Global asymptotic stability for damped half-linear oscillators
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Abstract

A necessary and sufficient condition is established for the equilibrium of the oscillator of
half-linear type with a damping term,

(¢P(x/>>/ + h(t)ﬁbp(x,) + ¢p<x) =0

to be globally asymptotically stable. The obtained criterion is given by the form of a
certain growth condition of the damping coefficiésit) and it can be applied to not only

the cases of large damping and small damping but also the case of fluctuating damping.
The presented result is new even in the linear cgses ). It is also discussed whether

a solution of the half-linear differential equation

(r(t)pp(z)) + c(t)pp(z) =0

that converges to a non-zero value exists or not. Some suitable examples are included to
illustrate the results in the present paper.
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1. Introduction

The purpose of this paper is to show that a growth conditioih@his a necessary
and sufficient condition for the equilibrium of the second-order differential equation

(ép(2")) + h(t)dp(a’) + p(z) =0 (HL)

to be globally asymptotically stable. Here, the prime dendes, the functiong,(z) is
defined by
op(2) = |2[P722, z€eR
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with p > 1, and the damping coefficient(t) is continuous and nonnegative for> 0.
Let

H(t) = /0 h(s)ds.

If z(¢) is a solution of { L), then the function:z(t) is another solution of i L), where

¢ is an arbitrary constant except 1. In general, however, the total of two solutions of
(HL) is not a solution of /L). Hence, the solution space aff (L) is homogeneous,

but not additive. Because there is only characteristic half of the solution space of linear
differential equations, EqH L) is often callechalf-linear.

Let x(t) = (x(t),2'(t)) andx, € R?, and let|| - || be any suitable norm. We denote
the solution of { L) through(ty, x¢) by x(t;to,x0). It is clear that Eq.K/ L) has the
equilibriumx(t) = 0.

The equilibrium is said to bsetableif, for any ¢ > 0 and anyt, > 0, there exists a
d(g,to) > 0 such that|xy|| < d implies||x(t; o, xo)|| < € for all ¢t > ¢y. The equilibrium
is said to beattractiveif, for any t, > 0, there exists @,(ty) > 0 such thafl|xq|| < do
implies ||x(t; to, xo0)|| — 0 ast — oo. The equilibrium is said to bglobally attractive
if, for any t, > 0, anyn > 0 and anyx, € R?, there is al'(ty,n,x0) > 0 such that
|1x(t; to, %0)|| < mforallt > ty+T(to,n,%o). The equilibrium isasymptotically stablé
it is stable and attractive. The equilibriumgkbally asymptotically stablé it is stable
and globally attractive. About those definitions, refer to the books [3, 6, 7, 8, 17, 18, 29,
34, 45] for example.

Sinceg,y(z) = z, we can consider the damped linear oscillator

"+ h(t)r'+2=0 (L)

to be a special case of{(L). In the linear differential equations such as HQg, (it is well

known that the equilibrium is attractive (resp., asymptotically stable), then it is globally
attractive (resp., globally asymptotically stable). The study of the (global) asymptotic
stability for Eq. (L) (or its general type) is one of the major themes in the qualitative
theory of differential equations. Numerous papers have been devoted to find sufficient
conditions and necessary conditions for the asymptotic stability (for example, see [2, 4,
15, 21, 22, 23, 24, 25, 27, 31, 32, 35)).

We can cite Levin and Nohel [27, Theorem 1] as a pioneering work (their result can
be applied to more general equations than E}).( They proved that if there exist two
positive constantg andh such that, < h(t) < h for ¢t > 0, then the equilibrium of )
is asymptotically stable. The researches afterwards have advanced toward the direction
where at least one of the lower bouhdr the upper bound is taken off. The case in
which h < h(t) < oo fort > 0 and the case in which < h(t) < h for t > 0 are often
calledlarge dampingandsmall dampingrespectively.

In the case of large damping, we should first make the special mention of Smith [35,
Theorems 1 and 2]. He proved that

oofof BH(s)dS
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is a necessary and sufficient condition for the equilibrium of to be asymptotically
stable. Later, Ballieu and Peiffer [4] obtained several sufficient conditions and necessary
conditions for the equilibrium of a certain kind of nonlinear differential equation to be
globally asymptotically stable and presented the same criterion as Smith’s by using their
results (see [4, Corollary 6]). Although the expression of condition (1.1) is very concise,
it is not so easy to confirm whether condition (1.1) is satisfied. For this reason, many at-
tempts were carried out to look for other growth conditions that guarantee the asymptotic
stability for Eq. (L) or more general nonlinear equations. Artstein and Infante [2] showed
that if /(¢)/t* is bounded for sufficient large, then the equilibrium of.) is asymptot-

ically stable. When an indefinite integral bft) can be obtained, we can confirm their
growth condition. In Artstein and Infante’s result, the exponent 2 is the best possible in
the meaning that it cannot be changed to 2nye, ¢ > 0. However, their growth condi-

tion is weaker than condition (1.1) because it is sufficient for the asymptotic stability, but
not necessary. For example, consider EQw(ith large dampind(t) = (2+t) log(2+1).

