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Abstract The present paper deals with nonoscillation problem for the Sturm-Liouville half-
linear differential equation (

r(t)φp(x
′)
)′
+c(t)φp(x) = 0,

wherer, c: [a,∞)→R are continuous functions,r(t)> 0 for t ≥ a, andφp(z) = |z|p−2zwith
p > 1. The purpose of this paper is to show that it is possible to broaden the application
range of Hille-Wintner type nonoscillation criteria. To this end, we derive a comparison
theorem by means of Riccati’s technique. Our result is new even in the linear case that
p= 2. By the obtained result, we can compare two differential equations having a different
power p of the above-mentioned type. To illustrate our comparison theorem, we present
two examples of which all non-trivial solutions of the Sturm-Liouville linear differential
equation are nonoscillatory even if

∫ t
a

1
r(s)ds

∫ ∞
t c(s)ds or

∫ ∞
t

1
r(s)ds

∫ t
ac(s)ds is less than the

lower bound−3/4.
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1 Introduction

As an extension of the second-order linear differential equation(
r(t)x′

)′
+c(t)x= 0, (1.1)
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many researchers have dealt with the half-linear differential equation(
r(t)φp(x

′)
)′
+c(t)φp(x) = 0, (1.2)

where the prime denotesd/dt; the coefficientsr andc are continuous functions on[a,∞)
with a≥ 0 andr(t)> 0 for t ≥ a; the real-valued functionφp is defined by

φp(z) = |z|p−2z

for z∈ R with p> 1 a fixed real number. Equations (1.1) and (1.2) are said to be in Sturm-
Liouville form or self-adjoint form. As for half-linear differential equations, for example,
we can refer the reader to [1, 3, 4, 7, 11, 12] and the references cited therein. A functionx is
said to be a solution of (1.2) ifx is a continuously differentiable function such thatrφp(x′)
is also continuously differentiable and satisfies (1.2) in an unbounded intervalI ⊂ [a,∞).

It is known that all solutions of (1.2) are unique for given initial conditions and con-
tinuable in the future like those of (1.1) (see, for example, [1, 4, 7, 9]). Hence, it is worth
while to discuss whether solutions of (1.2) are oscillatory or not. A non-trivial solutionx
of (1.2) is said to beoscillatory if there exists a sequence{tn} tending to infinity such that
x(tn) = 0. Otherwise, it is said to benonoscillatory. Hence, a nonoscillatory solutionx even-
tually keeps either positive or negative; that is, there exists aT ≥ a such thatx(t) ̸= 0 for
t ≥ T. It is also known that oscillatory solutions and nonoscillatory solutions do not co-
exist in equation (1.2) as well as equation (1.1). Hence, we may say that equation (1.2) is
oscillatory (respectively, nonoscillatory) in case all non-trivial solutions are oscillatory (re-
spectively, nonoscillatory). Riccati’s technique is very useful to check that equation (1.2)
is nonoscillatory. Results related to Riccati’s technique for half-linear differential equations
until 2005 were summarized in the book [7] (see also [4]).

Equation (1.1) can be divided into two cases:∫ ∞

a

1
r(t)

dt
def
= lim

t→∞

∫ t

a

1
r(s)

ds= ∞; (1.3)

∫ ∞

a

1
r(t)

dt < ∞. (1.4)

In the former, it is well-known that by transforming

s= ϕ(t) =
∫ t

a

1
r(τ)

dτ, y(s) = y(ϕ(t)) = x(t),

Equation (1.1) is reduced to the equation of simple form,

ÿ+ c̃(s)y= 0, (1.5)

wherec̃(s) = c(ϕ−1(s))r(ϕ−1(s)). Note thatϕ is strictly increasing fort ≥ a becauser(t)>
0 for t ≥ a. Hence, there exists the inverse functionϕ−1, which is also increasing fors≥ 0.
The inverse function diverges to∞ ass tends to∞.

Many attempts were made to find nonoscillation criteria for equation (1.5). There is an
extensive literature on this topic in the book [18]. Among them, noteworthy is the classical
Hille-Wintner comparison theorem and the following result which related (see [13, 14, 19,
20]).

