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Abstract The present paper deals with nonoscillation problem for the Sturm-Liouville half-
linear differential equation

(r®@ (X)) +ct)@p(x) =0,

wherer, c: [a,%) — R are continuous functions(t) > 0 fort > a, and¢(2z) = |zP~2zwith

p > 1. The purpose of this paper is to show that it is possible to broaden the application
range of Hille-Wintner type nonoscillation criteria. To this end, we derive a comparison
theorem by means of Riccati's technique. Our result is new even in the linear case that
p = 2. By the obtained result, we can compare two differential equations having a different
power p of the above-mentioned type. To illustrate our comparison theorem, we present
two examples of which all non-trivial solutions of the Sturm-Liouville linear differential

equation are nonoscillatory evenfﬁ%dsjiwc(s)ds or [*-L.dsfic(s)dsis less than the

r(s)
lower bound-3/4.
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linear differential equations Power comparison theoremLinearization method
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1 Introduction

As an extension of the second-order linear differential equation

(r)x) +c(t)x=0, (1.1)

F. Wu

School of Mathematics and Statistics,

Northeast Normal University, Changchun 130024, P. R. China
e-mail: wuft734@nenu.edu.cn

J. Sugie

Department of Mathematics,

Shimane University, Matsue 690-8504, Japan
e-mail: jsugie@riko.shimane-u.ac.jp



2 F. Wu, J. Sugie

many researchers have dealt with the half-linear differential equation

(r®@ (X)) +ct)@p(x) =0, (1.2)

where the prime denotely/dt; the coefficients andc are continuous functions da, «)
with a> 0 andr(t) > O fort > &; the real-valued functiogy, is defined by

®(2) =72

for ze R with p > 1 a fixed real number. Equations (1.1) and (1.2) are said to be in Sturm-
Liouville form or self-adjoint form. As for half-linear differential equations, for example,
we can refer the reader to [1, 3,4, 7, 11, 12] and the references cited therein. A funistion
said to be a solution of (1.2) ¥is a continuously differentiable function such thgg(x')

is also continuously differentiable and satisfies (1.2) in an unbounded intervi, ).

It is known that all solutions of (1.2) are unique for given initial conditions and con-
tinuable in the future like those of (1.1) (see, for example, [1,4,7,9]). Hence, it is worth
while to discuss whether solutions of (1.2) are oscillatory or not. A non-trivial solution
of (1.2) is said to bescillatoryif there exists a sequend&,} tending to infinity such that
X(tn) = 0. Otherwise, it is said to beonoscillatory Hence, a nonoscillatory solutioreven-
tually keeps either positive or negative; that is, there exisisaa such thax(t) # 0 for
t > T. It is also known that oscillatory solutions and nonoscillatory solutions do not co-
exist in equation (1.2) as well as equation (1.1). Hence, we may say that equation (1.2) is
oscillatory (respectively, nonoscillatory) in case all non-trivial solutions are oscillatory (re-
spectively, nonoscillatory). Riccati’'s technique is very useful to check that equation (1.2)
is nonoscillatory. Results related to Riccati’s technique for half-linear differential equations
until 2005 were summarized in the book [7] (see also [4]).

Equation (1.1) can be divided into two cases:

@ 1 def. (11 _
© 1

In the former, it is well-known that by transforming

s=o)= [ Lar 9 =y0(0) =X,

a (1)
Equation (1.1) is reduced to the equation of simple form,
y+&s)y=0, (1.5)

whered(s) = c(¢~1(s))r(¢~1(s)). Note thatg is strictly increasing fot > a because(t) >
0 fort > a. Hence, there exists the inverse functipnt, which is also increasing far> 0.
The inverse function diverges to ass tends too.

Many attempts were made to find nonoscillation criteria for equation (1.5). There is an
extensive literature on this topic in the book [18]. Among them, noteworthy is the classical
Hille-Wintner comparison theorem and the following result which related (see [13, 14, 19,
20])).

Theorem A Suppose that
/ &(t)dt is convergent (1.6)
a
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and
1

—Z gt/t &(s)ds< 2 for t > a
Then equatiorfl.5)is nonoscillatory

As a simple consequence result of Theorem A, we have the following nonoscillation
theorem.