Then, itis easy to check thaf(¢) /¢* is unbounded. Hence, Artstein and Infante’s result is
unavailable. However, it is known that the equilibrium 6 vith i (t) = (2+t) log(2+1)

is asymptotically stable (see [4, Corollary 7]). Hatvani, Krisztin and Totik [23] proved that
the growth condition (1.1) oh(¢) is equivalent to

[e.9]

S (H M (ne) — H™((n - 1)0))” = o0 (1.2)

n=1

for anyc > 0, whereH ~!(s) denote the inverse function ef= H(t). The merit of the
discrete criterion (1.2) is that it is sometimes easier to check it. For example, we see that if
h(t) = t, then condition (1.2) is satisfied;/f(t) = ¢2, then condition (1.2) is not satisfied.
However, in general case, it is still difficult to verify condition (1.2). Fortunately, unlike
old times, there is a possibility that condition (1.1) can be confirmed by using numerical
analysis conducted via personal computer even if it is impossible by the human hand
calculation.

Ballieu and Peiffer [4, Theorems 5 and 6] also discussed the case of small damping.
From their results, we see that the equilibrium bj (s asymptotically stable if and only
if H(t) tends toco ast — oo, provided that.(t) is positive and nonincreasing for> 0.
Later, in the case of small damping, Hatvani [21, Corollary 4.4] showed that the weak
integral positivity ofh(¢) implies the asymptotic stability for EqL] (see also [36, 37]).
For the definition of the weak integral positivity, see Section 3. Moreover, Hatvani [22,
Theorem 1.1] proved that iimsup,_, . H(t)/t*® > 0, then the equilibrium of {) is
asymptotically stable and pointed out that the exponent 2/3 is the best possible in the
meaning that it cannot be changed to &g — <, ¢ > 0. Although his condition is very
sharp, it is not necessary and sufficient for the asymptotic stability. There are a lot of
other works in the case of small damping, but no necessary and sufficient condition such
as (1.1) has been reported at all.

The case in whicth(t) has neither the lower bounfd nor the upper bound may
be most difficult in the study of the asymptotic stability for Ef).( Let us call such a



casefluctuating dampingPucci and Serrin [31, Theorem A] considem®¥ddimensional
nonlinear systems which contain E¢)(as a special case and presented sufficient condi-
tions and necessary conditions for the global asymptotic stability applied even to the case
of fluctuating damping (see also [32]). As another result that can even be applied to the
case of fluctuating damping, we can cite Hatvani and Totik [24, Theorem 3.1]. We will
compare our result with the result of them in the last part of this paper.

Let us now return to EqH L) that is the research object of this paper. Because
Eq. (HL) is a generalization of the damped linear oscillatby, (we will call Eq. (H L)
the damped half-linear oscillator In Eq. (H L) as well as Eq.L), we may classify the
damping coefficienk(t) into three types by the presence or absence of the lower bound
and the upper bountl

Sugie and Onitsuka [40, Theorem 2.1] have considered a system of differential equa-

tions of the form /
vt = —e(t)r + f(t)pp (y),

y' = —g(t)op(x) — h(t)y,
wherep* = p/(p — 1), and proved that under the assumptions
t

(i) E(t) déf/ e(s)ds, f(t), g(t) andh(t) are bounded and(t)/f(t) is continuously
diﬁerentigble fort > 0,
(i) f(t) andg(t) have the same sign for> 0 with li%n inf f(t)g(t) > 0,

(1.3)

the zero solution of (1.3) is globally asmptotically stable if the function

ety 10 (50
phit) =pelt) + (f(t)>

is nonnegative fot > 0 and weakly integrally positive (as related researches, refer to
[38, 39]). As shown in the first paragraph in Sectiorpz, is the inverse function af,.
Lettingy = ¢,(2") as a new variable, we see that EH L) is equivalent to system (1.3)

with e(t) = 0 and f(t) = g(t) = 1. Hence, it turns out that if there exists Arsuch that

0 < h(t) < hfort > 0and if h(t) is weakly integrally positive, then the equilibrium is
globally asymptotically stable. This case is small damping. The above-mentioned result
cannot be applied to the cases of large damping and fluctuating damping.

When we consider the cases of large damping and fluctuating damping, we have to
take notice of the possibility that the so-called overdamping phenomenon happens. The
phenomenon of overdamping is that a solution converging to a non-zero value exists.
This phenomenon is caused by too fast growth of the damping coeffigigntRecently,

Sugie and Hata [38, Section 6] have pointed out that this phenomenon appeared to not
only Eq. (L) but also Eq.{{ L).

In this paper, we intend to establish a criterion for the equilibriumi) to be
globally asymptotically stable which can even be applied to the cases of large damping
and fluctuating damping. Our criterion is expressed in the form of a growth condition
on h(t) which is a generalization of (1.1). Needless to say, this criterion excludes the
phenomenon of overdamping.



2. Convergence and divergence of solutions

Consider the half-linear second order differential equation

(r(t)gp(z")) + c(t)pp(x) = 0, (2.1)

wherer(t) andc(t) are real continuous functions(t) # 0 for ¢t > 0 andc(t) # 0. Letp*
be the conjugate number pf namely,

1 1
—+—=1,
p p

thenp* is also greater thah Let

2Pl if 2>0
w = ¢p(2) =
Then,z > 0ifand only ifw > 0, and

wl/ 1) if w>0
z =
—(—w)Y®=1)if w < 0.