Theorem A Suppose that ∫ ∞

a
c̃(t)dt is convergent (1.6)



A new application method for nonoscillation criteria of Hille-Wintner type 3

and

− 3
4
≤ t

∫ ∞

t
c̃(s)ds≤ 1

4
for t ≥ a.

Then equation(1.5) is nonoscillatory.

As a simple consequence result of Theorem A, we have the following nonoscillation
theorem.

Theorem B Under the assumption(1.3), if∫ ∞

a
c(t)dt is convergent (1.7)

and

− 3
4
< liminf

t→∞
A2(t)≤ limsup

t→∞
A2(t)<

1
4
, (1.8)

then equation(1.1) is nonoscillatory, where

A2(t) =
∫ t

a

1
r(s)

ds
∫ ∞

t
c(s)ds.

Theorem B is a corollary of Theorem 3.1.3 in the book [7, p.86]. Došlý and Řeh́ak
have also presented some results of the case (1.4). The following theorem is a corollary of
Theorem 3.1.5 in [7, p.88] (see also [3, 4]).

Theorem C Under the assumption(1.4), if

− 3
4
< liminf

t→∞
A2(t)≤ limsup

t→∞
A2(t)<

1
4
, (1.9)

then equation(1.1) is nonoscillatory, where

A2(t) =
∫ ∞

t

1
r(s)

ds
∫ t

a
c(s)ds.

Theorems B and C have a good balance. There are the upper and lower bounds in The-
orems A, B and C. Here, a simple question arises. Will the lower bound for nonoscillation
of (1.1) or (1.5) really exist? If the lower bound is necessary for nonoscillation, is it equal to
−3/4? To explain this question, we consider the Euler differential equation

ÿ+
λ
s2 y= 0 (1.10)

as a special case of (1.5). Then it is clear that

(i) if λ ≤ 1/4, then equation (1.10) is nonoscillatory;

(ii) if λ > 1/4, then equation (1.10) is oscillatory.

Of course, equation (1.10) is nonoscillatory even ifλ ≤ 0. Since ˜c(s) = λ/s2 in equation
(1.10),

t
∫ ∞

t
c̃(s)ds= λ .

Hence, though 1/4 is the upper bound for nonoscillation of (1.10), no lower bound exists
for nonoscillation of (1.10). It is also obvious that equation (1.5) is nonoscillatory provided
that c̃(s) ≤ 0 for s sufficiently large. In this case, even condition (1.6) may not be satisfied.
Moreover, it is well-known that
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(i) if −∞ ≤ limsups→∞ s2c̃(s)< 1/4, then equation (1.5) is nonoscillatory;

(ii) if 1 /4< liminf s→∞ s2c̃(s)≤ ∞, then equation (1.5) is oscillatory.

This criterion is called Kneser-type (see [15]). In Kneser’s criterion, no lower bound exists
for nonoscillation of (1.5).

In this paper, we will show that the scopes of Theorems B and C are expandable. To be
precise, we give an example that equation (1.1) is nonoscillatory even if

liminf
t→∞

A2(t)≤− 3
4
.

We also give an example that equation (1.1) is nonoscillatory even if

liminf
t→∞

A2(t)≤− 3
4
.

To check these examples, we present a comparison theorem of nonoscillation for equation
(1.2). Half-linear differential equations are described by the power functionφp with p> 1.
Our result can compare two half-linear differential equations with a different power. Such a
result is called a “power comparison theorem”. Of course, we can compare two half-linear
differential equations with the same power.

2 Equation to be compared

Let b be a nonnegative continuous function on[a,∞) satisfying

b(t)+c(t)> 0 for t ≥ a. (2.1)

Such a function exists. For example, letb(t) = 2max{0,−c(t)}+1. Then we see that

b(t)+c(t) = 1+c(t)≥ 1 if c(t)≥ 0

and
b(t)+c(t) =−2c(t)+1+c(t) = 1−c(t)≥ 1 if c(t)≤ 0

for t ≥ a; that is, condition (2.1) holds.
For anyµ > 1, letk(µ) be an odd number satisfying

k≥ max

{
3,

µ −1
p−1

}
.

Note thatk depends onµ. If µ ≤ 3p−2, thenk may be 3, and if

(2n+1)p−2n< µ ≤ (2n+3)p−2(n+1)

for n∈ N, then it may be 2n+3. We denote the conjugate exponents ofp andµ by p∗ and
µ∗, respectively; that is,

1
p
+

1
p∗

= 1 and
1
µ
+

1
µ∗ = 1.