Theorem B Under the assumptiofl.3), if

/ c(t)dt is convergent 1.7)
a
and 3 1
— = < limi <li = .
2< Il{ryor;lf Ap(t) < IlrtnﬁswupAg(t) <z (1.8)

then equatior{1.1)is nonoscillatorywhere

Ao(t) = /;%ds/tmc(s)ds

Theorem B is a corollary of Theorem 3.1.3 in the book [7, p.86]3ip@nd Retak
have also presented some results of the case (1.4). The following theorem is a corollary of
Theorem 3.1.5in [7, p.88] (see also [3, 4]).

Theorem C Under the assumptiofl.4), if

3 ) _
—2< Ilpyor;lf Ap(t) <limsupAq(t) <

1
nl 1.9
nst 2 (1.9)

then equatior{1.1)is nonoscillatorywhere
A = —d t d
t / S/ c(s)ds

Theorems B and C have a good balance. There are the upper and lower bounds in The-
orems A, B and C. Here, a simple question arises. Will the lower bound for nonoscillation
of (1.1) or (1.5) really exist? If the lower bound is necessary for nonoscillation, is it equal to
—3/47 To explain this question, we consider the Euler differential equation

y+§y=o (1.10)

as a special case of (1.5). Then itis clear that
(i) if A <1/4, then equation (1.10) is nonoscillatory;
(i) if A > 1/4, then equation (1.10) is oscillatory.

Of course, equation (1.10) is nonoscillatory even i& 0. Sincec(s) = A /s? in equation
(1.10),

t/tmé(s)ds:)\.

Hence, though 24 is the upper bound for nonoscillation of (1.10), no lower bound exists
for nonoscillation of (1.10). It is also obvious that equation (1.5) is nonoscillatory provided
that¢(s) < O for s sufficiently large. In this case, even condition (1.6) may not be satisfied.
Moreover, it is well-known that
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(i) if —o <limsup, ,,,S*€(s) < 1/4, then equation (1.5) is nonoscillatory;

(i) if 1 /4 < liminfs . S?&(s) < o, then equation (1.5) is oscillatory.

This criterion is called Kneser-type (see [15]). In Kneser’s criterion, no lower bound exists
for nonoscillation of (1.5).

In this paper, we will show that the scopes of Theorems B and C are expandable. To be
precise, we give an example that equation (1.1) is nonoscillatory even if

. 3
"?l'ﬂf At) < — 7
We also give an example that equation (1.1) is nonoscillatory even if

- 3
< — —
"Pl'!,‘f Ap(t) < Z

To check these examples, we present a comparison theorem of nonoscillation for equation
(1.2). Half-linear differential equations are described by the power fungiomith p > 1.

Our result can compare two half-linear differential equations with a different power. Such a
result is called a “power comparison theorem”. Of course, we can compare two half-linear
differential equations with the same power.

2 Equation to be compared

Let b be a nonnegative continuous functionfar) satisfying
b(t)+c(t)>0 fort>a (2.2)
Such a function exists. For example, liét) = 2max0, —c(t)} + 1. Then we see that
b(t)+c(t)=1+c(t)>1 if c(t)>0
and
b(t)+c(t)=—2c(t)+1+c(t)=1—c(t) >1 if c(t) <O

fort > a; that is, condition (2.1) holds.
For anyu > 1, letk(u) be an odd number satisfying

k> max{3, E}
p—1

Note thatk depends om. If u < 3p— 2, thenk may be 3, and if
@n+p-2n<u<(2n+3)p—2(n+1)

for n € N, then it may be 8+ 3. We denote the conjugate exponentpaindu by p* and
¥, respectively; that is,

1+i:1 and E+i:1.

pp poopr

In the calculation of Section 3, it might be more convenient to(psel)(p*—1) =1, p* =
p/(P—1), p=p"/(p"—1), (U—=)(pu" 1) =1, p" = p/(u—1) andp = p* /(" — 1).
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Let f be a continuously differentiable function. Define

b(t) +c(t) >k/p*+1/P (t))<kfl)/p

C(t)=2k(p—1)( — (r

p—1 \HW WP =t/ps g NW-DK/pHl/p o
) . [ (0)

+2pr—D(b o

(t)+c(t
—f(t).