Since(p — 1)(p* — 1) = 1, it follows thatw!/®=V = P =1 = |w[P" 2w if w > 0 and
—(—w)VPY = —(—w)P" ! = (—w)P" 2w = |w|P 2w if w < 0. Hencez = ¢, (w);
namely,¢,- is the inverse function af,.

It is known that for anyt, > 0 and(c;,c2) € R?, there exists a unique solution of
(2.1) satisfyinge(to) = ¢; anda’(ty) = co which is continuable in the future. For details,
see DGy [9, p. 170] or D&ly andRelak [10, pp. 8—-10]. Hence, the global existence and
uniqueness of solutions of (2.1) are guaranteed for the initial value problem.

Over the last four decades, a considerable number of studies have been made on the
half-linear differential equation (2.1). Especially, many good articles concerning oscilla-
tion theory have been presented. Those results can be found in the books [1, 9, 10] and the
references cited therein. Even after these books are published, Eq. (2.1) keeps being ac-
tively researched (for example, see [5, 11, 12, 13, 14, 30, 33)). In this section, we discuss
the asymptotic behavior of solutions of (2.1) from a different angle.

It is clear that

O (XY) = ¢ (X)) (Y) for X e R and Y € R. (2.2)

Since¢,- is an increasing function, we see that

(T ) < max {6 (X0, (1)) < 0 0X) 4 (1),

or
¢p* (X + Y) < ¢p*<2){¢p* (X) =+ pr*(Y)}- (2-3)
for X > 0 andY > 0. Using the properties (2.2) and (2.3) ©f-, we have the follow-
ing result on the existence of solutions of (2.1) converging to a non-zero value as time
increases.



Theorem 2.1. Suppose that

fo s)|ds
/ ( (D) )dt < 0. (2.4)

Then every solution(t) of (2.1)tends to a finite limitc(co) ast — oo and x(oc) does
not vanish for at least one solution (#.1).

Proof. Let z(¢) be any solution of (2.1) with the initial timg > 0. Integrating both
sides of (2.1), we obtain
t

r(t)pp(2'(t)) — r(T) (2’ (T)) + / c(s)pp(x(s))ds =0,

T

whereT is a sufficiently large number. Sineét) # 0 for ¢t > 0, we get

, fT s)op(z(s))ds A
2'(t) = 6 ( R 7«(@)’ (2.5)
whereA = r(T)¢,(2'(T)). Integrate both sides of (2.5) froifito ¢ to obtain
x(t) = / O ( Jrelr T(S) ) ré))ds + B, (2.6)

whereB = z(T). Conversely, for every” > 0 and any pair of integration constantsand
B, the functionz(t) given by (2.6) is a solution of (2.1) satisfying = r(7")¢,(«'(T))
andB = z(T).

Define

M; = max |z(s)].
T<s<t

Of course M, is nondecreasing far> 7. By (2.6), we have
Joe(r 7))dT A . ’
= | [ (T g Jas
. Jpe(n)gp(a(r))dr A
< [l )

< foor (EEARGTE o s i

_ Jrle@ope()dr A Y
_/chp»( ) + |r(3)|)d + |B].

ds + |B|

Taking into account that

Gp([2(T)]) < ¢p(Mr) < (M)
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fors > 7 > T, we obtain

) t fT T)|dr |A| .
'(“'S/T%< r(s)] +|r<s>|)‘”'B"

Hence, using (2.2), (2.3) and the fact thidt < M, for ¢ > s, we get

w1 < fLor@{or (IR ) o (5 o 12
<o00) [ 30 (LG )00 [ (57 Jas 118
< 1102 [[ o (D st g 1) [ (1 s+ 1.

Sincec(t) # 0 and7 is sufficiently large, we may assume without loss of generality that
there exists & > 0 such that

t
/ le(s)|ds > A for t > T.
0

From (2.2), (2.4) and this estimation, we see that
fo (s)|ds
= [ %( @) )dt
B I3 le(s)lds I le(s)
‘/o¢p*< @) ) /¢< @) )‘“
o A 1
> [ o (g )= 00 [

and therefore,

e 1
/T ¢p*(m) dt < oo, 2.7)
Hence, we conclude that
T)|dr
(0] < 1002 [ 0 (LY., 28)
where o .
C = ¢p*(2|A\)/T ¢p*<|r(t)’)dt +|B| > 0. (2.9)
Let




Then, by (2.8), we have
M, < KM;+C for t>T1T. (2.10)

From (2.4), we see that the integré&lis convergent and its value tendstt@s7 — oo.
Let T be so large thak’ becomes less than Then, it follows from (2.10) that

()] < M <

for t >T. (2.11)

This means that(t) is bounded.
Using (2.3) and (2.5), we obtain

- (‘_ " o(s)pp(n(s))ds A

for¢t > T. Combining (2.2), (2.4), (2.7) and (2.11), we get

[l < op@ [ o (fT"’ W >‘>d3)dt
+op(21A) [ %*(ﬁ)dt
< ¢>p<>/ . (‘fT’r(t)”ds)dt
+op(21A) [ %(ﬁ)dt <.

