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Abstract The following system considered in this paper:

X =—etx+ft)@g(y), Y=-(pP—1)at)@(x) —(p—DhM)y,

wherep > 1, p* > 1 (1/p+1/p* = 1) andgy(z) = |z/92zfor g = p or g = p*. This system

is referred to as a half-linear system. The coefficiéft) is assumed to be bounded, but
the coefficientse(t), g(t) andh(t) are not necessarily bounded. Sufficient conditions are
obtained for global asymptotic stability of the zero solution. Our results can be applied to
not only the case that the signs fft) andg(t) change like the periodic function but also
the case thaf (t) andg(t) irregularly have zeros. Some suitable examples are included to
illustrate our results.
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1 Introduction

The purpose of this paper is to give sufficient conditions for the zero solution to non-
autonomous two dimensional systems of the form

X = —e(t)x+ f(t) @ (y),

(1.1)
Y =—(p—1)gt)@(x) — (p—1h(t)y
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to be globally asymptotically stable. Here, the prime dendtélt; the coefficientse(t),
f(t), g(t), andh(t) are continuous fot > 0; the two number$ and p* are positive and
satisfy

the functiongy(z) is defined by
w2 =12%%2  zeR

for g = p or g = p*. Note thatp > 1 andp* > 1. If (x(t),y(t)) is a solution of (1.1), then
the function(cx(t), g(c)y(t)) is also a solution of (1.1) for any< R. However, the sum of
two solutions of (1.1) is not always a solution of (1.1). In other words, the solution space of
(2.1) is homogeneous, but not additive.

We say that the zero solution of (1.1)gkobally attractiveif every solution(x(t),y(t))
of (1.1) tends to the origif0,0) as timet increases. In addition, if the zero solution of (1.1)
is stable, then it is said to ligobally asymptotically stabldt is not too much to say that the
study of the global asymptotic stability of dynamical systems occupies an important position
in the qualitative theory of differential equations. There are a lot of applications concerning
the global asymptotic stability.

Throughout this paper, we assume that there exist positive numbgdsand 8 such
that N

Et)=—a (A1)

and

B <exp(pE(t) -+ <B (A2)

t
fort > 0, whereE(t) d:ef/ e(s)ds Itis not necessarily assumed tHét) andg(t) are always
0

positive. Note thaf (t) andg(t) are allowed to become zero at the same time. For example,
if e(t) =0, f(t) =sint andg(t) = sint + (sin3)/2, then assumptionA() and @) are
satisfied witha = 1, B = 2/5 and = 2.

Consider the special case thet) = 0, f(t) = 1,

c(t) a(t)+b(t)

t)y=———— and h(t)=————=,

9= o= Dat) ©=p-Da)

wherea(t) is positive and differentiable for all> 0. Then, taking into account thgt=
@ (X), we can rewrite system (1.1) as the second-order differential equation

(at) (X))’ +b(t)@(X) +c(t) gu(x) = O, (1.2)

which is a basic kinetic equation jif = 2. The solution space of (1.2) is also homogeneous,

but not additive. For this reason, equation (1.2) is said ttdlé&linear. Since the half-

linear differential equation (1.2) is a generalization of the second-order linear differential
equation with variable coefficients, many good articles are reported ceaselessly over the past
four decades. Those results can be found in the books [1, 14, 15] and the references cited
therein. However, strangely, the studies of half-linear differential equations (or systems)
are concentrating on oscillation theory. There are not so many researches on the global
asymptotic stability of the zero solution of half-linear differential systems. Especially, little

is known about the case that the coefficients change the sign like the periodic functions.
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Although such a case is significant on the applied aspect, it is hard to examine the asymptotic
behavior of solutions.

Very recently, the present authors [53] have discussed the stability problem for system
(1.1) in the special case théft) andg(t) are the same periodic functions. By putting

Y(t) = ph(t) — pet),

they reported the following result.

Theorem A Suppose that

(i) f(t)=g(t)£0and f(t) is periodic

(i) E(t) and ht) are bounded for t O;
(iii) (1) is weakly integrally positive fort 0;

W) /0 “w(t)dt < o,

where
o (t) =max{0,y()} and @_(t) =max{0,~y(t)}.
Then the zero solution dfL.1)is globally asymptotically stable

Note that the weak integral positivity @f, (t) is a stronger assumption than

t
im [g.(9ds—e

(for the definition of the weak integral positivity, see Sect. 3). It is clear that the above as-
sumptions (i) and (ii) imply assumption&4) and @,). Sincef(t) is assumed to be periodic,

it is allowed to change the sign. Unfortunately, however, assumption (i) is too strong to be
applied to any practical case. For examplé(if) = g(t) =tsint/(1+t), thenf(t) andg(t)

are asymptotically periodic functions, but are not periodic functions. Hence, Theorem A
cannot be applied. The following question then arises. In Theorem A, cannot we change
only assumption (i) into the assumption thigt) = g(t) # 0 and f(t) is asymptotically
periodic? Of course, Theorem A is not useful everi {f) andg(t) are different periodic
functions. It may be natural to consider whether or not assumption (i) can be weakened to
the assumption théft(t) andg(t) are different periodic functions with the same period. But,

if e(t) =0, f(t) = sint, g(t) = cost andh(t) = 1/(1+t), then the zero solution of (1.1) is

not globally asymptotically stable though assumptions (ii)—(iv) hold. Here, other questions
are caused. What kind of condition dift) andg(t) will guarantee the global asymptotic
stability of the zero solution of (1.1) under the assumption fi{e andg(t) are different
periodic functions with the same period? To begin with, will some periodicity be necessary
for f(t) andg(t)? Is not the zero solution of (1.1) globally asymptotically stable whigh
andg(t) irregularly have zeros?

