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Abstract

The following equation is considered in this paper:

x′′+(−α +β cos(γ t))x= 0,

whereα, β andγ are real parameters andγ > 0. This equation is referred to as Mathieu’s
equation whenγ = 2. It is determined by the parameters whether all solutions of this
equation are oscillatory or nonoscillatory. Our results provide parametric conditions for
oscillation and nonoscillation. There is a feature in which it is very easy to check whether
these conditions are satisfied or not. Parametric oscillation region and nonoscillation
regions are drawn to help understand the obtained results.
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1. Introduction

We consider the second-order differential equation

x′′+(−α +β cos(γ t))x= 0, (1.1)

where the prime denotesd/dt; the parametersα, β andγ are real numbers;α ∈R, β ∈R
andγ > 0. A phenomenon whose amplitude is magnified by varying some parameters is
called aparametric excitation. Equation (1.1) is a mathematical approximation model to
describe the parametric excitation. As a familiar example of the parametric excitation, we
can mention children’s swing play. When children pump a swing, they move the center
of gravity by periodically standing and squatting on the seat of the swing. Movement of
the center of gravity amplifies the width of the swing’s oscillation. This movement can be
considered to cause the parameter variation.
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As a research of parametric excitation phenomenon, Mathieu [18] has studied the
vibration of the oval type drum film and derived the special case of (1.1) thatγ = 2;
namely,

x′′+(−α +β cos(2t))x= 0. (1.2)

This case is named Mathieu’s equation after him. Mathieu’s equation has been applied
to many problems in physics and natural sciences. For example, by the transformations
from rectangular coordinates(x,y) to elliptic coordinates(ξ ,η):

x= ccoshξ cosη and y= csinhξ sinη ,

the two-dimensional Helmholtz equation

∂ 2U
∂x2 +

∂ 2U
∂y2 +k2U = 0

becomes
∂ 2V
∂ξ 2 +

∂ 2V
∂η2 +

c2k2

2

(
cosh(2ξ )−cos(2η)

)
V = 0,

whereV(ξ ,η) =U(x,y). PuttingV(ξ ,η) = R(ξ )Φ(η), we obtain the Mathieu equation

d2Φ
dη2 +(a−2qcos(2η))Φ = 0

and the modified Mathieu equation

d2R
dξ 2 − (a−2qcosh(2ξ ))R= 0,

wherea is the separation constant and the parameterq = c2k2/4. Note that the modi-
fied Mathieu equation can be transformed to the Mathieu equation by the mappingη =
±
√
−1ξ .
Mathieu’s equation is a linearized model of an inverted pendulum where the pivot

point oscillates periodically in the vertical direction (see [20]). It is also derived in the
study of celestial mechanics (see [3, 4]) and in the vibration of the string whose tension
is changed periodically (Melde’s experiment). In fluid dynamics, we can find many ex-
amples of waves being described by Mathieu’s equation. The research of Faraday surface
waves is very active (see [2, 6, 9, 21]). About other applications of Mathieu’s equation,
see McLachan [19].

The purpose of this paper is to give a simple parametric region which guarantees that
all nontrivial solutions of the generalized Mathieu equation (1.1) are oscillatory (resp.,
nonoscillatory) (see Section 2 for the definitions).

Using the method mentioned in the book of McLachan [19, p. 29], we can determine
the boundary of the largest parametric oscillation region for Mathieu’s equation (1.2). The
boundary is described by the infinite continued fraction

α =
β 2

2(4+α)−
β 2

2(16+α)−
β 2

2(36+α)−
β 2

2(64+α)−
·· · β 2

2(4n2+α)−
·· · , (1.3)
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wheren= 1,2, . . . . To be precise,β 2(α) is the smallest positive root of the equation

α =
λ

2(4+α)−
λ

2(16+α)−
λ

2(36+α)−
λ

2(64+α)−
·· · λ

2(4n2+α)−
·· ·

corresponding to a given valueα > 0. Letα0 be any positive number. Then, all nontrivial
solutions of (1.2) are oscillatory ifα = α0 andβ > |β (α0)|, and those are nonoscillatory
if α = α0 andβ ≤ |β (α0)|. Unfortunately, since the right-hand side of (1.3) has a form
of an infinite continued fraction, it is very hard to calculate the exact valueβ (α0). Let
β 2

n (α0) be the the smallest positive root of the equation

α0 =
λ

2(4+α0)−
λ

2(16+α0)−
λ

2(36+α0)−
λ

2(64+α0)−
·· · λ

2(4n2+α0)
.