In other words;z(t) is of bounded variation fot > 7". Hence, there exists a finite limit
x(00).
To complete the proof of Theorem 2.1, we have only to show that Eq. (2.1) has a so-

lution z(t) for which z(oco) # 0. Since the existence of a finite limi{co) is guaranteed,
it follows from (2.6) that

B fT $)d,(x(s))ds A
x(00) = / ( (D) + r(t))dt—f—B. (2.12)

Also, sinceK (T') tends to) asT' — oo, we can choosé' so large thatfs < 1/2. Hence,
from (2.11), we see that

lz(t)| <2C for t > T. (2.13)

8



In particular, we consider the case in whigh= 0 and B = 1. Then, from (2.9),
(2.12) and (2.13), it turns out that = 1,

N fT s)pp(x(s))ds
z(00) = / ( 0 )dt +1

lx(t)| <2 for t>T,
respectively. Hence, we can estimate that

fT (s)pp(x(s))ds
X ( 0] )dt

< o(o0)] + /Too %*( Trc<s>|¢p<|x<s>|>ds)dt

and

1 <|z(c0)| +

T 0@

fort > T. Sincep,-(2) = 27"~ > 1andK < 1/2, we obtain
|z(c0)| > 1 —2K > 0.

Consequently, Eqg. (2.1) has the solution

x(t) = /gbp (fT T(S) )d7>ds+1 for t > T,

whose finite limitz(oco) is not zero.
This completes the proof of Theorem 2.1. O

In Theorem 2.1r(t) is allowed to be negative far> 0 andc(t) is allowed to change
its sign. In the special case in whigh= 2, Eq.(2.1) becomes the linear differential
equation

(r(t)z") + c(t)x = 0. (2.14)
Wintner [44] have presented the following result (see also Weyl [43]).
Theorem A. Suppose that
oo [t
/ fo le(s)|ds "
0 r(t)]

Then every solution(t) of (2.14)tends to a finite limit:(co) ast — oo and z(oo) does
not vanish for at least one solution (#.14).

9



Theorem 2.1 is a natural generalization of Theorem A from the linear differential
equation (2.14) to the half-linear differential equation (2.1).

As Theorem 2.1 shown, condition (2.4) is sufficient for Eq. (2.1) to have a solution
x(t) converging to a non-zero value @s+ co. The following result shows that condition
(2.4) is also necessary for this problem in the case in whi¢handc(¢) have the same
sign fort > 0.

Theorem 2.2. Suppose that(t)c(t) > 0 for ¢t > 0. If

/Ooo|c(t)|dt o (2.15)

fo s)|ds s
/¢p< EoT )dt— , (2.16)

then Eq(2.1)fails to have a solution:(¢) with z(co) # 0 (a finite limit z(oco) might be
infinity or not exists

and

Proof. By way of contradiction, we suppose that there exists a solution of (2.1) whose
finite limit 2(co) is positive. The proof of the case in whielioo) < 0 is carried out in
the same way as the proof of the case in whi¢ko) > 0.

We can find a" > 0 such that

x(t) > %x(oo) >0 for t>T. (2.17)

Integrating both sides of (2.1) twice, we obtain

z(t) = /%( Jpelr r(s) >dT+Té))ds+B, (2.18)

whereA = r(T)¢,(2'(T)) and B = z(T'). Taking into account that(z) andc(t) have
the same sign far > 0, we get

fre)dpla(s)ds A [rle(s)gy(a(s)ds A
(1) O (D) 0
le($)|gp(a(s))ds  |A]

= r(8)] r(®)]

fort > T. Since
¢p(2(t)) > ¢p(z(00)/2) for t >T
by (2.17), it follows that

Jreld(als)ds A @y(a(0)/2) [ple(s)lds | |A (2.19)

r(t) r(t) [7(1)] ()]
10




fort > T. From (2.15), we can choo$dg so large thaf; > 7" and

(1 - c%@)) TTl'C“"‘” > max { G 20 /OT'C(“‘C“}

Sinceg,(2) > 1,

(1 ¢p1<2>)/;'c<8)'d8 > max{ T B /OT'C“)'C“}

for ¢t > T7. From this inequality with (2.2), we see that

—6p((0)/2) / e(s)]ds + |A] < —,(x(00)/4) / e(s)ds

0

for ¢t > T;. Hence, together with (2.18) and (2.19), we can estimate that

o(t) = /@’(fT r(s) W*ré))“

/%(fT R

< [ (-2 el EoT) R

</1¢p*<_ ’/f( {0’ ’dT)ds+C+B

oo [op( Il A,

We therefore conclude that

fort > T}, where

for¢ > Ty, where




Consequently, we obtain

1 [e.e]
0 < z(o0) < —gx(oo)/ D

0

INEBILE
<—|7’(t)| )dt+D+C—|—B.

This is a contradiction because of (2.16).
The proof of Theorem 2.2 is now complete. O

The following result is a direct conclusion of Theorems 2.1 and 2.2.

Theorem 2.3. Under the assumption thait)c(t) > 0 for ¢ > 0 and condition(2.15),
condition(2.4)is necessary and sufficient for Eg.1)to have a solution converging to a
non-zero limit

To illustrate Theorems 2.1 and 2.2, we give simple examples.