Let f(t) = 0. Then|f(t)|* =0 andf’(t) = 0. Hence, by (2.1) we have

k/p*+1/p
%) @) ?>0 fort>a

c() = 2k(p- )
Of course, depending dm c andr, we may choose a continuously differentiable functfon
that diverges to infinity as— co.
To compare with (1.2), we consider the Sturm-Liouville half-linear differential equation

(RO@(Y)) +CO@(Y) =0, (22)
et o — (M= Vb e\ PR eeaym
()*(%wm—n) ( p-1 ) o) '

Then we can obtain the following comparison theorem concerning nonoscillation.

Theorem 2.1 Suppose thaf2.1) holds If equation(2.2) is nonoscillatory then equation
(1.2)is also nonoscillatory

As mentioned above, we may choose 3 as the odd nukbethe special case that
p= U = 2. Hence, the functionS(t) andR(t) become

12f2(t)

C(t) =6(b(t) + c(t))zr(t) + W

— (1)

and

. 2
A = O+,

respectively; and therefore, we have the following result.

Corollary 2.2 Suppose tha2.1) holds If equation
(Rt)Y) +C(t)y=0 (2.3)
is nonoscillatorythen equatior{1.1)is also nonoscillatory

Remark 2.1Needless to sayy, is the power function with real exponept Comparison
theorems are divided into two types. In the one type, half-linear differential equations with
the same power are compared. Corollary 2.2 belongs to this type. In another type, equation
(1.2) is compared with the half-linear differential equation with a different pggverl,

(a®)gp(x))" +d(t) g (x) = 0.

Such results can be found in [2,5, 10, 16, 17]. In those results, the authors have assumed
only one of eithe3 > por 3 < p. Theorem 2.1 is a power comparison theorem concerning
nonoscillation without these assumptions. This point is a distinctive feature of Theorem 2.1.
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3 Proof of Theorem 2.1

We have only to show that the Riccati differential inequality

[w|™

V\/+c(t)+(p—1)W

<0 (3.1)

has a solutionv for t sufficiently large.
The Riccati differential inequality corresponding to equation (2.2) is

*

y G
HOWM)+ (M=) (1 <O (3.2)

Since equation (2.2) has a nonoscillatory solufipthere exists & > a such thaty(t) > 0
ory(t) < 0fort > T. We may assume without loss of generality th@) > O fort > T. If
necessary, we may choose more lafge a. Let

v = RO@/ ).
Qu(y(t))
Sincey is a solution of (2.2), the denominatgy (y) and the numeratdRg, (Y') are contin-
uously differentiable functions. Hencejs also a continuously differentiable function. In
addition, the functiorv satisfies the inequality (3.2) for> T.
Sincek is an odd number that is larger than 3, we can define

w(t) = /v(t) — f(t)

fort > T. From (2.1) we see th&(t) + f'(t) andR(t) are positive fot > T. Hence, we

have "
()~ H0) < ~Cl0)~ (1~ 1) g g ~ 10 <O (3:3)

fort > T. It turns out from this inequality that— f has only one zero at most. This means
thatw is continuously differentiable far sufficiently large, because the functionand f
are continuously differentiable. Since

v(t) = wK(t) + f (1),
we have
V(t) = kw W (t) + £/(t)
for t sufficiently large. Hence,

kwkL(t) (W(t) +o(t)+ (p— 1)(r|(V\£()t))F”")‘1>
=V(t) — F'(t) +ko(t)|w(t)[< T+ k(p—1) w(t)|P L

(r()7 =
w(o)]P mﬂwwmmwﬁ—wm

(r(t))P -1 p—1

41/
:\/(t)+2k(p—1)<w) ) VP

k/p*+1/p
b(tz)i_i(t)) (I’ (t))(kil)/pz(t)

g\/(t)+k(p—1)<

+up—n(
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for t sufficiently large, where