Note that the above-mentioned equation is described by using a finite continued fraction.
Even if we can find the correct valueβ 2

n (α0), it is is only an upper approximation value. In
other words,β 2

n (α0) approaches the limiting valueβ 2(α0) from above asn→ ∞. Hence,
all nontrivial solutions of (1.2) are not always nonoscillatory in the case thatα = α0 and
β = βn(α0).

In order to avoid such an inconvenience of (1.3), we will provide an easy-to-use para-
metric condition for oscillation (resp., nonoscillation) of (1.1).

Equations (1.1) is a simple example of the more general Hill’s differential equation

x′′+c(t)x= 0, (1.4)

wherec is a periodic function with periodT > 0 (refer to [11, 17, 19]). The oscillation
problem for equation (1.4) has been widely studied in many books (for example, see [7,
25]). It is well-known that ifc(t)≤ 0 for t sufficiently large, then all nontrivial solutions
of (1.4) are nonoscillatory even ifc is not a periodic function (see [25, p. 45]). Hence,
it is clear that ifα ≥ |β |, then all nontrivial solutions of (1.1) are nonoscillatory. If the
periodic functionc is of mean value zero; that is,c is not identically zero and∫ T

c(t)dt = 0,

then all nontrivial solutions of (1.4) are oscillatory (for the proof, see [7, p. 25]). Hence, if
α = 0 andβ ̸= 0, then the coefficient of (1.1) is periodic of mean value zero, and therefore,
all nontrivial solutions of (1.1) are oscillatory. From Sturm’s comparison theorem, we see
that if α < 0 andβ ̸= 0, then all nontrivial solutions of (1.1) are oscillatory. It is obvious
that if α < 0 andβ = 0, then all nontrivial solutions of (1.1) are oscillatory. Thus, we
should consider only the case that 0< α < |β |. Our results are as follows.

Theorem 1.1. If
α > 0 and |β | ≥ γ

√
2α +α , (1.5)

then all nontrivial solutions of(1.1)are oscillatory.
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Theorem 1.2. If

α > 0 and |β | ≤ γ
√

2α
2

+α, (1.6)

then all nontrivial solutions of(1.1)are nonoscillatory.

It is very easy to calculate a value ofβ satisfying conditions (1.5) and (1.6) for a given
valueα > 0. Conversely, it is also not difficult to obtain a positive value ofα satisfying
conditions (1.5) and (1.6) for a given valueβ ∈ R. We can get it by hand calculation,
because only solving a quadratic equation aboutα. A parametric condition for oscillation
of (1.2) has been already given by El-Sayed [8]. Theorem 1.1 includes his result (see
Section 4 for the details). On the other hand, a parametric condition for nonoscillation of
(1.1) has not been reported until now.

Let
γ̃ s= γ t +

π
2

and y(s) = x(t).

Then equation (1.1) can be rewritten as follows:

d2z
ds2 +(− α̃ + β̃ sin(γ̃ s))z= 0, (1.7)

whereα̃ = α(γ̃/γ)2 andβ̃ = β (γ̃/γ)2. From this variable transformation, we see that all
nontrivial solutions of (1.1) are oscillatory if and only if those of (1.7) are oscillatory.

Sun et al. [24] applied their result to a forced Mathieu equation, and obtained a condi-
tion which guarantees that all nontrivial solutions are oscillatory. Their condition has the
advantage that it can be applied to the forced case. Unfortunately, however, their condi-
tion does not improve El-Sayed’s result in the unforced case (1.7). In Section 4, we will
mention the relation between the result of El-Sayed (and our condition (1.5)) and that of
Sun et al. In addition, using our result which is equivalent to Theorem 1.2, we disprove
mathematically a conjecture given by Sun et al. [24].

Leighton [16] considered equation (1.7) withγ̃ = 1 and presented an oscillation crite-
ria which has a close relation with the infinite continued fraction (1.3) (refer also to [15]).
We compare our results with that of Leighton in Section 4.