Example 2.1. Consider Eq. (2.1) with

. s\ P
M) = (1+ 7Y and eft) — (%) _ (2.20)

Then it has a solutiom(t) for which z(co) # 0.
It is clear from (2.20) that

t
0

t
/ le(s)]ds < / (p*)P~tds = (p*)P~'t for t >0,
0
and therefore,
t * —1
00 d 00 xgp*—1 p
[P < [Con((EE) e
0 7 (t)] 0 (1 +tP7)
00 kgp*—1
_ / P oy
o (1+1P)
Hence, condition (2.4) is satisfied. Thus, by means of Theorem 2.1, we conclude that
every solutione(¢) of (2.1) with (2.20) tends to a finite limit(co) ast — oo andz(oo)

does not vanish for at least one solution.
The function

24 tP*
o) =
pH(1+17)
is a solution of (2.1) with (2.20) converging tgp* ast — oo. In fact, since
1
?(t) = ——,
(1477)

12



it is obvious that

2+t

o) = (LY ana o= (G)

Hence, it is easy to verify that

v@@@wmwww@@@»z—Qruﬂ“1(7ﬁi¢))

1+tp
. (p*(l + tp*))“( 2+ )pl
2+t p*(1+tP7)
=—t'+1=0.
Example 2.2. Consider Eq. (2.1) with
rt) =1+t and c(t) = %. (2.21)

Then every solution fails to have a non-zero limit.
It follows from (2.21) that

rt)e(t) = (p—1)(1+t)’2>0 for t >0,

¢
/ le(s)|ds = (p—1)log(1+1t) > 00 ast— oo
0

Jole(s)lds [ ((p—1)log(1+t)
K (ﬂ@n t‘l%( (o Vt
log(1+ )\

=%@—)0<1H

B o (log( )p B
=(p-1) /0 T+ dt = oo.

Hence, all conditions of Theorem 2.2 are satisfied. Thus, Eq.(2.1) with (2.21) fails to
have a solution converging to a non-zero limit.

To be more precise, we can express any solution of (2.1) with (2.21) satisfying the
initial condition (z(ty), z'(to)) = («, B) as

and

1(t) = {/lale + 6,((1+ 1)) "

X sin, (arctanp +log(1 + t)) : (2.22)

.
(1+t0)B

13



wheresin, t is the solution of a basic half-linear differential equation
(6p(a) + (0 = 1)plw) =0
satisfying the initial conditioriz(0), 2’(0)) = (0, 1); cos, t = (sin, t)’,

sin, ¢
tan, t = —2

cos, t

andarctan,, is the inverse function afan, in the domain—=, /2, 7,,/2);

/q 2 " 2
™, = = .
Py (L—te)t/p psin(m/p)

The functionssin, andcos, are periodic with perio@r, and the functionsin,, cos, and
tan, are usually called the generalized sine, cosine and tangent functions, respectively.
For details about the generalized trigonometric functions, sedy)®, p. 168—169] or
Dosly and P.Retak [10, pp.4-6]. It is clear that the solution given by (2.22) does not
have a non-zero limit.

Let us consider Example 2.2 from a different point of view. For this purpose, we put

y = dp((1+1)2)
as a new variable. Then, we can rewrite Eq. (2.1) with (2.21) as the system

, 1

r = —¢p*(y)a
1 ;f 1 (2.23)
Yy = —1—+t¢p(f’5)-

Let (x(t),y(t)) be any solution of (2.23). Then, the solution satisfies t{hét)|” +
ly(t)|P" = c for somec > 0. In fact,

%(!x(t)!p +y(O)F") = poy(a(t)2'(t) + p*épe (y(1))y' (1)

el (o(t)) ~ LD

__P
14+t

= 0.

Gp(y(t))p((2))

Hence, each nontrivial positive orbit of (2.23) is a closed curve surrounding the origin
(0,0) and it moves clockwise around the origin as time increases. This means that every
solution of (2.1) with (2.21) fails to have a non-zero limit.

14



3. Necessary and sufficient conditions for global attractivity

Before we advance to the main subject, it is very helpful to describe several relations
of the parameterg andp* and the functionp,(z) with ¢ = p or ¢ = p*. Since
1 1
—+ == 1,
p D

it follows that
(-1 —1)=1 and p=p"(p—1)
The following formulae concerning differentiation hold:

d d
— = (¢ —1)]z|*? — 2|7 = .
7 %(2) = (@ = D] and 2|7 = q¢y(2)
Let z(¢) be any solution of & L) with the initial timet, > 0 and define

0 W OF
p p

v(t) =
Since|p, ('(1)) [P = |2/ (t)|P"P~Y = |2/(¢)|P, we can rewrites(t) as

) P | o)
p p

v(t
Recall thatp,- is the inverse function of,. Then, we get

V(1) = 6p((t)a' (1) + By (B(a' (1)) (B0’ (1)))
= dp((1)2'(t) — 2'(t) (h(t) dp (' () + Pp((2)))
= —h(t)gp(a'(1))2'(t) = — h(t)|" ()"
fort > ty. Sinceh(t) > 0 fort > 0, we see that
v(t) <w(tg) for t > ty.
Hence, we obtain the following result.