We answer the above questions in this paper. For this purpose, we define a class of
bounded functions, which contains all nontrivial almost periodic functions and asymptoti-
cally almost periodic functions (for those definitions, see Sect. 2). To show that this class
of functions covers a wide range, we give easy examples in Sect. 2. The main result and its
corollary are stated in Sect. 3. A certain function composed by all the coefficients plays a
vital role in our results. We call this a characteristic function. To compare our theorems with
previous results on the asymptotic stability, we outline the evolution of Lyapunov’s direct
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method. In particular, we explain that our results are not settled by Biarbad Krasovsks
theorem and Matrosov’s theorem. We give the proof of the main result in Sect. 4. This sec-
tion is the core of the present paper. Our method is to examine the asymptotic behavior
of solutions of (1.1) by using a certain function described by coefficients and solutions in
addition to a Lyapunov function and the characteristic function. In Sect. 5, we improve the
boundedness df(t). We show that liminf.. |h(t)| has only to be finite. Through a simple
example, we mention that the zero solution of (1.1) is not necessarily globally asymptoti-
cally stable in the case that lims |h(t)| = . Finally, in Sect. 6, we give some examples to
illustrate our results.

2 Property (P)

Before we go on to the main subject, let us define a family of bounded functions.

Definition 2.1. A nontrivial bounded functio (t) is said to havgroperty(P) if there exist
positive number®, w andd with w > d, and a positive sequen¢g,} with ty < w—d such
that

Xt) >0 if (m—lw+tn<t<(Mm-1)w+tn+d (2.1)
or
Xt) <=6 if (m—lw+tna<t<(M—1)w+tn+d (2.2)

for m e N sufficiently large.

It is clear that any nontrivial periodic function has prop€f®y. For example, consider
the periodic functiory (t) = sint. Then, it has propert{P) with 6 = 1/2, w =1, d = 217/3
andt, = 11/6 for allme N.

There are some definitions of almost periodic functions. The concept was first studied by
Harald Bohr. When we limit the domain of an almost periodic function from the whole real
line to the nonnegative real line, his definition becomes as follows: a continuous function
X (t) is said to bealmost periodidf, for any € > 0, there exists a positive numbee) such
that any interval of length(¢) contains at least one numbefor which

[x(t+1)—x(t)|<e fort>0.

As to almost periodic functions, for example, see the books [7,8, 10,12, 13, 16, 20, 28, 39,
56].

Lemma 2.2 Any nontrivial almost periodic function has prope(#).

Proof As is well known, any almost periodic functigq(t) is bounded and uniformly con-
tinuous. Sincex(t) # 0, there exists & > 0 such thatx(t*) > 0 or x(t*) < 0. We may
assume thax (t*) > 0, because the proof of the case tyét") < 0 is essentially the same
as that of the case thg(t*) > 0. Sincex (t) is continuous fot > 0, there exist two numbers
aandb with 0 < a < t* < b such that

x(t*) fora<t<h (2.3)

Al w

x(t) >



Global asymptotic stability for half-linear differential systems 5

Sincex(t) is almost periodic, there existsla=1(x(t*)/4) > 0 such that any interval of
lengthl* contains a for which

1
X(t+1) = x(O)] < 4 x(t") fort=0.

We may assume without loss of generality that- b.

Letd = x(t*)/2, w= 21" andd = b—a. Then,w > I* > b > b—a=d. Consider the
interval [(m— 1), (m— 1)w+1*] for anym € N. Note thatj(m— 1)w, (m— 1)w+1*] and
[mw, mw+1*] do not intersect each other. Since the length(iof— 1), (m— 1)w+1*] is
I*, we can find am € [(M— 1), (M- 1)w+1*] such that

1
X(t+1Tm) =X (O] < 5 x(7) for t=0.

Hence, together with (2.3), we obtain

X(E) > X0 X+ )| > X0~ X(C+T) > 5 X(E) ~ X(t+Tn)

for a <t < b. By rewriting this, we get
xXt) > %X(t*) =0 for a+Tm<t<b+Tn.

Let ty = a+ tm — (M— 1)w for eachm € N. Then, sincd* > b and(m—1)w < T, <
(m—1lw+I1*, weseethatxa<tn<a+l*<a+2*—b=w-dand

Xt) >3 for (Mm—1lw+tn<t<(M-1)w+tn+d.

We therefore conclude thgt(t) has propertyP). O

Following Fréchet [17], a continuous functign(t) is said to beasymptotically almost
periodicif, it is a sum of an almost periodic functigo(t) and a functiorg(t) which tends
to zero ag — w; that is,

X(t)=p(t)+q(t) fort=>0

(see also [10,56]). We can also show that any nontrivial asymptotically almost periodic
function has propertyP) (we omit the details).