In Section 5, we expand Theorem 1.2 in order to be able to apply to a Mathieu equation
with a non-periodic coefficient.

2. Linear differential equations with periodic coefficients

We consider the second-order differential equation

y′′+a(t)y′+b(t)y= 0, (2.1)

wherea, b : [0,∞) → R are continuous and periodic functions with periodT > 0. As is
well known, all solutions of (2.1) exist in the future. Hence, it is worthwhile to discuss
whether solutions of (2.1) are oscillatory or not. A nontrivial solutiony(t) of (2.1) is said
to beoscillatoryif it has an infinite number of zeros on 0< t < ∞. Otherwise, the solution
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is said to benonoscillatory. This means that ifx is a nonoscillatory solution of (2.1), then
it is eventually positive or eventually negative.

As one of very important models, equation (2.1) appears in a wide range of field which
covers pure science, applied science, and technology. For this reason, numerous papers
have been devoted to find some conditions which guarantee that all nontrivial solutions of
(2.1) (and more general nonlinear equations) are oscillatory (resp., nonoscillatory). For
example, see [1, 5, 10, 27, 28, 29, 30, 31] and the references cited therein. These results
are called “oscillation theorem” and “nonoscillation theorem”, respectively.

We can cite the following result which were given in [23] as an oscillation theorem
that has a close relation to this paper.

Theorem A. Suppose that a is periodic of mean value zero. Let B be an indefinite integral
of b and let

E(t) = exp
∫ t

0
(a(τ)−2B(τ))dτ.

If B is periodic of mean value zero and satisfies∫ T

0
E(t)(B(t)−a(t))B(t)dt > 0, (2.2)

then all nontrivial solutions of(2.1)are oscillatory.

Remark 2.1. In Theorem A, the integralE is a periodic function with periodT, because
a andB are periodic of mean value zero.

Kwong and Wong [14] have already given a nonoscillation counterpart of Theorem A
as follows.

Theorem B. Suppose that b is periodic of mean value zero. If there exists an indefinite B
of b such that

(B(t)−a(t))B(t)≤ 0 for 0≤ t ≤ T, (2.3)

then all nontrivial solutions of(2.1)are nonoscillatory.

Theorems A and B are available only for second-order linear differential equations
with periodic coefficients. These theorems do not give us any information about oscilla-
tion or nonoscillation even if the coefficientc(t) of (1.4), or the coefficienta(t) or b(t)
of (2.1) is almost periodic or quasi-periodic. Theorem C below is applicable even to a
Mathieu equation with a non-periodic coefficient (see [22] for the proof).

Theorem C. Let S be a bounded, closed and convex set in the region

R=
{
(u,v) : u≥ 0 and 0≤ v≤ u2/4

}
.

Suppose that
(a(t),b(t)) ∈ S for t≥ T, (2.4)

with T sufficiently large. Then all nontrivial solutions of(2.1)are nonoscillatory.
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3. Proof of the main theorems

Using Theorems A and B, we will prove our main theorems which were presented in
Section 1 (Theorem C will be used in Section 5). To this end, we consider equation (2.1)
with

a(t) = 2
√

2α sin
(γ

2
t
)

and b(t) =
γ
√

2α
2

cos
(γ

2
t
)
+(β −α)cos(γ t). (3.1)

Define

x= yexp

(
1
2

∫ t

0
a(τ)dτ

)
.

Since

1
4

a2(t)+
1
2

a′(t)−α +β cos(γ t) = 2α sin2
(γ

2
t
)
+

γ
√

2α
2

cos
(γ

2
t
)
−α +β cos(γ t)

=−α cos(γ t)+
γ
√

2α
2

cos
(γ

2
t
)
+β cos(γ t) = b(t),

we see that

x′′+(−α +β cos(γ t))x=

(
y′′+a(t)y′+

(
1
4

a2(t)+
1
2

a′(t)−α +β cos(γ t)

)
y

)
×exp

(
1
2

∫ t

0
a(τ)dτ

)
=
(
y′′+a(t)y′+b(t)y

)
exp

(
1
2

∫ t

0
a(τ)dτ

)
.

This means that all nontrivial solutions of (1.1) are oscillatory if and only if those of (2.1)
are oscillatory under the assumption (3.1).