In the calculation of Section 3, it might be more convenient to use(p−1)(p∗−1) = 1, p∗ =
p/(p−1), p= p∗/(p∗−1), (µ −1)(µ∗−1) = 1, µ∗ = µ/(µ −1) andµ = µ∗/(µ∗−1).
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Let f be a continuously differentiable function. Define

C(t) = 2k(p−1)

(
b(t)+c(t)

p−1

)k/p∗+1/p(
r(t)
)(k−1)/p

+2µ∗
k(p−1)

(
p−1

b(t)+c(t)

)(µ∗−1)k/p∗−1/p( 1
r(t)

)(µ∗−1)k/p+1/p

| f (t)|µ∗

− f ′(t).

Let f (t)≡ 0. Then| f (t)|µ∗ ≡ 0 and f ′(t)≡ 0. Hence, by (2.1) we have

C(t) = 2k(p−1)

(
b(t)+c(t)

p−1

)k/p∗+1/p(
r(t)
)(k−1)/p

> 0 for t ≥ a.

Of course, depending onb, c andr, we may choose a continuously differentiable functionf
that diverges to infinity ast → ∞.

To compare with (1.2), we consider the Sturm-Liouville half-linear differential equation(
R(t)φµ(y

′)
)′
+C(t)φµ(y) = 0, (2.2)

where

R(t) =

(
µ −1

2µ∗k(p−1)

)µ−1(b(t)+c(t)
p−1

)k/p∗−(µ−1)/p(
r(t)
)(k+µ−1)/p

.

Then we can obtain the following comparison theorem concerning nonoscillation.

Theorem 2.1 Suppose that(2.1) holds. If equation(2.2) is nonoscillatory, then equation
(1.2) is also nonoscillatory.

As mentioned above, we may choose 3 as the odd numberk in the special case that
p= µ = 2. Hence, the functionsC(t) andR(t) become

C̃(t) = 6(b(t)+c(t))2 r(t)+
12f 2(t)

(b(t)+c(t)) r2(t)
− f ′(t)

and

R̃(t) =
(b(t)+c(t)) r2(t)

12
,

respectively; and therefore, we have the following result.

Corollary 2.2 Suppose that(2.1)holds. If equation(
R̃(t)y′

)′
+C̃(t)y= 0 (2.3)

is nonoscillatory, then equation(1.1) is also nonoscillatory.

Remark 2.1Needless to say,φp is the power function with real exponentp. Comparison
theorems are divided into two types. In the one type, half-linear differential equations with
the same power are compared. Corollary 2.2 belongs to this type. In another type, equation
(1.2) is compared with the half-linear differential equation with a different powerβ > 1,(

q(t)φβ (x
′)
)′
+d(t)φβ (x) = 0.

Such results can be found in [2, 5, 10, 16, 17]. In those results, the authors have assumed
only one of eitherβ > p or β < p. Theorem 2.1 is a power comparison theorem concerning
nonoscillation without these assumptions. This point is a distinctive feature of Theorem 2.1.
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3 Proof of Theorem 2.1

We have only to show that the Riccati differential inequality

w′+c(t)+(p−1)
|w|p∗

(r(t))p∗−1 ≤ 0 (3.1)

has a solutionw for t sufficiently large.
The Riccati differential inequality corresponding to equation (2.2) is

v′+C(t)+(µ −1)
|v|µ∗

(R(t))µ∗−1 ≤ 0. (3.2)

Since equation (2.2) has a nonoscillatory solutiony, there exists aT ≥ a such thaty(t)> 0
or y(t) < 0 for t ≥ T. We may assume without loss of generality thaty(t) > 0 for t ≥ T. If
necessary, we may choose more largeT ≥ a. Let

v(t) =
R(t)φµ(y′(t))

φµ(y(t))
.

Sincey is a solution of (2.2), the denominatorφµ(y) and the numeratorRφµ(y′) are contin-
uously differentiable functions. Hence,v is also a continuously differentiable function. In
addition, the functionv satisfies the inequality (3.2) fort ≥ T.