Proposition 3.1. The equilibrium of(H L) is stable

In the linear differential equations such as Hg, (it is well known that if the equilib-
rium is attractive, then it is stable (for example, see Coppel [8, p. 54]). However, in non-
linear differential equations, the attractivity does not always imply the stability. The sta-
bility and the attractivity are completely different concepts in general. AlthoughfER) (
is nonlinear, Proposition 3.1 shows that it has this inclusion relatib(tjfis nonnegative
fort > 0.

We next present necessary conditions for the equilibriuntaf)to be attractive.
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Theorem 3.2. If the equilibrium of (H L) is attractive then

H(t) >0 ast— o

oo ft eH(s)dS

Proof. As mentioned above, sing¢ét) > 0 for t > 0, it follows that

and

=@ Iﬂf’(i)!p
p p

J(t) = — b (O > —p*h<t>{ } — ()

namely,’(t) + p*h(t)v(t) > 0 for t > t,. This differential inequality yields that
v(t) > v(to) exp{p*(H(to) — H(t))} for t >t

Since the equilibrium of § L) is attractive, the function(¢) tends to) ast — oo. Hence,
we see that (t) diverges tox ast — oo.
Multiplying both sides of Eq.H L) by ¢!/}, we obtain

(eH(t)gbp(x/))/ + eH(t)gbp(m) = eH(t)(Cbp(x/)), + h(t)eH(t)gbp(a?/) + GH(t)pr(x)
=0.

Hence, Eq.H L) becomes Eq. (2.1) with(t) = ¢(t) = e”®. For this reason, if (3.1)
does not hold, then by virtue of Theorem 2.1, Hfj/() has a solutior:(¢) which tends
to a non-zero limitz(co) ast increases. This means that the equilibrium GfZ() is not
attractive. Hence, (3.1) is also satisfied. O

So far as the special case in whieh- 2 is concerned, Smith [35] has already proved
the following result.

Theorem B. If the equilibrium of(L) is attractive then

H(t) 00 ast— oo (3.2)

oofgL GH(S)dS

As shown in Theorem B, conditions (3.2) and (3.3) are necessary for the equilibrium
of (L) to be attractive. On the other hand, Hatvani and Totik [24, Example 3.2] have
reported that conditions (3.2) and (3.3) alone are not sufficient for the equilibriuf) of (
to be attractive. Afterwards, many efforts has been made to bridge this gap. For example,
refer to [15, 21, 22, 23, 25, 31, 32]. An attempt was to strengthen condition (3.2) as
follows (see [16, 20, 28, 41, 42, 46)).

and
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Definition 3.1. A nonnegative function)(t) is said to bentegrally positiveif

> Unw(t)dt =0

n=1"YTn

for every pair of sequencds,, } and{o, } satisfyingr, +w < ¢,, < 7,41 for somew > 0.

It is known thaty () is integrally positive if and only if

t+y
liminf/ P(s)ds >0
t—o00 t

for everyy > 0. For example, the functiosin®¢ is integrally positive. The integral
positivity is rather stringent restriction than

t
lim / P(s)ds = oo.
t—o00

If ¢/(¢) is nonincreasing fot > 0 and tends to zero as— oo, then it is not integrally pos-

itive any longer. The following class of functions was introduced to weaken the concept
of the integral positivity.

Definition 3.2. An integrally positive function)(t) is said to baveakly integrally positive
if 7,01 < o, + 2 for some2 > 0.

We can find the concept of the weak integral positivity in the papers [19, 21, 26,
36, 37, 38, 40]. A typical example of weakly integrally positive function$ /6l + )
orsin®t/(1 + t). These are not integrally positive (for the proof, see Segiel. [39,
Proposition 2.1]).

Hereafter, assuming tha(t) is integrally positive or weakly integrally positive, we
advance our discussion. To begin with, we show that the integral positivitytpfand
condition (3.1) are sufficient for the equilibrium af/({) to be globally attractive. Need-
less to say, Theorem 3.3 below can be applied to Eg.Therefore, it is a natural gener-
alization of Hatvani [21, Corollary 4.3].

Theorem 3.3. Suppose that(t) is integrally positive and it satisfie.1). Then the
equilibrium of (H L) is globally attractive

Proof. As mentioned in the proof of Theorem 3.2, EH.L) is equivalent to Eq. (2.1)

with r(t) = c(t) = e’®. Itis clear that(¢)c(t) > 0 for ¢ > 0. Sinceh(t) > 0 fort > 0,
we see that{ (t) > H(0) = 0 for¢ > 0. Hence,

/ |c(t)|dt:/ eH(t)dtZ/ dt = oo;
0 0 0
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namely, condition (2.15) is satisfied. Since

oo f(f le(s)|ds o0 ft ef1) s
) e ( (o) | ol .
condition (2.16) is also satisfied. Consequently, by means of Theorem 2.2, every solution
of (H L) fails to have a non-zero limit.

The proof is by contradiction. Suppose that the equilibrium/1] is not globally
attractive. Then, EqH L) has a solution:(¢) for which

_ =OP !x’(i)\p
p p

v(t)

40 ast— oo.