Let us give some examples of the function which has propéttyexcept for periodic
functions, almost periodic functions and asymptotically almost periodic functions. For any
neN, letay, = n?+n— 2. We divide the nonnegative real lifi@ «) into two sequences of
intervals

and Jn: [M T@n 1

2’ 2

I_[nan m(an+2)
"l 2 2 2

Example 2.3Let x(t) be a continuous differentiable function satisfying

cogt if tE€ly 3

—cost  if telg o
X(t) = .

—cost  if tE€lgk

cost if el
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with ke Nandy(t) = (—1)" fort € J,. Then,x(t) has propertyP).

The length ofl,, is alwaysr for any n € N. Since the length ody, is rm, it tends toco
asn — co. Hence,x(t) given in Example 2.3 is neither an almost periodic function nor an
asymptotically almost periodic function.

Note thata, is even for anyn € N. Then, we can confirm that(t) in Example 2.3 has
property(P) with  =1/2, w =1, d = 17/3 andt,, = 0 forallme N.

Here, we define two functions as followst) = v/t siny/t and

t/4 ifo<t<?2
s(t) = 1/2 if2<t<m—2
—(t—1m)/4 fmP-2<t<m®
with s(t + %) = s(t) for t > 0. Needless to sag(t) is a nonnegative periodic function with
period 7%, butr(t) is not even an (asymptotically) almost periodic function. It is clear that

s(t) has propertyP) with 6 = 1/2, w = 1%, d = 1 — 4 andty, = 2 for allm N. Note that
r(t) vanishes at = 0 andt = 7°n?. Taking into account that (°n?) = (—-1)"/2 and

PR
tlm r'(t) =1,
we conclude thad(t) <|r(t)| fort > 0. Hencer (t) satisfies the inequality (2.1) or (2.2) with

6=1/2,w=1?,d =17 -4 andty, = 2 for all m € N. By using the function (t), it is easy
to exhibit another example of propery).

Example 2.4The function
X(t) = max{min{r(t),1},~1}
has propertyP).

3 Our main result and development of Lyapunov’s direct method

Here, we give the definition of the weak integral positivity that is assumed in Theorem A.
The weak integral positivity is an important concept even in the present paper.

Definition 3.1. A nonnegative function is said to beveakly integrally positivéf

Jodt=e

for every setl = U [Tn, On] such thatth + 0 < 0n < Tny1 < On + A for somed > 0 and

n=1
A > 0.

We can also find the concept in the paper [22, 24, 25, 31,51, 52]. A typical example of
weakly integrally positive function is/{1+t) or sirft/(1+t) (for the proof, see Proposi-
tion 2.1 in [53]). Any nonnegative periodic function is also weakly integrally positive. If
is weakly integrally positive, then it naturally follows that

lim /t¢(s)ds: .

t—oo
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To state our main result, we assume théf /g(t) is differentiable fot > 0 and define
the characteristic function

J— —_ m @ /
W(t) = phit) - pet) + 3 (f(t)) '

This assumption does not mean that both) andg(t) are differentiable fot > 0. For the
sake of brevity, we write

Y (t) =max{O,¥(t)} and Y_(t) =max{0,—¥(t)}.

In the case thaf (t) = g(t), then¥,(t) and W_(t) are the same ag, (t) and ¢_(t) in
Theorem A, respectively.

Theorem 3.2 Let assumptiongA;) and (A2) hold and suppose that(tf) /g(t) is differen-
tiable for t > 0. Suppose also that

g(t)/exp((p—1)E(t)) has propertyP); @1
h(t) is bounded for & 0; 3.2)

W, (t) is weakly integrally positive (3.3)
/Omw, (t)dt < . (3.4)

Then the zero solution dfl.1)is globally asymptotically stable

As known well, Lyapunov’s direct method is a tool which is effective to examine the
asymptotic behavior of solutions of differential systems. Although this method is conve-
nient to deal with stability problems roughly, it is not so easy to seek available Lyapunov
functions. For example, to show that the zero solution is globally asymptotically stable,
we need to find a Lyapunov function which is positive definite and radially unbounded and
whose total derivative along any solution is negative definite (for example, see [2, 6, 41-43]).
Unfortunately, however, it is very difficult to construct such a suitable Lyapunov function
for a concrete system. Even if we choose the total energy as a Lyapunov function, the deriva-
tive of the Lyapunov function is not always negative definite. Hence, such Lyapunov-type
theorems has a big weak point.

To overcome this weak point, a great deal of efforts has been made. The main attempt
was to weaken the negative definiteness of the total derivative. For examplesiRaahd
Krasovski [6] have presented asymptotic stability criteria for autonomous systems un-
der the assumption that the total derivative of Lyapunov function is nonpositive and that
the set where the derivative is zero contains no complete trajectories except the origin.
Krasovski [32] proved that these criteria can be applied even to periodic systems. However,
it is necessary to find a suitable periodic Lyapunov function. LaSalle [35] called the essence
of Barba&in and Krasovskis argument ‘invariance principle’ and extended it to a particular
case of nonautonomous systems (see also [34, 36]). Note thatBaana KrasovsKs the-
orem cannot be extended to a general case of nonautonomous systems (refer to [44]). Much
ink has been spent on extensions of the Bairb&rasovski-LaSalle method (for example,
see [4,9, 18,19, 23, 29, 30, 38, 55]).
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There is another direction to weaken the negative definiteness of the total derivative.
Matrosov [44] has dealt with the general nonautonomous system

= F(t,x)

with F(t,x) being bounded with respecttoAssuming the existence of a Lyapunov function
which is positive definite and decrescent whose total derivative is not greater than a nonpos-
itive and time-invarient function and using an additional auxiliary function, he proved that
the zero solution is uniformly asymptotically stable. Matrosov's theorem was extended in
various directions by himself and many researchers (for example, see [3, 21, 22, 33, 37, 45,
47,49,50]).