Proof of Theorem 1.1. Let

s= t −π/γ and z(s) = x(t).

Then, this variable transformation changes equation (1.1) to

d2z
ds2 +(−α −β cos(γ s))z= 0

which has the same form as equation (1.1). Hence, we have only to cope with the case
thatβ ≥ 0.

As an indefinite integral ofb, we chooseB defined by

B(t) =
√

2α sin
(γ

2
t
)
+

β −α
γ

sin(γ t).
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It is clear thata andB are periodic of mean value zero. Those periods are 4π/γ . Since

a(t)−2B(t) =− 2(β −α)

γ
sin(γ t),

we have

E(t) = exp
∫ t

0
(a(τ)−2B(τ))dτ = exp

(
2(β −α)

γ 2 (cos(γ t)−1)

)
.

From (1.5) it follows thatβ −α ≥ γ
√

2α > 0. Hence, we see thatE(0) = E(T/2) =
E(T) = 1 andE(T/4) = E(3T/4) = exp(−4(β −α)/γ 2), whereT = 4π/γ ; andE is
strictly decreasing on the intervals[0,T/4] and [T/2,3T/4], and strictly increasing on
the intervals[T/4,T/2] and[3T/4,T]; that is, the maximum and minimum values ofE
are 1 and exp(−4(β −α)/γ 2), respectively. Also, we see that the graph ofE is line-
symmetrical with respect to the vertical linest = T/4, t = T/2 andt = 3T/4. Moreover,
we have

(B(t)−a(t))B(t) =
(β −α)2

γ 2 sin2(γ t)−2α sin2
(γ

2
t
)

=
4(β −α)2

γ 2 sin2
(γ

2
t
)(

cos2
(γ

2
t
)
− αγ 2

2(β −α)2

)
.

Sinceβ −α ≥ γ
√

2α, it follows that

0<
αγ 2

2(β −α)2 ≤ 1
4
.

Hence, the function(B−a)B becomes zero at 0,t1, t2, T/2, t3, t4 andT, where

T
6
< t1 = Cos−1 γ

√
α√

2(β −α)
<

T
4
,

T
4
< t2 = Cos−1 −γ

√
α√

2(β −α)
<

T
3
,

t3 = t1 + T/2 and t4 = b+ T/2. It is easy to check that(B− a)B is positive on the
intervals(0, t1), (t2,T/2), (T/2, t3) and(t4,T), and negative on the intervals(t1, t2) and
(t3, t4); and the graph of(B− a)B is line-symmetrical with respect to the vertical lines
t = T/4, t = T/2 andt = 3T/4.

Note thatT/4− t1 = t2−T/4 and 3T/4− t3 = t4−3T/4. As mentioned above, the
graph ofE has the axial symmetry. Hence, it turns out thatE(t1) =E(t2) =E(t3) =E(t4).
For the sake of simplicity, letδ = E(t1). From the property ofE, we see thatE(t) > δ
for 0< t < t1, t2 < t < T/2, T/2< t < t3 andt4 < t < T, and 0< exp(−4(β −α)/γ 2)≤
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E(t)< δ for t1 < t < t2 andt3 < t < t4. We therefore conclude that∫ T

0
E(t)(B(t)−a(t))B(t)dt > δ

∫ t1

0
(B(t)−a(t))B(t)dt+δ

∫ t2

t1
(B(t)−a(t))B(t)dt

+δ
∫ T/2

t2
(B(t)−a(t))B(t)dt+δ

∫ t3

T/2
(B(t)−a(t))B(t)dt

+δ
∫ t4

t3
(B(t)−a(t))B(t)dt+δ

∫ T

t4
(B(t)−a(t))B(t)dt

= δ
∫ T

0
(B(t)−a(t))B(t)dt

=
(β −α)2δ

γ 2

∫ T

0
sin2(γ t)dt−2αδ

∫ T

0
sin2

(γ
2

t
)

dt

=
2δπ

γ

(
(β −α)2

γ 2 −2α
)
≥ 0.

