,x)≥ 0 for all (t,x) ∈ [0,∞)×S(A);

(iii) the total derivativeV̇(N)(t,x) is negative definite.

Then the zero solution of(N) is asymptotically stable.

Haddock [7] also showed that under the assumptions of Theorem B,V(t,x) is positive
definite. Hence, Theorem B is essentially the same as Theorem 4 of Maratschkow [17]
though it is a little easier to use (see also [18]).

In general, it is very difficult to compose a Lyapunov function satisfying the assump-
tion (ii) of Theorem B. This is a weak point of Theorem B. Since the Lyapunov functions
V(t,x,y) andU(t,x,y) given in the proof of Theorem 2.1 are energy functions for system
(E), it is safe to say that they are appropriate. However, the total derivativesV̇(N)(t,x) and
U̇(N)(t,x) are not negative definite. Hence, we cannot prove Theorem 2.1 by means of The-
orem B.

The linear approximation of (E) is system (L) with

A(t) =

(
0 f (t)

−g(t) −h(t)

)
. (2.23)

Needless to say, Theorem 2.1 can be applied to this linear system. Iff (t), g(t) andh(t) are
bounded fort ≥ 0 and they satisfy conditions (2.1), (2.2) and (2.3), then the zero solution of
(L) with (2.23) is uniformly stable and asymptotically stable, in other words, the matrixA(t)
given by (2.23) has a better quality. Theorem 2.1 shows that ifA(t) has such a good quality,
then the zero solution of the quasi-linear system

y′ =

(
0 f (t)

−g(t) −h(t)

)
y+

(
0

g(t)γ(x)

)
,
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namely system (E), is uniformly stable and asymptotically stable for arbitrary nonlinear
functionγ(x) satisfying condition (2.1). This is an answer to our question raised in Section 1.

Although we assume the boundedness off (t), g(t) andh(t) in Theorem 2.1, we can
remove the assumption by changing variables

τ = F (t)
def
=
∫ t

0

√
f (s)g(s)ds and z=

√
f (t)
g(t)

y.

We assume that

f (t)g(t)> 0 for t ≥ 0 and lim
t→∞

F (t) = ∞, (2.1)′

instead of condition (2.1). Then,dτ/dt =
√

f (t)g(t) and there exists the inverse function
F−1(τ) satisfying limτ→∞ F−1(τ) = ∞. By a straightforwards calculation, we can trans-
form system (E) into the system

ẋ= z,

ż=−
(
x− γ(x)

)
− h̃(τ)z,

(Ẽ)

where =̇ d/dτ and

h̃(τ) =
ψ(F−1(τ))

2
√

f (F−1(τ))g(F−1(τ))
.

For the sake of convenience, let

Ψ(t) =
ψ(t)√
f (t)g(t)

.

Thenh̃(τ) =Ψ(t)/2. If γ(x) satisfies condition (2.2), andΨ(t) is bounded fort ≥ 0 and has
the properties:

Ψ+(t) is weakly integrally positive; (2.3)′∫ ∞

0
Ψ−(t)dt < ∞, (2.4)′

then we can apply Theorem 2.1 to system(Ẽ). Hence, the zero solution of(Ẽ) is uniformly
stable and asymptotically stable. If, in addition,g(t)/ f (t) is bounded fort ≥ 0, then the zero
solution of (E) is uniformly stable and asymptotically stable.

In summary, we have the following result.

Theorem 2.4 Suppose that conditions(2.1)′, (2.2), (2.3)′ and (2.4)′. Suppose also that
g(t)/ f (t) andΨ(t) are bounded for t≥ 0. Then the zero solution of(E) is uniformly stable
and asymptotically stable.