About the above-mentioned stability theory via Lyapunov’s direct method, we can refer
to the book [48] greatly. In any case, it is assumed that the total derivative of Lyapunov
function is at least non-positive.

We cannot apply Barl¥n and KrasovsKs theorem, because system (1.1) is neither au-
tonomous nor periodic. Let us examine whether Matrosov’s theorem is applicable to system
(1.1) or not. For this purpose, we adopt

Vitoxy) = explpE) (ixP+ (P )

as a suitable Lyapunov function, which is regarded as a total energy for system (1.1). Then,
taking account of the relations

d
d—zz|q:qqh(z) and zgy(z) = |Z|9

forg= porq= p*, we get

f(t)

p
oy

Vin(t.x.y) = peft) exlpE(t)) (|xwp

)
+exppE(t) { P + Effpp o+ (L :))Mp*}
)

— pet)exp(pE(t) ()4°+ o1
PP - SO + ey O)
0 (- D exp(pED) (-1 OBRIA ()~ v 1)
+exp(pE(t))<%) ‘y;f..

Sincep*(p—1) = pand

~—

T () ~a0 ()
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we obtain

Vit xy) = explpE(t) Ly "*{ Pt =P+ T\ 50 }

9(t) ®\g
— LOIV _ LMUNEORY
— - exp(pe) " { i) - pett) + 11 (%)
=~ W) exp(pE(®) | Iy 35)

a(t)

We define another Lyapunov function

U(t,xy) =V(t,Xxy) exp(—/otw,(s)ds).

Then,

(ePxP+BIy®) exp(— [ w,(t)dt) <V(t,xy) exp(— / llL(t)dt)
- Jo 0
S U (t7x7 y)?
wherea andf are the numbers given in assumptioAg)(and @z). Hence, we see that

(&) U(t,x,y) is positive definite and radially unbounded if and only if condition (3.4) is
satisfied.

Moreover, by (3.5),

. . t
Uap(txY) = {Mayt,xy) — P ()V(t,xy)} exp<—/O W,(s)ds)

=_ {U-L(t)|x|P+ %(t)%\w p*} exp(pE(t) —/Otw,(s)ds) .

If condition (3.4) holds, the®_(t) tends to zero as— . Hence,
(b) U(l_l)(t,x,y) is not negative definite but it less than or equal to zero.

If the characteristic functiod?(t) is not less than a positive valuefor all t > 0, then

Y (t) =0 and¥, (t) = W(t) > cfort > 0. In this case, we might be able to prove that the
zero solution of (1.1) is only locally asymptotically stable by use of Matrosov’s theorem.
However, since

(c) U(t,x,y) is not decrescent;
(d) W, (t) is allowed to tend to zero ds— ;

(e) e(t) andg(t) are not always assumed to be bounded (in addition, the boundedness of
h(t) is not assumed in Sect. 5),

it is hard to apply Matrosov’s theorem to the proof of Theorem 3.2, in particular, the global
attractivity of the zero solution of (1.1).

Before proving that the zero solution of (1.1) is globally attractive, we verify that the zero
solution of (1.1) is stable and all solutions of (1.1) are bounded. As mentioned above, if as-
sumptions A1), (A2) and condition (3.4) are satisfied, then the Lyapunov fundti¢nx,y)
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is positive definite and radially unbounded and the total deriva'l'tyq)(t7x7y) along any
solution of (1.1) is nonpositive. Hence, by means of theorems due to Lyapunov [40] and
Yoshizawa [54], we conclude that the zero solution of (1.1) is stable and all solutions of
(1.1) are bounded, respectively (refer also to Theorem 4.2 in [48, p.13] or to Theorem 8.7
in [56, pp. 67—68]). To sum up, we obtain the following result.

Proposition 3.3 Suppose thatA;) and (Az) hold. If (3.4)is satisfiedthen the zero solution
of (1.1)is stable and all solutions of1.1) are bounded

If we assume that
Et)|<a fort>0, (As)

instead of A1), then
t

t)
from @3) that

f(
=3

implies assumptionAp). It also follow.

~—

<B fort>0 (As)

—

(2]

exp((p—DE(t)) <eP~V fort>0.

We therefore conclude that
g(t) has propertyP) (3.6)

implies condition (3.1). Hence, we have the following result.

