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1. Introduction. In [1] Bernfeld investigated the continuability
of every solution x(t to, Xo) of a non-unique system
(1.1) x’= F(t, x)
where F" RR--R is continuous. He used a Liapunov function
which is radially unbounded for fixed t. In [2] the authors used two
Liapunov functions which are not radially unbounded or fixed t to
investigate the continuability of solutions on [to, c) (existence in the
future) under the assumption that solutions are unique. In this paper
we combine the results in [1], [2] and extend our results in [2] to non-
unique systems.

2. Main results. We consider a system
x’=f(t,x y)

(2.1) y’-- g(t, x, y)
where x, y are n and m-vectors respectively, and f(t, x, y), g(t, x, y)
arecontinuouson[0, oo) XRn XR. For K>O let SK--{y e
and 2K={(x, y) llxllK, y e R}.

Let V(t, x, y) be a continuous scalar function satisfying a local
Lipschitz condition. We define

(. )(t, x, y)= lim sup. (1 h){V(t+ h, x+ hf(t, x, y),

y+ hg(t, x, y))--V(t, x, y)}.
We say that a continuous scalar unction :[0, c)R--R is of

class if, or every real t00 and u0, the maximal solution u(t; to, Uo)
of the equation u’=(t, u) exists in the future.

We now state our main results.
Theorem 2.1. Let V [0, c) R R-R be locally Lipschitzian,

satisfying
(2.2) V(t, x, y)--+oz as yl]--c uniformly in x for each fixed t,
and there exists o.f class such that
(2.3) (2.1)(t, x, y)(t, V(t, x, y)).
Moreover, suppose that for each KO and TO, there exists W:[0, T]
X R X S-+R1, lo.cally Lipschitzian, satisfying
(2.4) W(t, x, y)-+c as ]lxll-+c for each fixed (t, y),
and there exists of class such that
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(2.5) I?V(.)(t, x, y)= (t, W(t, x, y)).
Then every solution of (2.1) exists in the future.

Let Dr={(x, y): V(T,x, y)gM} or each M0 and T0.
Theorem 2.2. Let V [0, c) R R--+R be locally Lipschitzian,

satisfying
(2.6) V(t, x, y)-c as llyll-c for each fixed (t, x),
and there exists of class such that
(2.7) ’(.)(t, x, y)(t, V(t, x, y)).
Moreover, assume that Dr is unbounded for each T0 and sufficiently
large MO, and there exists W: [0, T] D,r-R, locally Lipschitzian,
satisfying
(2.8) W(t, x, y)-+c as Ilxtl-c uniformly in y for each fixed t,
and there exists of class such that
(2.9) W(.)(t, x, y)= (t, W(t, x, y)).
Then every solution of (2.1) exists in the future.

Remark. If Dr is bounded, then
(2.10) V(t, x, y)-+c as Ilxll+llyll-+c or each fixed t.
In this case (2.7) and (2.10) assure the global existence of every solu-
tion of (2.1) ([1], [3]). Thus we consider the case that D. is unbounded
for each T0 and sufficiently large M)0.

We give the following lemmas (Lemmas 3.1 and 3.2 in [2]) which
are used in the proof of main results.

Let Er=((x, y): W(T, x, y)=M} for each M0 and T0.
Lemma 2.1. Let W [0, T] R S-R be a continuous function,

satisfying (2.4) in Theorem 2.1. Then for any MO the set E is
bounded.

Lemma 2.2. Let V [0, c) R R-R be a continuous, func-
tion, satisfying (2.6)in Theorem 2.2. Then for any MO, TO and

KO, the set Dr9 is bounded.
:. Proof. The following lemma is a generalized continuous

dependence result for non-unique systems ([4], Theorems 3.6 and 5.1).
Lemma :.1. Let F be continuous on an open set DcR R. Let

(o, o) e D and suppose all solutions of (1.1) through (r0, 0) exist on
[a, b], o [a, b]. Then for each eO, there exists ()0, such that if
d((r, ), (o, o)), then for each solution x(. , ) o.f (1.1), there exists
a solution o (1.1) through (r0,0), x(. ;r0,0), such that [Ix(t; r,)
--x(t r0, 0)]1 for all t e [a, b].