Remark 2.2If at least one off (t), g(t) andh(t) is unbounded, then Theorem 2.1 and Theo-
rem B are inapplicable for system (E). On the other hand, Theorem 2.4 can be applied even
to that case.
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3 Damped pendulum

Let us consider a pendulum with time varying friction described by the equation

x′′+h(t)x′+sinx= 0, (P)

whereh(t) is continuous fort ≥ 0. Then, we can rewrite equation (P) as the system

y′ =

(
0 1

−1 −h(t)

)
y+

(
0

x−sinx

)
(3.1)

with y = t(x,y). System (3.1) is of type (QL). In the special case thath(t) = 2/(1+ t), we
can find a fundamental matrix for the linear approximation

y′ =

(
0 1

−1 −h(t)

)
y. (3.2)

A fundamental matrix for system (3.2) withh(t) = 2/(1+ t) is given by

Φ(t) =


sint
1+ t

cost
1+ t

cost
1+ t

− sint
(1+ t)2 − sint

1+ t
− cost

(1+ t)2

.

From considerations of the fundamental matrix, we see that the zero solution of (3.2) with
h(t) = 2/(1+ t) is uniformly stable and asymptotically stable, but it is not uniformly attrac-
tive; accordingly, it is not uniformly asymptotically stable. Hence, in this case, Theorem A is
inapplicable to system (3.2), and therefore, we cannot decide whether or not the equilibrium
x= x′ = 0 of (P) is uniformly stable or asymptotically stable.

However, it is true that the equilibrium of (P) with h(t) = 2/(1+ t) is asymptotically
stable. In fact, by means of Hatvani’s result [10, Corollary 3.1], we can verify that ifh(t)
is nonnegative and weakly integrally positive, then the equilibrium of (P) is asymptotically
stable (see also [11]).

Theorem 2.1 is also useful for verifying the fact above. Comparing system (3.1) with
system (E), we see thatf (t)= g(t)= 1 andγ(x)= x−sinx. Hence, conditions (2.1) and (2.2)
are satisfied. Ifh(t) = 2/(1+t), then it is easy to show thatψ+(t) = 4/(1+t) andψ−(t) = 0;
accordingly,ψ(t) has the properties (2.3) and (2.4). Thus, it follows from Theorem 2.1
that the zero solution of (3.1) is uniformly stable and asymptotically stable. Of course, the
equilibrium of (P) is uniformly stable and asymptotically stable.

In the above results [10, 11], the frictionh(t) is assumed to be nonnegative fort ≥ 0.
Is the assumption essential to show the asymptotic stability of the equilibrium of (P)? The
answer is in the negative. There are cases in which the equilibrium of (P) is uniformly
stable and asymptotically stable even if there exists a sequence{tn} such thath(tn)< 0. For
example, consider system (3.1) with

h(t) =
sin2 t
1+ t

− cos2 t
(1+ t)2 .

Then, it is easy to verify thatψ(t) = 2h(t) and ψ(t) has the properties (2.3) and (2.4).
Hence, by Theorem 2.1, the zero solution is uniformly stable and asymptotically stable,
and therefore, the equilibrium of (P) is uniformly stable and asymptotically stable. In this
example,h(t) is negative att = nπ for n∈ N. Hence,ψ−(t) = 2h−(t) ̸≡ 0.

As mentioned above, Theorem 2.1 has a big advantage of being applicable to the case
thath(t) is not necessarily positive fort ≥ 0.
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4 Example and simulation

To illustrate Theorems 2.1 and 2.2, we give two examples: the coefficientsf (t), g(t) and
h(t) of (E) are piecewise continuous in the first example, andf (t) andg(t) are piecewise
continuous buth(t) is continuous in the second example.

The result of Sugie and Onitsuka [25] quoted in Section 1 cannot be applied to the
quasi-linear system (E) unlessγ(x) ̸≡ 0 and f (t), g(t), h(t) are continuous fort ≥ 0. Hence,
in Examples 4.1 and 4.2 below, we cannot judge whether the zero solution is uniformly
stable and asymptotically stable by using the result in [25].

Let n∈ N and letη(t) be an on-off function defined by

η(t) =


0 if 2(n−1)π ≤ t < 2nπ − 1

n
,

1 if 2nπ − 1
n
≤ t < 2nπ.

Then we have the following example.