Corollary 3.4 Let assumption$A3) and (A4) hold and suppose that(ff) /g(t) is differ-
entiable for t> 0. If (3.2)«(3.4) and (3.6) are satisfiedthen the zero solution ofl.1) is
globally asymptotically stable

Note that assumptiong{) and @) are stronger than assumptiorg ) and @z). Using
Lyapunov-type theorems witl (t,x,y) above, we can easily prove that under the assump-
tions (Az) and @4) with condition (3.4), the zero solution of (1.1) is uniformly stable and
all solutions of (1.1) are uniformly bounded. For the definitions of uniform stability and
uniform boundedness, see the books [48, 56].

4 Global attractivity
Let (x(t),y(t)) be a solution of (1.1) with the initial timig > 0 and let
v(t) =V (tx(1),y(t)),

whereV (t,x,y) is the Lyapunov function given in Sect. 3. Then, from the equality (3.5), it
follows that
d

V(t) = aV(LX(t),Y(t)) =Vt x,y) 0 ()
f(t)

= —¥(t)exp( pE(t))@\y(t)l”* S $(v(D)
fort > to. SinceY._(t) satisfies condition (3.4), as in the proof of Lemma 5.2 in [53], we see
thatV'(t) is absolutely integrable, and therefové,) has a limiting valuer > 0.
We are now able to demonstrate our main result stated in the first half of Sect. 3.
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Proof of Theorem 3.2BY virtue of Proposition 3.3, we conclude that the zero solution of
(1.1) is stable. Thus, we have only to prove that the zero solution of (1.1) is globally attrac-
tive; that is, every solution of (1.1) approaches the origin.

From assumptions®) and @) it turns out that

e PIx(t) [P+ Bly(H)P < v(t)

for t > to. Hence, if the limiting values of v(t) is zero, then botix(t) andy(t) tend to
zero ag — . This means that the solutigm(t), y(t)) approaches the origif0,0) as time
t increases. This completes the proof. Hereafter, we consider only the case inwylsch
positive and we show that this case cannot happen.

For the sake of convenience, let

u(t) = exp pE(t))%wanp*.

Then, using 42), again, we obtain
Bly®)” < u(t) < Bly(t)|” (4.1)

for t > to. From Proposition 3.3, we see thad(t),y(t)) is bounded fott > to. Hence, it
follows from (4.1) thatu(t) has an inferior limit and a superior limit. First, we shall show
that the inferior limit ofu(t) is zero, and we shall then show that the superior limit(f is
also zero.

Suppose that liminf,, u(t) > 0. Then, there exist @ > 0 and aT; > tp such that
u(t) > A fort > Ty. Since

V()= -®(tut) fort>tg, 4.2)

it follows that
/ |\/(t)|dt:/ \W(t)\u(t)dtz/ L.U+(t)u(t)dt>)\/ W, (t)dt.
to to T1 T
Hence, from the fact thaf(t) is absolutely integrable, it turns out that
W, (t)dt < oo,
T

On the other hand, from (3.3), we see that

W, (t)dt = co.
T
This is a contradiction. We therefore conclude that limigfu(t) = 0.
Suppose that limsyp,, u(t) > 0. Letu = limsup_,,, u(t). From @Ay), it follows that

__ Blg®
—exp((p-1E())

Sinceg(t)/exp((p— 1)E(t)) has propertyP), it is bounded fot > 0. Hence, there exists a
y > 0 satisfying

fort>0.

exp(E(1))[f(t)]

exp(E(t))|f(t)| <y fort>0. 4.3)
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It also follows from (3.2) that there existsha> 0 with
[h(t)] <h fort>0. (4.4)
Sincev(t) tends to a positive value ast — o, there existd, > to such that

2p-1

1
0< —pvo <v(t) < Vo fort>To. (4.5)

Note that 2 —1 > 1. By (3.1), we can choose positive numbéisw, d and a positive
sequencdtn} satisfying

9(t)]
exp((p—1E(t))

Let € be so small that

S A= S IF M

>0 for (Mm—1lw+tm<t<(M-1)w+tm+d.

It is possible to find such a positive humbgrbecause the left-hand side approaches a
positive number but the right-hand side approaches zegea®. We may assume without
loss of generality that < min{v/2,vo/p}.
Since liminf_.. u(t) =0 < v =limsup_,,, u(t), we can select three divergent sequences
Tn, Pn @nd oy With To < Ty < Pn < On < Tpy1 Such thau(t,) = u(on) = €, u(pn) > 3v/4,
uit)>e for Ty <t<op 4.7)
and
ut)<e for on<t<tpy1. (4.8)

Sincee < u/2 andu(p,) > 3u /4, we also find two sequencigands, with T, <t, < s, < pn
such thau(t,) = v/2,u(s,) =3v/4 and

1 3
éu<u(t)< i for th <t < sn. (4.9)

Needless to say, the intervdls,, gn] and [tn,s,] have the inclusion relation thdth, s, C
[Tn, On]. Taking into account that

exp(PE(t))[x(t)[P = v(t) — u(t)

and using (4.5) and (4.8), we obtain

_ (p-1)/p _ 1/p*
exp((p—DE®) xB)[P L > (%) - (%) >0 (4.10)
for on <t < Th41. From (4.1) and (4.8), we see that
u(t) 1/p* e 1/p*
ly(t)] < (B) < <l3> for on <t < Tny1. (4.11)

We shall show that the distance between interlglso,) and[1,1,0n+1] does not un-
limitedly grow asn — oo,
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Claim. The sequencefry} and{on} satisfytn;1 — on < 2w for n € N sufficiently large.