Sincek is an odd number that is larger than 3, we can define

w(t) = k
√

v(t)− f (t)

for t ≥ T. From (2.1) we see thatC(t)+ f ′(t) andR(t) are positive fort ≥ T. Hence, we
have

(v(t)− f (t))′ ≤−C(t)− (µ −1)
|v(t)|µ∗

(R(t))µ∗−1 − f ′(t)< 0 (3.3)

for t ≥ T. It turns out from this inequality thatv− f has only one zero at most. This means
that w is continuously differentiable fort sufficiently large, because the functionsv and f
are continuously differentiable. Since

v(t) = wk(t)+ f (t),

we have
v′(t) = kwk−1(t)w′(t)+ f ′(t)

for t sufficiently large. Hence,

kwk−1(t)

(
w′(t)+c(t)+(p−1)

|w(t)|p∗

(r(t))p∗−1

)

= v′(t)− f ′(t)+kc(t)|w(t)|k−1+k(p−1)
|w(t)|p∗+k−1

(r(t))p∗−1

≤ v′(t)+k(p−1)

(
|w(t)|p∗+k−1

(r(t))p∗−1 +
b(t)+c(t)

p−1
|w(t)|k−1

)
− f ′(t)

= v′(t)+2k(p−1)

(
b(t)+c(t)

p−1

)k/p∗+1/p(
r(t)
)(k−1)/p− f ′(t)

+k(p−1)

(
b(t)+c(t)

p−1

)k/p∗+1/p(
r(t)
)(k−1)/p

z(t)
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for t sufficiently large, where

z(t) =

(
p−1

b(t)+c(t)

)k/p∗+1/p( 1
r(t)

)(p∗+k−1)/p

|w(t)|p∗+k−1

+

(
p−1

b(t)+c(t)

)(k−1)/p∗( 1
r(t)

)(k−1)/p

|w(t)|k−1−2.

For simplicity, letq= 1+ p∗/(k−1) and

u(t) =

(
p−1

b(t)+c(t)

)(k−1)/p∗( 1
r(t)

)(k−1)/p

|w(t)|k−1.

From (2.1), it is clear thatu(t)≥ 0 for t ≥ T. Since

k−1
p∗

q=
k
p∗

+
1
p
,

k−1
p

q=
p∗+k−1

p
and (k−1)q= p∗+k−1,

it follows that

z(t) =
(
u(t)

)q
+u(t)−2

for t sufficiently large. Taking into account that

k≥ µ −1
p−1

=
p∗−1
µ∗−1

,

it turns out that

µ∗k
k−1

≥ 1+
p∗

k−1
= q.

Hence, we see that

uq+u−2< 2uµ∗k/(k−1) for u≥ 0.

It follows from this estimation that

z(t)< 2

(
p−1

b(t)+c(t)

)µ∗k/p∗( 1
r(t)

)µ∗k/p

|w(t)|µ∗k

= 2

(
p−1

b(t)+c(t)

)µ∗k/p∗( 1
r(t)

)µ∗k/p

|v(t)− f (t)|µ∗

≤ 2

(
p−1

b(t)+c(t)

)µ∗k/p∗( 1
r(t)

)µ∗k/p(
|v(t)|+ | f (t)|

)µ∗

≤ 2µ∗
(

p−1
b(t)+c(t)

)µ∗k/p∗( 1
r(t)

)µ∗k/p(
|v(t)|µ∗

+ | f (t)|µ∗
)
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for t ≥ T. Hence, we obtain

kwk−1(t)

(
w′(t)+c(t)+(p−1)

|w(t)|p∗

(r(t))p∗−1

)

< v′(t)+2k(p−1)

(
b(t)+c(t)

p−1

)k/p∗+1/p(
r(t)
)(k−1)/p− f ′(t)

+2µ∗
k(p−1)

(
p−1

b(t)+c(t)

)(µ∗−1)k/p∗−1/p( 1
r(t)

)(µ∗−1)k/p+1/p(
|v(t)|µ∗

+| f (t)|µ∗
)

= v′(t)+2k(p−1)

(
b(t)+c(t)

p−1

)k/p∗+1/p(
r(t)
)(k−1)/p

+2µ∗
k(p−1)

(
p−1

b(t)+c(t)

)(µ∗−1)k/p∗−1/p( 1
r(t)

)(µ∗−1)k/p+1/p

| f (t)|µ∗ − f ′(t)

+2µ∗
k(p−1)

(
p−1

b(t)+c(t)

)(µ∗−1)k/p∗−1/p( 1
r(t)

)(µ∗−1)k/p+1/p

|v(t)|µ∗

= v′(t)+C(t)+(µ −1)
|v(t)|µ∗

(R(t))µ∗−1

for t sufficiently large. From (3.3) and the fact thatwk−1(t) > 0 for t sufficiently large, it
turns out that the functionw is a solution of (3.1) fort sufficiently large. Hence, by Riccati’s
technique, equation (1.2) is nonoscillatory.