Hence, condition (2.2) is satisfied.
Thus, by Thereom A, all nontrivial solutions of (2.1) are oscillatory under the assump-

tion (3.1), and therefore, those of (1.1) are oscillatory. 2

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we have only to consider the
case thatβ ≥ 0. If α ≥ β , then

−α +β cos(γ t)≤−α +β ≤ 0

for t ∈ R. Hence, by virtue of Sturm’s comparison theorem, all nontrivial solutions of
(1.1) are nonoscillatory. Thus, the only remaining case is that 0< α < β .

It is clear that the functionb which was defined in (3.1) is periodic of mean value zero.
From (1.6) it follows that

0< β −α ≤ γ
√

2α
2

.

Hence, we obtain

(B(t)−a(t))B(t) =
4(β −α)2

γ 2 sin2
(γ

2
t
)(

cos2
(γ

2
t
)
− αγ 2

2(β −α)2

)
≤ 4(β −α)2

γ 2 sin2
(γ

2
t
)(

cos2
(γ

2
t
)
−1

)
≤ 0

for t ∈ R; that is, condition (2.3) is satisfied forT = 4π/γ .
Thus, by Theorem B, all nontrivial solutions of (2.1) are nonoscillatory under the

assumption (3.1), and therefore, those of (1.1) are nonoscillatory. 2
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4. Comparison with previous studies

El-Sayed [8] has presented an oscillation criterion for a second-order forced linear
differential equation and dealt with Mathieu’s equation (1.2) as an application of his result.
Needless to say, equation (1.2) coincides with equation (1.1) whenγ = 2. Note that
all nontrivial solutions of (1.2) are oscillatory provided thatα ≤ 0. Hence, we have
only to discuss the case thatα > 0. El-Sayed showed that ifα > 0 and|β | ≥ 2α + 2,
then all nontrivial solutions of (1.2) are oscillatory (see also [13, Remark 4] and [26]).
Theorem 1.1 shows that ifα > 0 and|β | ≥ 2

√
2α +α, then all nontrivial solutions of

(1.2) are oscillatory.
Let us consider the straight linesβ = 2α + 2 andβ = −2α − 2, the convex curve

β = 2
√

2α +α and the concave curveβ =−2
√

2α −α in the half-plane{
(α,β ) : α > 0 andβ ∈ R

}
.

As shown in Figure 1, the lineβ = 2α +2 is the tangent of the curveβ = 2
√

2α +α at
the point(2,6). Similarly, the lineβ =−2α −2 touches the curveβ =−2

√
2α −α at the

point (2,−6). Hence, Theorem 1.1 completely contains El-Sayed’s result. All nontrivial
solutions of (1.2) are oscillatory if a pair of(α ,β ) is contained in the shadow part of
Figure 1. The dark shadow part is the parametric oscillation region given by El-Sayed [8].
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Figure 1: Parametric oscillation region given by condition (1.5) in the case thatγ = 2

As mentioned in Section 1, equation (1.1) is equivalent to equation (1.7). Hence, we
can rewrite Theorems 1.1 and 1.2 as follows.

Theorem 4.1. If
α̃ > 0 and |β̃ | ≥ γ̃

√
2α̃ + α̃ , (4.1)

then all nontrivial solutions of(1.7)are oscillatory.
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Theorem 4.2. If

α̃ > 0 and |β̃ | ≤ γ̃
√

2α̃
2

+ α̃, (4.2)

then all nontrivial solutions of(1.7)are nonoscillatory.

Sun et al. [24] gave interval oscillation theorems for the forced linear differential equa-
tion of the form, (

p(t)x′
)′
+q(t)x= r(t),

wherep, q andr are continuous functions, andp is positive and continuously differen-
tiable on(0,∞). Also, they dealt with the forced Mathieu equation

d2z
ds2 +(− α̃ + β̃ sins)z= ksℓcoss, (4.3)

in order to show how to use their result. Here,ℓ > 0 andk≥ 0. They showed that if̃α = 1
andβ̃ ≥ β ∗ = ((27+

√
1097)/46)2+1≈ 2.70819162· · · , then all nontrivial solutions of

(4.3) are oscillatory. In the unforced case of (4.3); namely,

d2z
ds2 +(− α̃ + β̃ sins)z= 0 (4.4)

coincides with equation (1.2) in the case thatα = 4α̃ andβ = 4β̃ . Hence, the above
result of El-Sayed [8] assures that ifα̃ = 1 and|β̃ | ≥ 2.5, then all nontrivial solutions of
(4.4) are oscillatory. Equation (1.7) coincides with equation (4.4) in the case thatγ̃ = 1.
Hence, from Theorem 4.1, we can guarantee that ifα̃ = 1 and |β̃ | ≥ β∗ =

√
2+ 1 ≈

2.41421356· · · , then all nontrivial solutions of (4.4) are oscillatory (see Figure 2).