Suppose that there exists a sufficiently langes N such thatrp, 1 — 0n, > 2w. We can
choose ammg € N such thaimy — 2)w < 0y, < (Mp — 1)w. Since

Tng+1 > Ony + 200 > (Mg — 2) w+ 2w = Myw,
we see thaf(mg — 1) w, Mow] C [Ty, Tny+1). Let US turn our attention to the interval
[(Mo— 1), mow.

Note thatg(t)|/exp((p—1)E(t)) > 6 for (mp— 1) w+tm, <t < (Mp—1)w+1tm, +d. Hence,
from (4.4), (4.10) and (4.11) and the second equation of (1.1), we can estimate that

Y O] = (p=Dlgb)][gp(x(t)] = (p— ) h(®)[ly(t)]
(P—1{lg®)IIx®)[P~* — It ly(t)]}

1/p*
> (p—l){5exp((p—1)E(t))X(t)l"1—h (;) }

Cne /P /e’
()

for (mp— 1) +1tm, <t < (Mg—1)w+tm, +d. From (4.6), we see that

in this interval. Integrating this inequality, we obtain

(Mo — 1)+ tmg +d)| + |y((Mo — 1)+t )| > y (t)dt

/(nb—l)w-o—tmo+d
(

Mo —1) w-+tm,

|y (t)dt

/(nh—l)w+trrb+d
(Mo—1)w-+tmy

e 1/p*
>2|( = ,
<ﬁ>
which contradicts (4.11). Thus, the claim is proved.
Letl = U [Tn, On]. Then, it follows from (4.2) and (4.7) that
n=1
/ WV (t)[dt :/ W) |u(t)dt > / W, (tu(t)dt > s/ W, (t)dt.
fo fo fo |
SinceV/(t) is absolutely integrable, it turns out that

/I W, (t)dt < . 4.12)
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Now, suppose that there exist®a> 0 such tha,, — 1, > 0 for eachn € N. By the Claim,
there exists & > 2w such thatr, 1 — g, < A for anyn € N. Hence, by (3.3),

/l%(t)dt:

This contradicts (4.12). We therefore conclude that liminf(on, — 7h) = 0. Sincetn, s C
[T, On), it follows that

liminf(sy—ty) =0. (4.13)

n— o0

By (4.5) and (4.9), we obtain

0 < exp(PE(t))[x(t)[P = v(t) —u(t) <

namely,
ex(p- DE()IKOP < (2o~ S0
fort, <t < s,. Hence, together with (4.2) and (4.3) and the relations
d
2P =pPw(2 and zg5(2) = 2P,
it turns out that

U’()Z (t) — (exp(PE()) Ix(t)[?)’
—W(t)u(t) — pexp(PE(t)) {e(t) IX(t)[P+ g (X(1))X (1) }
—¥(B)u(t) — pexp(PE(L)) f (1) go(x(t)) por (¥(1))
< —W(t)u(t) + pexp(E(t))|f (t) exp((p— D)E(1))[x(t)[Py(t) [P~

2p—1 1 \YP .
g—w<t>u<t>+py( > Vo—*U) Iy

for t, <t < s,. Noticing that¥_(t) + W(t) = W, (t) > 0 fort > to, we get

<exp<—' totl,U,(s)ds> u(t)>/: exp(—( ds) {—=¥_(ut)+u(t)}
< exp(—/totw,(s)ds) {— W (t)u(t) — P (t)u(t)

2p—1 1\
+pv< 5 VO_§U> y(®)| }

fort, <t < s,. Since(x(t),y(t)) is bounded fot > to, there exists @ > 0 such that

t !
(exp(— %(s)ds) u(t)) <p fort, <t<s,.
to
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Integrate this inequality frory, to s, to obtain
exp<f/tsnw_ (t)dt> u(sn) — exp(f ttnw_ (t)dt) U(tn) < (s —tn).
0 0
Hence,
exp(— /t “w (t)dt) U(sy) — (tn) < exp(— /I Ty (t)dt) u(s) — u(ta)
<u exp< otn% (t)dt> (Sn—1tn)
< uexp(/omw, (t)dt) (sn—tn).
Recall that,, — oo, u(ty) = v/2 andu(s,) = 3u /4. From (3.4), it follows that
exp(— tnmt.U, (t)dt> u(sy) —u(ty) — % asn-—» oo,
On the other hand, by (3.4) and (4.13),
uexp(/omw_ (t)dt) (sh—th) >0 asn— co.

This is a contradiction. Consequently, imsugu(t) = v =0.
As proved abovey(t) tends to zero as— . Hence, there exists® > to such that

ut) <e fort>Ts, (4.14)
wheree is a positive number given in (4.6). Let; be an integer satisfying
(m]_ — 1)0) > Ts.

Using (4.14) instead of (4.8) and following the same process as in the proof of the Claim,
we can estimate that

1/p
2 (8) > y((Mg — 1)@+ tm, +d)| + |y((Mg — L)+ tm, )| > y (t)dt|.