1 \KPER, g (PP
2ty = (P = wi(t) [Pkt
b(t) +c(t)

r
p—1 \KkV/P/ g \&D/e )
+(W) (m) w(t)[< -2

For simplicity, letq =1+ p*/(k—1) and

o1 NP g NkDR
“(‘):(b<t>+c<t>) <@) LGl

From (2.1), itis clear that(t) > O fort > T. Since

k=1 k 1 k-1 k-1
a=5ty qu+p and (k—1)g=p"+k-1,

it follows that
2(t) = (u(t)) +u(t) -2

for t sufficiently large. Taking into account that

k> d=t_p-1
“p-1 p-1
it turns out that
Kk p*
> =q.
ko1 1T~

Hence, we see that

wWru—2<2ut Wk for u>o0.

It follows from this estimation that

HK/p

(Iv(t)+ [ F o))"

.
>u"k/p .
) o -t
)

() o <o)
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fort > T. Hence, we obtain

_ [w(t)|”
kwf " (t) <V\/(t) +et) +(p—- 1)(r(t))p*_1)

b(t) + (t))k/pul/p(r(t))(kl)/pf’(t)

r(t)
p-1
(u*l)k/p*l/p( 1 ><ﬂ*l>k/p+1/p

(H*=1)k/p*=1/p (H*=Dk/p+1/p
p—1 1 * x
b (%) OGRS

O — ')

)

—
—
~—

v(t)#

r(
(" =1k/p*=1/p
(r( )

t
1 )(u*1>k/p+1/p
t

—
+
=
N

for t sufficiently large. From (3.3) and the fact thatt1(t) > 0 for t sufficiently large, it
turns out that the functiow is a solution of (3.1) fot sufficiently large. Hence, by Riccati’'s
technique, equation (1.2) is nonoscillatory.

The proof of Theorem 2.1 is now complete. ad

We can choose 2 as the powerThenu* is also 2 and equation (2.2) becomes a linear
differential equation of Sturm-Liouville type. Sin&€2) is an odd number satisfying

k> max{3, i}
p—1

the numbek may be 3 ifp > 4/3, and it may be 2+ 3 if

2n+4 2n+2
2n+3 2n+1

for n € N. In addition, the coefficient® andC of (2.2) become slightly easy as follows:

1 b k/p*—1/p "
RO = 4k(|0—1)( (tr)JJ—ri(t)> ()"

b(t) + (t)>k/p*+1/P (t))(k—l)/p

o) = 2k(p-1)( " (r

p—1 \WP-UPs g \KPel/P )
+4k(p—1)(7b(t)+c(t)) (W) 2(t) — f'(t).

Thus, Theorem 2.1 has a deep relationship with the linearization method (or technique). As
for this method, see [6, 8] for example.
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4 Discussion

To answer our guestion that was raised in Section 1, we give an example. For this purpose,
we first defineg as follows:

glt) = 4sin(|nt);3005{lnt)

fort > 1. Let® = Tan 1(3/4). Then itis easy to check thig(t)| = | sin(Int + )| < 1,

g(t)>0 forty_o <t <ty_1
and
g(t) <0 forty_1<t<ty

with i € N, wherety = 1 andt, = €9 for n € N. For anya > 0, let

6
rt) = t3>0 4.1)
3/ 28a
24a+1
fort > 1 and
- 2
l 3 2 a 1 .
= t3q(t fto_» <t <ty_
6 24a+1 g() | 22 >t > 121,
c(t) = ) (4.2)

5(24a+1) 3 26 1 .
t3g(t) if th_1 <t <ty
24 24a+1 g( ) 2i—1 <U <1y

with i € N. Note that
1 5 52%a+1)
6 24 24
for a > 0, and the sign of the functioa changes infinitely many times and the relative
maxima of|c(t)| diverge to infinity ag — o (see Figure 1 below).

c(t)
10¢

é 1(‘) Int

Fig. 1 The graph of the function(t) defined by (4.2)

Example4.1 Equation (1.1) with (4.1) and (4.2) is nonoscillatorgif> O.