Figure 2: Relation between our theorems and previous results concerning equation (4.4) whenα̃ = 1

Komkov [12] had examined equation (4.4) before the research of Sun et al. [24] and
stated that ifα̃ > 0 and|β̃ |>

√
2α̃, then all nontrivial solutions are oscillatory. However,

his statement is obviously not true. In fact, from Sturm’s comparison theorem, we see
that if |β̃ | ≤ α̃, then all nontrivial solutions of (4.4) are nonoscillatory. Since

√
2α̃ < α̃

for α̃ > 2, we can choose ãβ such that
√

2α̃ < |β̃ | ≤ α̃.
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In such a pair of(α̃ , β̃ ), all nontrivial solutions of (4.4) are nonoscillatory. This contra-
dicts his statement.

Sun et al. [24] has already pointed out the mistake of Komkov’s result. Also, judging
from Komkov’s result, they estimated that ifα̃ > 0 andβ̃ ≥

√
2.5α̃, then all nontrivial

solutions of (4.4) (or (4.3)) would be oscillatory. If their estimation is correct, then it is
better than El-Sayed’s result, because

√
2.5< 2.5. Unfortunately, however, this conjecture

is not true. In fact, it is clear that
√

2.5α̃ ≤
√

2α̃/2+ α̃ for α̃ ≥ 3−
√

5≈ 0.76393202· · · .
Hence, by Theorem 4.2, all nontrivial solutions of (4.4) are nonoscillatory provided that
α̃ ≥ 3−

√
5 andβ̃ ≥

√
2.5α̃.
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Figure 3: Parametric nonoscillation region given by condition (4.2) in the case thatγ̃ = 1

All nontrivial solutions of (4.4) are nonoscillatory if a pair of(α̃, β̃ ) is contained in the
shadow part of Figure 3. The dark shadow part is the region

{
(α̃, β̃ ): α̃ > 0 and|β̃ | ≤ α̃

}
.

The point(1.0,2.5) is outside of the shadow part of Figure 3. As already mentioned,
from Theorem 4.1 (or El-Sayed’s result), we see that all nontrivial solutions of (4.4) are
oscillatory if α̃ = 1.0 andβ̃ = 2.5. The point(1.0,

√
2.5) is inside of the shadow part of

Figure 3. By Theorem 4.2, all nontrivial solutions of (4.4) are nonoscillatory ifα̃ = 1.0
andβ̃ =

√
2.5.

According to McLachan [19, p. 29], the infinite continued fraction for the Mathieu
equation

x′′+(a−2qcos(2t))x= 0

is as follows:

a=
−q2/2

1−a/4−
q2/64

1−a/16−
q2/576

1−a/36−
q2/2304

1−a/64−
·· · q2/(16n2(n−1)2)

1−a/(4n2)−
·· · , (4.5)
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wheren= 2,3, . . . . Substitutinga=−4α̃ andq= 2β̃ in (4.5), Leighton [16] showed that
the infinite continued fraction for equation (4.4) is

α̃ =
β̃ 2

2(1+ α̃)−
β̃ 2

2(4+ α̃)−
β̃ 2

2(9+ α̃)−
β̃ 2

2(16+ α̃)−
·· · β̃ 2

2(n2+ α̃)−
·· · , (4.6)

wheren = 1,2, . . . . Since it is hard to analyze (4.6), he provided a recurrence formula
which is equivalent to (4.6). His recurrence formula yields approximating curvesCn (n=
1,2, . . .) in the(α̃ , β̃ )-plane. For example, the curvesC1, C2, C3 andC4 are given by

β̃ 2 = 2α̃(α̃ +1) if n= 1,

β̃ 2 =
4α̃(α̃ +1)(α̃ +4)