Example 4.1Consider system (E) with

f (t) =


1+

1
2

sint if 2(n−1)π ≤ t < (2n−1)π,

−1− 1
2

sint if (2n−1)π ≤ t < 2nπ,

g(t) =

 2−sint if 2(n−1)π ≤ t < (2n−1)π,

−2+sint if (2n−1)π ≤ t < 2nπ,

h(t) =
1−2η(t)

1+ t
+

2cosπt
3+cos2 πt

and γ(x) = x−sinx.

Then the zero solution is uniformly stable and asymptotically stable.

Note thath(t) is piecewise continuous, andf (t) andg(t) are non-diminishing piecewise
continuous withd = 1. It is clear that conditions (2.1) and (2.2) are satisfied, andf (t), g(t)
andh(t) are bounded fort ≥ 0. Since

ψ(t) = 2h(t)+
f (t)
g(t)

(
g(t)
f (t)

)′
=

2(1−2η(t))
1+ t

,

we see that

ψ+(t) =
2(1−η(t))

1+ t
and ψ−(t) =

2η(t)
1+ t

.

Hence,ψ+(t) is weakly integrally positive and∫ ∞

0
ψ−(t)dt <

∞

∑
n=1

2
2πn2+n−1

<
∞

∑
n=1

1
πn2 < ∞.

Thus, by means of Theorem 2.1, we conclude that the zero solution is uniformly stable and
asymptotically stable.
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�1 �0:5 0:5 1�1
�0:5
0:51 x

y

Fig. 1 A positive orbit of Example 4.1.

In Figure 1, we draw a positive orbit of Example 4.1. The starting pointy0 is (−0.8,0)
and the initial timet0 is 0. The positive orbit seems to consist of two groups of circular arcs
whose central angles are obtuse: arcs that are longer horizontally than vertically and arcs
that are longer vertically than horizontally. The positive orbit alternately generates the two
arc groups and finally approaches the origin0.

In the above example,ψ(t) is piecewise continuous fort ≥ 0. As shown in the following
example, however, it not always necessary forψ(t) to be discontinuous.

Example 4.2Consider system (E) with

f (t) =

 2+ t if 2(n−1)≤ t < 2n−1,

−2− t if 2n−1≤ t < 2n,

g(t) =

 1+ t if 2(n−1)≤ t < 2n−1,

−1− t if 2n−1≤ t < 2n,

h(t) =

√
2+ t
1+ t

and γ(x) = x−sinx.

Then the zero solution is uniformly stable and asymptotically stable.

Since f (t), g(t) are unbounded, Theorem 2.1 cannot be applied to Example 4.2. We use
Theorem 2.2 in substitution for Theorem 2.1. From

f (t)g(t) =
√
(1+ t)(2+ t)≥

√
2

for t ≥ 0, it follows that

τ = F (t) =
2t +3

4

√
(1+ t)(2+ t)− 1

8
log
(

2t +3+2
√
(1+ t)(2+ t)

)
,
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which tends to∞ ast → ∞. Hence, condition(2.1)′ holds. It is easy to verify that condition
(2.2) is satisfied andg(t)/ f (t) is bounded fort ≥ 0. Since

ψ(t) = 2

√
2+ t
1+ t

+
1

(1+ t)(2+ t)

and

Ψ(t) =
ψ(t)√
f (t)g(t)

=
2

1+ t
+

1

{(1+ t)(2+ t)}3/2

in this example. Hence,Ψ+(t) =Ψ(t) andΨ−(t) = 0; accordingly,Ψ+(t) is integrally posi-
tive and ∫ ∞

0
Ψ−(t)dt = 0.

We therefore conclude that the zero solution is uniformly stable and asymptotically stable.

�1 �0:5 0:5 1�1
�0:5
0:51 x

y

Fig. 2 A positive orbit of Example 4.2.

Figure 2 indicates a positive orbit of Example 4.2. The starting pointy0 is (0,1) and
the initial time t0 is 0. The positive orbit moves round the origin0 in a clockwise and a
counter-clockwise direction by turns, becausef (t) andh(t) change their sign. The positive
orbit approaches the origin0 as it goes up and down.
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