Lett, be the initial time of the solutiom(t). Sincev'(t) = — h(t)|2/(¢)|P < 0 for t > t,
we see that(¢) is nonincreasing fot > ¢, and it has a positive limity. Hence, if|'(¢)|?
tends to0 ast — oo, then|z(t)[” have to approach the positive valpe, ast — oo.
This contradicts the fact that every solution éf £) fails to have a non-zero limit. We
therefore conclude thaitm sup,_, . |2'(¢)[? > 0. Let  be so small that

lim sup |2’ (¢)|P > upvo. (3.4)

t—o00

It is possible to find such a positive numherOn the other hand, if there exista> 0
and al; > t, such thata’(t)|” > v for t > T3, then we have

o(t) = = h(t)]2' (1) < — vh(t)

for t > T}. Integrating this inequality frorff; to ¢, we obtain

t t
—o(Ty) <o(t) —o(Th) = / V'(s)ds < — y/ h(s)ds,
T T
which tends to-oc ast — oo becauséed (t) diverges too ast — oo. This is a contra-
diction. Thus, we see that
liminf |2/ (¢)[P = 0 (3.5)

t—o00

Sincew(t) is nonincreasing fot > ¢, there exists d5, > ¢, such that
0< vy < U(t) < 2U0 for ¢ >T. (36)

Because of (3.4) and (3.5), we can choose three divergent seqyentes:,, } and{o,}
with 7, < 7, < t, < 0, < T41 SUCh thata!(7,)|P = |2/ (0,) P = poo, |2/ (ts) P = ppvg
and

|2’ (t)|P > pvg  for 7, <t <o, (3.7)

and
pvg < |2’ (6)P < pupvy  for 7, <t < t,. (3.8)

18



In fact, from (3.5) it follows thatz'(¢*)|P < pwv, for somet* > T,. Let
t1 =min{t > t*: |2/ (t)[" = ppvo},

T = max{t < t1: ’CC/(t)’p = /L'UO}

and
o1 =min{t > t1: |2/(¢)]P = poo }.

The existence of such numbers is guaranteed by (3.4), (3.5) and the continuity f.

Usingo; instead oft*, we definet,, 7 ando, similarly tot,, 7, andoy, and so on. Then,

T <1, <t, <o, <7y andr, — oo asn — oo. Also, (3.7) and (3.8) are satisfied.
Let us estimate the distance betweerandt,, for n € N. Since

p*)’ - @ i|y
dt dy

p*

! x
=y P - (y)
Y= (1)) P =@ )

= 0" (6(' (1)) dpr (05(2' (1)) = 0™ ({2’ (1)) ' (1),

(I6p(2'(1))

we obtain

=/wawwwwﬁ:pjw@wmefwﬂ.

Taking into account that(¢) > 0 for £ > 0, we get
== (= 100, (0) = 0 a(0)a 01
= [ (MO P =~ ) 0)a
<o [ o)l ol

From (3.6) and (3.8) it follows that
lz(t)|P < 2pvy for t > T,

and .
|Z'(t)] < (puwvo)» for 7, <t < tp,

respectively. Hence, we can estimate that
N oy 1 p=1 1
(p — D pvo <p/ 277 purvodt =277 pp*urvg(t, — 74);
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namely,

Sip—1 F( LY
oo (7= () ()
2 pp 27 \p
for eachn € N. Itis clear that the numbéy:/2)'/7"(1/p*)? is independent of.
Since[r,,t,| C [m,,0,)], it follows thatr, + w < o, for eachn € N, wherew =

(1n/2)Y7(1/p*)2. Hence,
3 / " h)dt = 0o (3.9)

becausé.(t) is integrally positive. However, from (3.7), we see that

() — v(7) = / ")t = — / )| ()t

Z/T Bl (BPdt < — ,woz/

This contradicts (3.9). We have thus proved Theorem 3.3. O

As already mentioned, fi(¢) is nonincreasing fot > 0 and tends to zero as— oo,
then it is not integrally positive. For this reason, we cannot apply Theorem 3.3 to the
damped oscillator

(6n()) + B0, () + 04(2) =0

although condition (3.1) is satisfied. In fact, siride) = (p — 1)/(1 + t), we can easily
confirm that

e = (14 ¢! and /H(Sds— {(1+t)P —1}.

Sincep > 1, we see tha?”? — 1 > p. Hence, we obtain

/%(fo )dt>/¢p<f0 H(Sd5>dt /__OO;

namely, condition (3.1).
To overcome this weak point, we assume thaj is weakly integrally positive instead
of integrally positive. Then, we need an additional condition concerhihg

Theorem 3.4. Suppose thak(t) is uniformly continuous fot > 0 and weakly integrally
positive and suppose théd.1)holds Then the equilibrium of 4 L) is globally attractive

Proof. Sinceh(t) is uniformly continuous for > 0, we can find & > 0 so thath(«) —
h(B)| < 1 whenevery > 0 and$ > 0 with |« — 3| < ¢. Note that) is independent of.
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The proof is by contradiction. Suppose that the equilibrium/1] is not globally
attractive. Then, EqQH L) has a solution:(¢) satisfying
_BOF |x’(i)|p
p p

v(t)

N v >0 ast— oo.