The proof of Theorem 2.1 is now complete. ⊓⊔

We can choose 2 as the powerµ. Thenµ∗ is also 2 and equation (2.2) becomes a linear
differential equation of Sturm-Liouville type. Sincek(2) is an odd number satisfying

k≥ max

{
3,

1
p−1

}
,

the numberk may be 3 ifp≥ 4/3, and it may be 2n+3 if

2n+4
2n+3

≤ p<
2n+2
2n+1

for n∈ N. In addition, the coefficientsRandC of (2.2) become slightly easy as follows:

R(t) =
1

4k(p−1)

(
b(t)+c(t)

p−1

)k/p∗−1/p(
r(t)
)(k+1)/p

;

C(t) = 2k(p−1)

(
b(t)+c(t)

p−1

)k/p∗+1/p(
r(t)
)(k−1)/p

+4k(p−1)

(
p−1

b(t)+c(t)

)k/p∗−1/p( 1
r(t)

)k/p+1/p

f 2(t)− f ′(t).

Thus, Theorem 2.1 has a deep relationship with the linearization method (or technique). As
for this method, see [6, 8] for example.
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4 Discussion

To answer our question that was raised in Section 1, we give an example. For this purpose,
we first defineg as follows:

g(t) =
4sin(ln t)+3cos(ln t)

5

for t ≥ 1. Letθ = Tan−1(3/4). Then it is easy to check that|g(t)|= |sin(ln t +θ)| ≤ 1,

g(t)≥ 0 for t2i−2 ≤ t ≤ t2i−1

and
g(t)< 0 for t2i−1 < t < t2i

with i ∈ N, wheret0 = 1 andtn = enπ−θ for n∈ N. For anyα > 0, let

r(t) =
6

3
√

26α
24α+1

t
7
3 > 0 (4.1)

for t ≥ 1 and

c(t) =



1
6

 3

√
26α

24α +1

2

t
1
3 g(t) if t2i−2 ≤ t ≤ t2i−1,

5(24α +1)
24

 3

√
26α

24α +1

2

t
1
3 g(t) if t2i−1 < t < t2i

(4.2)

with i ∈ N. Note that
1
6
<

5
24

<
5(24α +1)

24

for α > 0, and the sign of the functionc changes infinitely many times and the relative
maxima of|c(t)| diverge to infinity ast → ∞ (see Figure 1 below).

PSfrag repla
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Fig. 1 The graph of the functionc(t) defined by (4.2)

Example4.1 Equation (1.1) with (4.1) and (4.2) is nonoscillatory ifα > 0.
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Using Corollary 2.2, we will verify Example 4.1. Let us make equation (2.3) which is
compared with equation (1.1). Define

b(t) =
1
6

 3

√
26α

24α +1

2

t
1
3 −c(t).

If t2i−2 ≤ t ≤ t2i−1, then 0≤ g(t)≤ 1 and hence,

b(t) =
1
6

 3

√
26α

24α +1

2

t
1
3
(
1−g(t)

)
≥ 0.

On the other hand, ift2i−1 < t < t2i , then−1≤ g(t)< 0 and hence,

b(t) =
1
6

 3

√
26α

24α +1

2

t
1
3 − 5(24α +1)

24

 3

√
26α

24α +1

2

t
1
3 g(t)> 0.

In either case, the functionb is a nonnegative continuous function on[1,∞) satisfying

b(t)+c(t) =
1
6

 3

√
26α

24α +1

2

t
1
3 > 0

for t ≥ 1; namely, condition (2.1). From the functionsb, c andr given above, it follows that

R̃(t) =
(b(t)+c(t)) r2(t)

12

=
1
12

1
6

 3

√
26α

24α +1

2

t
1
3 36

 3

√
26α

24α +1

−2

t
14
3 =

t5

2
.