3α̃ +8
if n= 2,

β̃ 4− (8α̃ +3)(α̃ +6)β̃ 2+8α̃(α̃ +1)(α̃ +4)(α̃ +9) = 0 if n= 3,

5(α̃ +8)β̃ 4−4(5α̃3+105α̃2+652α̃ +1152)β̃ 2

+16α̃(α̃ +1)(α̃ +4)(α̃ +9)(α̃ +16) = 0 if n= 4,

respectively. He proved that all nontrivial solutions of (4.4) are oscillatory if a pair of
(α̃, β̃ ) is on or outside the curveCn (n = 1,2, . . .). To state the case thatn = 4 more
precisely, we put

p1(λ ) = 5(λ +8)

p2(λ ) = 2(5λ 3+105λ 2+652λ +1152)

p3(λ ) = 16λ (λ +1)(λ +4)(λ +9)(λ +16).

Then, if α̃ > 0 and

|β̃ | ≥

√
1

p1(α̃)

{
p2(α̃)−

√
p2

2(α̃)− p1(α̃)p3(α̃)

}
, (4.7)

than all nontrivial solutions of (4.4) are oscillatory.
Sincep1, p2 andp3 are a linear polynomial, a quadratic polynomial and a cubic poly-

nomial ofλ , respectively, the right-hand side of (4.7) is considerably complicated. Hence,
we cannot seek̃α satisfying (4.7) by a hand calculation when we chooseβ̃ arbitrarily.
Although the estimation (4.7) seems to be a very sharp sufficient condition, it is not a
necessary condition for all solutions of (4.4) to be oscillatory. In fact,

√
2α̃ + α̃ <

√
1

p1(α̃)

{
p2(α̃)−

√
p2

2(α̃)− p1(α̃)p3(α̃)

}
for α̃ sufficiently large. For example, we can check that

√
2×700+700< 738<

√
1

p1(700)

{
p2(700)−

√
p2

2(700)− p1(700)p3(700)

}
.
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This means that if̃α = 700 andβ̃ = 738, then the inequality (4.7) is not satisfied. Hence,
the result of Leighton [16] is inapplicable for equation (4.4) withα̃ = 700 andβ̃ = 738.
On the other hand, condition (4.1) is satisfied forα̃ = 700 andβ̃ = 738. Hence, we
conclude that all nontrivial solutions of (4.4) are oscillatory.

5. Nonoscillation theorem for a Mathieu-type differential equation

As a generalization of (1.1), we consider the second-order differential equation

x′′+(−α +βϕ ′(t)cos(γϕ(t)))x= 0, (5.1)

whereϕ is continuously differentiable on(0,∞) and satisfies|ϕ ′(t)| ≤ 1 for t > 0, and
give a nonoscillation theorem for equation (5.1). For example,ϕ(t) = sint andϕ(t) =
t (sin(ln t)+ cos(ln t))/2 for t > 0. Consider an inverted simple pendulum whose pivot
point oscillates up and down. Let sin(γϕ(t)) be the movement speed of the pivot point.
Assume that the friction at the pivot point can be ignored. Then, the equation of motion
for the vertically driven pendulum can be written as

x′′+(−α +βϕ ′(t)cos(γϕ(t)))sinx= 0.

Equation (5.1) is a linearized model of this motion equation. Needless to say,ϕ ′ cos(γϕ)
is not always periodic. Hence, Theorem B is inapplicable to equation (5.1). Using Theo-
rem C, we prove the following result.

Theorem 5.1. If

α > 0 and |β | ≤ γ
√

2α
2

+α, (5.2)

then all nontrivial solutions of(5.1)are nonoscillatory.

Proof. As mentioned in the proof of Theorems 1.1 and 1.2, we have only to consider the
case that 0< α < β . For the sake of simplicity, let

h=
β −α

γ
+

√
(β −α)2

γ 2 +2α. (5.3)

Then,h is a positive constant depending on parametersα, β andγ . We choosea andb
defined by

a(t) = 2h− 2(β −α)

γ
sin(γϕ(t)),

b(t) =
2h(β −α)

γ
(
1−sin(γϕ(t))

)
+α

(
1+ϕ ′(t)cos(γϕ(t))

)
+

(β −α)2

γ 2 sin2(γϕ(t)).