1/p*
V> 2 (;) >0

for (M — L) +ty, <t < (m —1)w+tm, +d, it follows that

1/p 1/p*
(m —1)w+tm, +d (m—1)w+tm, +d
o & 2/ ' "y (t)dt :/ ' ymdts2( ) .
E (ml—l)cu+tm1 ( E

ml—l)cu+tm1
This is a contradiction. Thus, the casevpf> 0 does not occur.
The proof of Theorem 3.2 is thus complete. O

/(ml—l) (A)+tm1 +d
(

m— 1) w-Hml
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5 Generalization

In Theorem 3.2, the coefficiehft) is assumed to be bounded forta#t 0. We can somewhat
weaken this assumption. In fact, if there exists:a 0 such that

lh)|<h for (M—Dw+tm<t<(Mm-1l)w+tm+d, (5.1)

then we can proceed with the same argument as in the proof of Theorem 3.2. We only have to
use assumption (5.1) instead of inequality (4.4) (we entrust the detailed proof to the reader).
Hence, we have the following generalization of Theorem 3.2.

Theorem 5.1 Let assumption§4;) and (Az) hold and suppose that(ff) /g(t) is differen-
tiable for t > 0. If conditions(3.1), (3.3), (3.4and(5.1) are satisfiedthen the zero solution
of (1.1)is globally asymptotically stable

Condition (5.1) implies that liminf,« |h(t)| < . Of course, it is permitted that

limsup|h(t)| = c.

t—o0

However, under the assumptios ) and @2) and conditions (3.1), (3.3) and (3.4), if

lim [A(t)] = e,
then the zero solution of (1.1) is not always globally asymptotically stable.
To see this fact, the following equation is often cited:

X'+ (2+€e)X +x=0.

For example, see the paper [5,26] and the books [20, p.326] and [48, pp.39-41]. This
equation can be transformed into the system

X =y,
)/ =—X- (2+e[)y7

which has a nontrivial solutiofx(t),y(t)) = (c(1+e!),—ce™) for each constant # 0.
Note that the solutiofix(t), y(t)) approaches a point other than the origin. This phenomenon
is called ‘overdamping’. The phenomenon of overdamping is caused because of a rapid
increase of the damping coefficient.

To decide the limit of the damping coefficient in which this phenomenon is not caused,
Hatvaniet al. [27] have considered the damped linear oscillator

X' +h(t)X +k*x=0,

wherek is a positive constant. They presented a necessary and sufficient condition for the
equilibrium to be (globally) asymptotically stable. This is a so-called growth condition on
h(t) and it can be checked with comparative ease (see also [26]).

In the next section, we will confirm that the phenomenon of overdamping occurs even
by the half-linear differential system (1.1).
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6 Examples

To illustrate our theorems, we give some examples. As mentioned in Sect. 3, it is easy to
deal with the case th&¥(t) is not less than a positive valudor all t > 0. For this reason,

we cite other cases. In the first exampié}) is allowed to be zero at a time sequeR&e,

but it is positive otherwise.

Example 6.1Consider system (1.1) with

oft) = — f(t):lsi—itt, g(t):(1+t)'°_1<5im+%5i”3) and h(t)_45?’

wherep > 1. Then the zero solution is globally asymptotically stable.

SinceE(t) = log(1+t) and

f(t) ol sint
exp(pE(t))@ = ePlogHy (1+1t)P(sint +sin3/2)

B sint B 2
- sint+ (3sint —4sir't)/2  5—4sirft

for t > 0, assumption4y) is satisfied witha = 1 and assumptionAg) is satisfied with
B =2/5andB = 2, respectively. Condition (3.1) is also satisfied, because

g(t) 5. o
m_zsmt 2sirft

which is a periodic function with periodr2 To be preciseg(t)/exp((p—1)E(t)) has prop-

erty (P) with d =1/2, w = 2m, d = 511/6 andty, = 11/12 for allme N. It is clear that
condition (3.2) holds. To confirm conditions (3.3) and (3.4), we examine the increase and
decrease of the periodic functitt) = sin2/(5— 4sir’t). The period ok(t) is Tand

K(t)= ! 2 {2cos2 (5 4sirft) + 8sinZsint cost }

(5—4sirft)2
= m {(2c0$t —1)(1+4cost) +8(1—cost)cost}
_ 2(6cost—1)
© (5—4sirft)2

for t > 0. Hencek(t) is increasing fott € [0,t*] U [r—t*, 7] and it is decreasing fdre
t*, m—t*], wheret* = arccos ¥1/6, and thereforek(t) has the maximum value/3/5 at
t = i(n— 1) +t* and the minimum value-1//5 att = rm—t* with n € N. We obtain

wit) = phit) — pett) + o (907
_4/5  p | p(L+t)P*(5—4sirft) —8(1+1)Psintcost

5 1+t (1+1t)P(5—4sirft)
45 p p 4sinz 45

5 1+t 14t 5_4sirft 5

—4k(t),
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which is nonnegative and periodic. Hence, it turns out#gt) = W(t) and¥_(t) =0, and
conditions (3.3) and (3.4) hold. Thus, by means of Theorem 3.2, we conclude that the zero
solution is globally asymptotically stable.

In Example 6.1, since the characteristic functté(t) is a nonnegative periodic func-
tion with periodm, it fails to have a limit. In the next example, we consider the case that
lim¢_ W(t) = 0. This case is harder to deal with.