Let f (t) = t4. Then we have

C̃(t) = 6(b(t)+c(t))2 r(t)+
12f 2(t)

(b(t)+c(t)) r2(t)
− f ′(t)

=
1
6

 3

√
26α

24α +1

4

t
2
3

6

3
√

26α
24α+1

t
7
3 +

6
(

3
√

26α
24α+1

)2
12t8(

3
√

26α
24α+1

)2
t

1
3 36t

14
3

−4t3

=
26α

24α +1
t3+2t3−4t3 =

25α −2
24α +1

t3.

Thus, we obtain the linear differential equation(
t5

2
y′
)′

+
25α −2
24α +1

t3y= 0 (4.3)

which is of equation (2.3) type.
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To show that equation (4.3) is nonoscillatory, we will utilize Theorem C that was men-
tioned in Section 1. Since ∫ ∞

1

1

R̃(t)
dt =

∫ ∞

1

2
t5 dt =

1
2
< ∞,

we see that condition (1.4) is satisfied witha= 1. In addition, we obtain

A2(t) =
∫ ∞

t

1

R̃(s)
ds
∫ t

1
C̃(s)ds= lim

T→∞

[
− 1

2s4

]T

t

25α −2
24α +1

∫ t

1
s3ds

=
1
4

(
24α −1
24α +1

)(
1− 1

t4

)
for t ≥ 1. Taking into account thatα > 0, we see that

− 1
4
< liminf

t→∞
A2(t) = limsup

t→∞
A2(t) =

1
4

(
24α −1
24α +1

)
<

1
4
.

Hence, condition (1.9) is also satisfied. From Theorem C it turns out that equation (4.3) is
nonoscillatory forα > 0.

By means of our comparison theorem (Corollary 2.2), we can conclude that equation
(1.1) with (4.1) and (4.2) is nonoscillatory (see Figure 2 below).
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Fig. 2 The solution of (1.1) with (4.1) and (4.2) satisfying the initial condition thatx(1) = 30 andx′(1) = 0

However, we cannot apply Theorem C directly to equation (1.1) under the assumptions
(4.1) and (4.2). In other words, we cannot confirm Example 4.1 without Corollary 2.2. We
will show this fact below.

It follows from (4.1) that

∫ ∞

1

1
r(t)

dt =
1
6

3

√
26α

24α +1

∫ ∞

1
t−

7
3 dt =

1
8

3

√
26α

24α +1
< ∞.

Sinceg(t)≥ 0 for t2i−2 ≤ t ≤ t2i−1 and

1
6
<

5
24

<
5(24α +1)

24

for α > 0, we see that

c(t)<
5(24α +1)

24

 3

√
26α

24α +1

2

t
1
3 g(t)
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for t2i−2 ≤ t ≤ t2i−1. Hence, by (4.2) we obtain

A2(t) =
∫ ∞

t

1
r(s)

ds
∫ t

1
c(s)ds= lim

T→∞

− 3
√

26α
24α+1

8s
4
3

T

t

∫ t

1
c(s)ds

<

3
√

26α
24α+1

8t
4
3

5(24α +1)
24

 3

√
26α

24α +1

2∫ t

1
s

1
3 g(s)ds

=
5α
3t

4
3

∫ t

1
s

1
3

4sin(lns)+3cos(lns)
5

ds

=
α

3t
4
3

∫ t

1

d
ds

(
3s

4
3 sin(lns)

)
ds= α sin(ln t)

for t ≥ 1. From this estimation it turns out that liminft→∞ A2(t) = −α. Thus, condition
(1.4) is satisfied witha= 1. However, condition (1.9) is not satisfied provided thatα ≥ 3/4.
Hence, Theorem C cannot be applied to Example 4.1 directly.