(5.4)

13



Then by a straightforward calculation, we can check that

b(t)− 1
4

a2(t)− 1
2

a′(t) =−α +βϕ ′(t)cos(γϕ(t)).

Hence, we conclude that equation (5.1) is equivalent to equation (2.1) with (5.4).
We will examine whether that(a(t),b(t)) given by (5.4) satisfies condition (2.4). From

(5.3) it follows that

h∗
def
= 2

√
(β −α)2

γ 2 +2α = 2h− 2(β −α)

γ
≤ a(t)

≤ 2h+
2(β −α)

γ
=

4(β −α)

γ
+2

√
(β −α)2

γ 2 +2α def
= h∗

and

b(t)≥ (β −α)2

γ 2 sin2(γϕ(t))≥ 0

for t > 0. Also, we see that

1
4

a2(t)−b(t) = h2− 2h(β −α)

γ
−α

(
1+ϕ ′(t)cos(γϕ(t))

)
= α

(
1−ϕ ′(t)cos(γϕ(t))

)
≥ α

(
1−cos(γϕ(t))

)
≥ 0

for t > 0. Hence, we conclude that(a(t),b(t)) ∈ R=
{
(u,v) : u≥ 0 and 0≤ v≤ u2/4

}
for t > 0.

Putu= a(t) andv= b(t). Then, by (5.4) we have

2h− 2(β −α)

γ
≤ u≤ 2h+

2(β −α)

γ
,

sin(γϕ(t)) =
γ(2h−u)
2(β −α)

and cos(γϕ(t)) =±

√
1− γ 2

4

(
2h−u
β −α

)2

.

Hence, we obtain

v=
2h(β −α)

γ
−h(2h−u)+α ±αϕ ′(t)

√
1− γ 2

4

(
2h−u
β −α

)2

+
(2h−u)2

4
.

Define two functionsf+ and f− as follows:

f+(u) =
2h(β −α)

γ
+α −h(2h−u)+

(2h−u)2

4
+α

√
1− γ 2

4

(
2h−u
β −α

)2

;

f−(u) =
2h(β −α)

γ
+α −h(2h−u)+

(2h−u)2

4
−α

√
1− γ 2

4

(
2h−u
β −α

)2
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for h∗ ≤ u≤ h∗. Let

S=
{
(u,v) : h∗ ≤ u≤ h∗ and f−(u)≤ v≤ f+(u)

}
.

It is clear thatS is a bounded and closed set. Since|ϕ ′(t)| ≤ 1 for t > 0, we see that
(a(t),b(t)) ∈ S for t > 0.

We will show thatSis a convex set contained inR. Using (5.3), we can rewritef+ and
f− as

f+(u) =
u2

4
−α

1−

√
1− γ 2

4

(
2h−u
β −α

)2


and

f−(u) =
u2

4
−α

1+

√
1− γ 2

4

(
2h−u
β −α

)2
,

respectively. It is clear that

f+(u)≤
u2

4
and f−(u)≥

(β −α)2

γ 2 +2α −α(1+1) =
(β −α)2

γ 2 > 0

for h∗ ≤ u≤ h∗. By a direct calculation, we have

d
du

f±(u) =
u
2
± αγ 2(2h−u)

4(β −α)2

√
1− γ 2

4

(
2h−u
β −α

)2

and
d2

du2 f±(u) =
1
2
∓ αγ 2

4(β −α)2

{
1− γ 2

4

(
2h−u
β −α

)2
}3/2

for h∗ ≤ u≤ h∗. Hence, by (5.2) we obtain

d2

du2 f+(u)≤
1
2
− αγ 2

4(β −α)2 ≤ 0

and
d2

du2 f−(u)≥
1
2
+

αγ 2

4(β −α)2 >
1
2

for h∗ ≤ u≤ h∗. We therefore conclude that the setS is convex andS⊂ R. Also, we see
that the curvesv = u2/4 andv = f+(u) has a unique common tangent at(2h,h2). The
common tangent is given byv= hu−h2 (see Figure 4).

Thus, by means of Theorem C, all nontrivial solutions of (5.1) are nonoscillatory.2
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Figure 4: The parametric setSand the common tangent in the case thatα = 1, β = 1.5, γ = 1 andh= 2
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