10 F. Wu, J. Sugie

Using Corollary 2.2, we will verify Example 4.1. Let us make equation (2.3) which is
compared with equation (1.1). Define

2
6 1
CEH TR

If toi_2 <t <ty_1,then 0< g(t) < 1 and hence,

2
6 1
bit) = ¢ (f/ 241‘11) t3(1—g(t)) > 0.

On the other hand, ihi_1 <t < ty, then—1 < g(t) < 0 and hence,

2 2
1 3 2%a 1 52%+1) [ 5] 28a 1
= — —_— 3 — 3
b(t) 6( 240:+1)t 24 Zig 1| PIU>0

In either case, the functidmis a nonnegative continuous function [dneo) satisfying

2
1 [ 26

fort > 1; namely, condition (2.1). From the functiobsc andr given above, it follows that

_ 2
Ay = O+ EOIEO

2 -2
6 6 5
_Llfg 2a ) g8 20 )y T
126 |\ 22a+1 2a+1 2

Let f(t) =t* Then we have

C(t) =6(b(t) +c(t))?r(t)+ ——l e —

)
4 6(23 26g 2 12t8
1( 3 2%a 2 6 7 Ha+1 3
sl = t3 t5 4+ - — 4t
a+1 3/ _28a (3 260 )t%36t1*34

2a+1 2a+1
_ 20 3n gp 2020
T 2%a+1  2%a+1

Thus, we obtain the linear differential equation

5\ 2%a-2,
(Ey) +mt y=0 (4.3)

which is of equation (2.3) type.
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To show that equation (4.3) is nonoscillatory, we will utilize Theorem C that was men-

tioned in Section 1. Since
© 1 ® 2 1
/—~ dt:/ Zdt== <o,
1 R(t) 1t 2

we see that condition (1.4) is satisfied wéh= 1. In addition, we obtain

— 117 Ba-2
As(t) _(/t gds C (s)ds= lim [—234]t 724(1—1—1.18?(18

_1(2%a-1 1L
n 4 2%a+1 t4
fort > 1. Taking into account that > 0, we see that

. . —~ 1/2%a-1 1
—2< |I¥1I0I;1f Ao(t) = IlrtnﬁswupAz(t) =3 (m) <z

Hence, condition (1.9) is also satisfied. From Theorem C it turns out that equation (4.3) is
nonoscillatory forar > 0.

By means of our comparison theorem (Corollary 2.2), we can conclude that equation
(1.2) with (4.1) and (4.2) is nonoscillatory (see Figure 2 below).

300¢
250 \/
200

150}

100
50

0 ) i 6 8 foln?
Fig. 2 The solution of (1.1) with (4.1) and (4.2) satisfying the initial condition tk{d) = 30 andx'(1) = 0

However, we cannot apply Theorem C directly to equation (1.1) under the assumptions
(4.1) and (4.2). In other words, we cannot confirm Example 4.1 without Corollary 2.2. We
will show this fact below.

It follows from (4.1) that

13 28a /
t T 6\ 2%a+1
Sinceg(t) > 0forty_» <t <ty_; and

1 5 52%a+1)

624 24

26
%a+1

ooH—\

for a > 0, we see that
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forty_» <t <ty_j1. Hence, by (4.2) we obtain

T

=1 2t |
ﬂt:/—ds/csds:lim _yZeat /csds
2() A r(S) 1 () Tho 85% 1 ()
t

3/ _28a 5(24C{+1) 264 2 t
< 24i+1 3 . /S?g(s)ds
8t} 24 2a+1| /1
B Si/ts%4siMIns)+3co$Ins)
1

a 3t‘§1 . 5
a [td . |
— ?,T%/l d—s(&cs sm(lns))ds: a sin(Int)

ds

for t > 1. From this estimation it turns out that liminf, Ax(t) = —a. Thus, condition
(1.4) is satisfied witta = 1. However, condition (1.9) is not satisfied provided that 3/4.
Hence, Theorem C cannot be applied to Example 4.1 directly.