Example 6.2Consider system (1.1) with

et)=sint, f(t)= ;—j:sint, gt) = i—j_:sint and h(t) = 1i+t +sint.

Then the zero solution is globally asymptotically stable.

SinceE(t) = 1—cogt, assumptionAg) is satisfied witho = 2. Assumption 44) is also
satisfied with3 = 1/4 andB = 1, because

2
@:(1—2—_1H> /1 ast— .

Note thatg(t) is asymptotically periodic andj(t)| > | sint| fort > 0. Henceg(t) has prop-
erty (P) with 6 = 1/2, w = 2m, d = 271/3 andty, = 1/6 for all m € N; that is, condition
(3.6) is satisfied. It is obvious that condition (3.2) holds. Since

TS (U2 AN
W(t) = ph(t) — pe(t) + a(t) (f(t))
D 2

T 14t (10210
1 2 p—1

= p— >
1+t 2+t 1+t

fort > 0, it follows that¥, (t) = W(t) > (p—1)/(1+t) and¥_(t) = 0. Hence, conditions
(3.3) and (3.4) are satisfied. Thus, by virtue of Corollary 3.4, we conclude that the zero
solution is globally asymptotically stable.

In Examples 6.1 and 6.2, the coefficidrft) is bounded for alt > 0. We next consider
the case that(t) is unbounded.

Example 6.3Consider system (1.1) with

e(t):—(lTlt)p f(t) = g(t) = sint and h(t):liﬂ+t(|sint\—sint).

Then the zero solution is globally asymptotically stable.
It is clear that assumptior®§) is satisfied witha = 1 and assumption() is satisfied

with B = B =1.ltis also clear thag(t) has propertyP) with 6 = 1/2, w = 2m, d = 277/3
andty, = /6 for allm € N; that is, condition (3.6) is satisfied. Recall that assumpti) (
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implies assumptionA;); under the assumptio\§), assumption4y) implies assumption
(A2) and condition (3.6) implies condition (3.1). Moreover, we obtain

— —_ @ @ /
W(t) = phit) pd”*qm(mw)
p P

= — t(|sint| —sint) >
l+t+(l+02+p(| | )=

fort > 0. Hence, it turns out that conditions (3.3) and (3.4) hold. Note that

P
1+t

[h(t)| < 17—1H <1 for 2n(m—-1) <t <m(2m-1).

Since

(M- w+tm=2m(m-1) + %nz 2m(m—1)

and
(m-lw+tm+d=2n(m-1)+ gng n(2m—1),

condition (5.1) is satisfied with = 1. Thus, all of the assumptions in Theorem 5.1 can be
confirmed, and therefore, the zero solution is globally asymptotically stable.

Although the coefficieng(t) is bounded in Examples 6.1-6.3, the boundednesgt pf
is not essential for global asymptotic stability of the zero solution. For example, let

e(t) =t (|sint| —sint).

Then it is clear thag(t) is unbounded. By a straightforward calculation, we obtain

{ 2m(m—1)(2m—1) if 2rm(m—1) <t < m(2m—1)
E(t) = (6.1)
2(mm(2m—1) —sint+tcost) if m(2m—1) <t <2mm
with me N. Let
”U::§§i%gﬁﬂ” g(t) = exp((p— DE())sint  and WUZZI%T’

whereE(t) is the function given in (6.1). Then,

W(t) = phit) — pe(t) % (%)

p
= ph(t) — pe(t) + pelt) = "
fort > 0. It is easy to confirm that all of the assumptions in Theorem 3.2 is satisfied. Thus,
the zero solution is globally asymptotically stable.
As mentioned in the last paragraph in Sect. 5, we cannot drop condition (5.1) in The-
orem 5.1. If we remove condition (5.1) from Theorem 5.1, then the phenomenon of over-
damping may well happen. For example, consider the half-linear differential system

X = @ (),
2) (6.2)

Y =~ (p- D@00~ (p- @+ 0 a0+ 2 )y



20 J. Sugie, S. Hata

System (6.2) has a solution

2+t 1
ox030) = (35~ rs) ©3)
which satisfies the initial conditiofx(0),y(0)) = (2,—1). In fact, since
et)=0, f(t)=g(t)=1 and h(t)=(2+t)(1+1)%* 3+ 2 (6.4)

1+t
in system (6.2), we obtain

—e()x(t) + ft) @ (y(t)) = — =X(t)

and

= (P= D) @(x(t)) = (P—L)h(t)y(t)

2+t —1 s 2
:_(p_l)lit+ (1+pt)z<p—1) {(2“)(1“)2'0 3+ 1+t}
_2Ap-Y
“wromr YO

The solution(x(t),y(t)) given by (6.3) approaches the poitit0) ast — «. Hence, the zero
solution of (6.2) is not globally asymptotically stable.

From (6.4), it is clear that assumption&; ] and @2) and condition (3.1) are satisfied.
SinceW(t) = 2h(t) for t > 0, it is easy to verify that conditions (3.3) and (3.4) are also
satisfied. However, condition (5.1) does not hold, because,liifh(t)| = . Thus, all of
the assumptions in Theorem 5.1 are satisfied excephfhpsatisfies condition (5.1). This
means that condition (5.1) cannot be removed from Theorem 5.1.
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