Let S.(to, Zo) be the intersection of the solution unnel through
(to, z0) and the hyperplane t=c.

Proof of Theorem 2.1. Suppose that there exist (r, ) e [0, c)
R , r and a solution z(. r, )= (x(. r, ), y(. r, )) of (2.1) such

that
IIz(t; r, )l]=]lx(t , )ll+lly(t r, )l]--c as t---,
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and z(-;r, )is defined on [r, (o). There exists (to, Zo) such that rt0
w and all solutions through (to, Zo) exist on [to, o] by an application
o local existence.

Define z=z(to r, ) and L={z=z/(1--,)Zo" 01}, and let
--sup {" z(o to, z,) is finite for all/" 0/2 and or all solutions z(-)
through (to, z,)}. By an application o Lemma 3.1, we see that 02,
1.

We first claim that not all solutions through (to, z.) exist up to
t=o. If they do, then by Lemma 3.1, there would exist a neighbor-
hood o z. such that all solutions passing through that neighborhood
exist at t=o, contradicting the definition of 2,. This establishes the
claim. Define o, sup {T" all solutions through (to, z.) exist on [to, T)}.

We next claim that B= 0__<. S.(to, z) is unbounded. In act, if

o<=<. S.(to, z) is bounded, S,(to, z.) is unbounded by the same argu-
ment in [1].

Hence we can choose a sequence of solutions {z(o, to, z)} such
that
(3.1) [[zn((o, to, Z2n) :[[Xn(O), to, z)I+[[yn(o, to, z)I-c as n-+c,
where 022,, 2n-’->,.

By the continuity of V, there exists v00 such that
V(to, z) <= Vo or all 0 =< 2= 1.

Using the comparison theorem, we have from (2.3) that
Y(w,, Xn(W, to, Z), yn(W, tO, Z.))V(O), tO, VO)

or all n, where v(t ;to, v0) is the maximal solution of v’=(t, v) through
(to, Vo). Hence it follows from (2.2) that there exists K0 such that

Ilyn(w$ ;0, Zn) llK for all n.

Choose Wo0 such that
W(to, z)=Wo or all 0=21.

Let w(t; to, Wo) be the maximal solution of w’= (t, w) through (to, Wo).
Then from the differential inequality (2.5) we conclude that

W(o,, x(w, to, z), y(w, to, z))=N or all n
where N= w(o, to, wo)I, that is,

(x(o, to, z), yn(w, to, z)) e E, for all n.

While E. is bounded by Lemma 2.1. Hence IIx(w,;to, Z)ll are
bounded for all n. This contradicts (3.1) and the proof is completed.

The proof of Theorem 2.2 is similar to that of Theorem 2.1, and
is omitted (cf. [2]).

4. Application. Consider the forced generalized Linard equa-
tion
(4.1) x"+f(t, x, x’) / g(x)h(x’)= e(t)
or an equivalent system
(4.2) x’= y, y’= f(t, x, y)-- g(x)h(y)/ e(t)
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where f’[0, c)R-+R, g" R’-,R, h R1-(0, c) and e’[0, )-*R are
continuous. We assume the following conditions"
(i) yf(t, x, y)>: 0 or (t, x, y) e [0, c) R,
(ii) there exist M0 and m0 such that

lY] <_m+MfY_.d] for ye R.
h() jo h()

Under these conditions, we have
Suppose that there exists a positive number PTheorem 4.1.

such that

(4.3) :g()d=--P for x e R1,

(4.4) [ d--c as [y[--.c.
3o h(])

Then every solution of (4.2) exists in the future.
Proof. Let

V(x Y):I h(-dY+ g()d+P

and W(x, Y)=I x I, then these satisfy (2.2) and (2.4) in Theorem 2.1, and
we obtain

V(,.) (t, x, y) yf(t, x, y) / h(y)+ e(t)y / h(y)

<_(m+M d) le(t)l
h()

M e(t)l V+m le(t) l,
therefore (2.3) holds. Let (t, x, y) e [0, T] R S, then

W(.)(t, x,
Hence every solution of (4.2) exists in thethus (2.5) is satisfied.

future.
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