Let ¢, be the initial time of the solutiom(t). Sincew(t) is nonincreasing for > t,, there
exists al’ > t, such that
vo <o(t) <2vy for t >T. (3.10)

By means of the same argument as in the proof of Theorem 3.3, we can show that
limsup,_, ., |/(¢)|P is positive andim inf; .., |2'(¢)|P IS zero. We may assume without
loss of generality that

limsup |2/ (¢) [P > ppwo,

t—o00

where
1

(3+2/6)”" +p/p*
Sincelim inf, ,. |2'(t)[? = 0 < ppvy < limsup,_ |2'(t)|P, we can select three di-
vergent sequences, }, {t,} and{o,} with T" < 7, < t, < 0, < 7,41 such that
|2 (1) [P = |2 (00) [P = pwvo, |2/ (80) [P = ppvo and

0<p< (3.11)

|2/ ()P > pvg  for 7, <t < oy, (3.12)
pvg < |2’ ()P < puvg  for 7, <t < t,. (3.13)

and
12" ()P < ppvg  for o, <t < 741 (3.14)

Using (3.10) and (3.13) instead of (3.6) and (3.8), respectively, and following the same
process as in the proof of Theorem 3.3, we can estimationrthatw < o, for each

n € N, where
1 2
_ (H)?" 1
w=(* (p)

From the uniform continuity of(¢), we see that
|h(t) — h(o,)| <1 for o, -6 <t <o,+0. (3.15)
Let us pay attention to the value bft) att = o,, for eachn € N. Define

S ={n € N: h(o,) > 2}.

Claim 1. The number of elements in the sets finite.

Suppose that is infinite. Letd = min{d,w}. Then, from (3.12) and the fact that
. +w < o, for eachn € N, we obtain

|2’ ()P > pvg for o, —d <t < o,. (3.16)
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From (3.15) it follows that, € S implies that
h(t) >1 for o,—d <t <o,.
Hence, together with (3.16), we get
/ h(t)|2' (t)[Pdt > duvy  if n €S,
on—d
and therefore,

o0) ~olto) = [ V(5)ds =~ [ W o)ds

to to

<-3 / :nh(t)|x’(t)]pdt <.

nes

This is a contradiction. Thus, Claim 1 is proved.
From Claim 1, we see that there exists/dre N such that

h(o,) <2 for n > N.

(3.17)

Next, let us pay attention to the distance between intefvalsr,,| and[7,.1, 0,,11] for

eachn € N. Taking into account that

and using (3.10) and (3.14), we obtain

ot (m(1-5)) = (- )

|6p (2" (1))] = |2 ()P < (ppvo)?
foro, <t < 7,,1. Hence, we have

and

(@ 0)'| 2 6] = (Bl ()] = (B = by (1)

1

> (1= 2))" = nO o)

Claim 2. The sequence§r, } and{o,} satisfyr,.; — 0, < dforn > N.

foro, <t < 71.
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Suppose that there exists ap > N such thatr,,,.1 — 0,, > 6. Then, from (3.15)
and (3.17) it follows that

h(t) <1+ h(on,) <3 for o, <t < op,+9.

Hence, from (3.11) and (3.19), we can estimate that

1

‘(%(m/(t)))/’ ~ (p“0(1 - %))p*— 3(pp) v > %(puvo)z’l* >0

foro,, <t < o,,+ 6 < 7,+1. INtegrating this inequality from,,, to o,,,+ d, we obtain

Tngtd ,
[ ey a

0

O'n0+6 o
:/ ‘(@,( ’dt>2p/wo) P

0

|6p( (g + 0))| + |p( (0mg)) | =

which contradicts (3.18). Thus, Claim 2 is proved.
From Claim 2, we see that there exists{arn> 6 such thatr,,,; < o, + €2 for each
n € N. Recall that,, + w < o,, for eachn € N. Hence,

i / "h)dt = 0o (3.20)

becausé(t) is weakly integrally positive. However, from (3.12), we see that

() — v(7) = / "t = — / " hl ()t

< - Z/ |2 () Pdt < — /M)OZ/

This contradicts (3.20). Thus(t) fails to have any positive limit,.
The proof of Theorem 3.4 is thus complete. O

Theorem 3.4 is new even in the linear case in which 2. We can now combine
Theorems 3.2—-3.4 with Proposition 3.1 to obtain the following result.

Theorem 3.5. Suppose that one of the following assumptions

(i) h(t)is integrally positive

(i) h(t) is uniformly continuous fot > 0 and weakly integrally positive
holds Then the equilibrium of H L) is globally asymptotically stable if and only if con-
dition (3.1) holds
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Hatvani and Totik [24, Theorem 3.1] have established a criterion for judging whether
the equilibrium of damped linear oscillators is asymptotically stable or not. Applying
their criterion to Eq. ), we have the following result.

Theorem C. Suppose that there existggwith 0 < v, < 7 such that

t+70
lim inf/ h(s)ds > 0.
t

t—o0

Then the equilibrium of L) is asymptotically stable if and only if conditi¢8.3) holds

In addition, they pointed out that the requirement that 7, < « in Theorem C was
the best possible (see [24, Example 3.2]). Recall/igtis integrally positive if and only
if

t—o00

t+y
liminf/ h(s)ds > 0
t

for everyy > 0. Hence, the assumption regardilg@) of Theorem C is weaker than the
integral positivity. Even in this sense, Theorem C is very nice. Unfortunately, however,
Theorem C cannot be applied to the case in whi¢h disappears as — oo. On the

other hand, Theorem 3.5 has a strong point that it is possible to apply to even in such a
case.
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