As was mentioned in Section 1, equation (1.1) is divided into two cases (1.3) and (1.4).
Example 4.1 corresponds to the case (1.4). Also, we can take an example corresponding to
the case (1.3). Let

g(t) =
3cos(ln t)−16sin(ln t)√

265

for t ≥ 1. Then it is clear that|g(t)|= |sin(ln t +θ)| ≤ 1, whereθ = π −Tan−1(3/16). We
choose a sequence{tn} such thatt0 = 1 andtn = enπ−θ for n∈ N. Then it follows that

g(t)≥ 0 for t2i−2 ≤ t ≤ t2i−1;

g(t)< 0 for t2i−1 < t < t2i

with i ∈ N. Let α be any positive number. We define

r(t) =
6

3
√

26α
24α+1

t
13
3

> 0 (4.4)

for t ≥ 1 and

c(t) =



1
6

 3

√
26α

24α +1

2

g(t)

t
19
3

if t2i−2 ≤ t ≤ t2i−1,

√
265(24α +1)

6

 3

√
26α

24α +1

2

g(t)

t
19
3

if t2i−1 < t < t2i

(4.5)

with i ∈ N. It is obvious that the functionr satisfies condition (1.3) witha= 1 and the sign
of the functionc changes infinitely many times and the relative maxima of|c(t)| converge
to zero ast → ∞ (see Figure 3 below).

Example4.2 Equation (1.1) with (4.4) and (4.5) is nonoscillatory ifα > 0.
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Fig. 3 The graph of the functionc(t) defined by (4.5)

Combining Corollary 2.2 with Theorem B, we can verify Example 4.2. Since we can
discuss by the same manner as in Example 4.1, we omit the detailed calculation process and
leave it to the reader. We define

b(t) =
1
6

 3

√
26α

24α +1

2

1

t
19
3

−c(t)

and f (t)=1/t16. Then we see that the functionbcontinuous function on[1,∞) and condition
(2.1) holds. By a straightforward computation, we can obtain

R̃(t) =
(b(t)+c(t)) r2(t)

12
=

1
2t15

and

C̃(t) = 6(b(t)+c(t))2 r(t)+
12f 2(t)

(b(t)+c(t)) r2(t)
− f ′(t)

=

(
26α

24α +1
+18

)
1

t17 .

Hence, the coefficients̃RandC̃ of (2.3) satisfy conditions (1.3) and (1.7) witha= 1, respec-
tively. In addition, we obtain

A2(t) =
∫ t

1

1

R̃(s)
ds
∫ ∞

t
C̃(s)ds=

1
128

(
26α

24α +1
+18

)(
1− 1

t16

)
for t ≥ 1. Hence,

liminf
t→∞

A2(t) = limsup
t→∞

A2(t) =
1

128

(
26α

24α +1
+18

)
.

Since
9
64

<
1

128

(
26α

24α +1
+18

)
<

11
64

<
1
4
,

condition (1.8) is also satisfied. Thus, it turns out from Theorem B that the linear differential
equation (

y′

2t15

)′
+

(
26α

24α +1
+18

)
y

t17 = 0 (4.6)
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Fig. 4 The solution of (1.1) with (4.4) and (4.5) satisfying the initial condition thatx(1) = 30 andx′(1) = 0

is nonoscillatory forα > 0. Using Corollary 2.2 and comparing equation (1.1) with equation
(4.6) under the assumptions (4.4) and (4.5), we can verify Example 4.2 (see Figure 4).

However, Example 4.2 cannot be confirmed using only Theorem B. In fact,

∫ t

1

1
r(s)

ds=
1
32

3

√
26α

24α +1
(t

16
3 −1)

and

∫ ∞

t
c(s)ds<

√
265(24α +1)

6

 3

√
26α

24α +1

2∫ ∞

t

g(s)

s
19
3

ds

=− 24α +1
2

 3

√
26α

24α +1

2

sin(ln t)

t
16
3

for t ≥ 1. Hence, we obtain

A2(t) =
∫ t

1

1
r(s)

ds
∫ ∞

t
c(s)ds<−α

(
1− 1

t
16
3

)
sin(ln t)

for t ≥ 1. This means that liminft→∞ A2(t) ≤ −α. Thus, condition (1.8) is not satisfied
provided thatα ≥ 3/4. We therefore conclude that Theorem B cannot be applied to Example
4.2 directly.

Conditions (1.8) and (1.9) give the upper and lower bounds for nonoscillation of (1.1)
in Theorems B and C, respectively. These upper and lower bounds have been thought to be
reasonable and proper by a lot of reports. However, Examples 4.1 and 4.2 illustrate that there
is room for the improvement in the lower bound.
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