As was mentioned in Section 1, equation (1.1) is divided into two cases (1.3) and (1.4).
Example 4.1 corresponds to the case (1.4). Also, we can take an example corresponding to
the case (1.3). Let
(t) = 3cogInt) — 16sinInt)

g /265

fort > 1. Then it is clear thag(t)| =|sin(Int + 8)| < 1, where@ = m— Tan }(3/16). We
choose a sequendg, } such thaty = 1 andt, = €79 for n € N. Then it follows that

g(t) >0 forty »<t<ty 3;
gt) <0 forty_1<t<ty
with i € N. Leta be any positive number. We define

6

r(t) = ] >0 (4.4)
24a+1
fort > 1 and
. 2
% (3 2420{(11> % if o <t Stziflv

c(t) = (4.5)

2
V265(2%a+1) [ 5 2%a gt) .
6 Hgi1 t? if thi_1<t<ty

with i € N. It is obvious that the function satisfies condition (1.3) wita = 1 and the sign
of the functionc changes infinitely many times and the relative maximéc(if)| converge
to zero ag — o (see Figure 3 below).

Example4.2 Equation (1.1) with (4.4) and (4.5) is nonoscillatorgif> O.
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c(t)
0.5F

05 : 5 90 ot
—0.5}
71‘0,
_1.5,
2.0}
o5t

Fig. 3 The graph of the function(t) defined by (4.5)

Combining Corollary 2.2 with Theorem B, we can verify Example 4.2. Since we can
discuss by the same manner as in Example 4.1, we omit the detailed calculation process and
leave it to the reader. We define

2
1( s 2%a 1
(=% (\/ 24a+1> v

andf (t) = 1/t'®. Then we see that the functibrcontinuous function oft, ) and condition
(2.1) holds. By a straightforward computation, we can obtain

~ 2
Ay = GO _ L

and
12f2(t)

é(t) =6(h(t) +C(t))2r(t) + W

2%a 1
- (24a+1+18> {7

Hence, the coefficien andC of (2.3) satisfy conditions (1.3) and (1.7) wigh= 1, respec-
tively. In addition, we obtain

t1 o 1 28a 1
Aol = || s | Clods= 5 (m + 18) (1— m)

fort > 1. Hence,

- (1)

fiminf Ag(t) = limsupAo(t) = —~ (2% ;18
gt At =M SIPA2 = 128\ 290+ 1 '

Since

g<i Za +18 <1—1<}
64 128\ %0 +1 64 4’

condition (1.8) is also satisfied. Thus, it turns out from Theorem B that the linear differential

equation
)/ ' 2°a y
<ﬁ + 24G+1+18 tﬁ =0 (4.6)
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600¢
500F
400F
300F
200f
100

0.2 0.4 0.6 0.8 Tont
Fig. 4 The solution of (1.1) with (4.4) and (4.5) satisfying the initial condition t{&) = 30 andx'(1) =0

is nonoscillatory forr > 0. Using Corollary 2.2 and comparing equation (1.1) with equation
(4.6) under the assumptions (4.4) and (4.5), we can verify Example 4.2 (see Figure 4).
However, Example 4.2 cannot be confirmed using only Theorem B. In fact,

t 1 1i a 1
/1 9 32\ 21 Y
V/265(24 6 2
o 265(2°a+1) [ 3/ 2°a ® g(s)
/t c(s)ds< 6 a1 ) S?ds

2
~ 2%a+1( s 28%a ) sin(int)

2 24041 t%G

and

fort > 1. Hence, we obtain

t1 @ 1.
Ax(t) 7/1 r(s)ds/t c(s)ds< —a (1 L )sm(lnt)
for t > 1. This means that liminf,, A2(t) < —a. Thus, condition (1.8) is not satisfied
provided thar > 3/4. We therefore conclude that Theorem B cannot be applied to Example
4.2 directly.

Conditions (1.8) and (1.9) give the upper and lower bounds for nonoscillation of (1.1)
in Theorems B and C, respectively. These upper and lower bounds have been thought to be
reasonable and proper by a lot of reports. However, Examples 4.1 and 4.2 illustrate that there
is room for the improvement in the lower bound.
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