42. Continuation Results for Differential Equations without Uniqueness by Two Liapunov Functions

By Jitsuro SUGIE

Department of Applied Physics, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1984)

1. Introduction. In [1] Bernfeld investigated the continuability of every solution $x(t; t_0, x_0)$ of a non-unique system

(1.1) x' = F(t, x)

where $F: \mathbf{R}^1 \times \mathbf{R}^d \to \mathbf{R}^d$ is continuous. He used a Liapunov function which is radially unbounded for fixed t. In [2] the authors used two Liapunov functions which are not radially unbounded for fixed t to investigate the continuability of solutions on $[t_0, \infty)$ (existence in the future) under the assumption that solutions are unique. In this paper we combine the results in [1], [2] and extend our results in [2] to nonunique systems.

2. Main results. We consider a system

(2.1)
$$x' = f(t, x, y) y' = g(t, x, y)$$

where x, y are n and m-vectors respectively, and f(t, x, y), g(t, x, y)are continuous on $[0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m$. For K > 0 let $S_K = \{y \in \mathbb{R}^m : ||y|| \le K\}$ and $\Omega_K = \{(x, y) : ||x|| \le K, y \in \mathbb{R}^m\}$.

Let V(t, x, y) be a continuous scalar function satisfying a local Lipschitz condition. We define

 $\dot{V}_{(2.1)}(t, x, y) = \limsup_{h \to 0} (1/h) \{ V(t+h, x+hf(t, x, y),$

 $y + hg(t, x, y)) - V(t, x, y)\}.$

We say that a continuous scalar function $\phi: [0, \infty) \times \mathbb{R}^1 \to \mathbb{R}^1$ is of class \mathcal{Q} if, for every real $t_0 \ge 0$ and u_0 , the maximal solution $u(t; t_0, u_0)$ of the equation $u' = \phi(t, u)$ exists in the future.

We now state our main results.

Theorem 2.1. Let $V: [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^1$ be locally Lipschitzian, satisfying

(2.2) $V(t, x, y) \rightarrow \infty$ as $||y|| \rightarrow \infty$ uniformly in x for each fixed t, and there exists ϕ of class \mathcal{G} such that

(2.3) $\dot{V}_{(2,1)}(t, x, y) \leq \phi(t, V(t, x, y)).$

Moreover, suppose that for each K>0 and T>0, there exists $W:[0, T] \times \mathbf{R}^n \times S_K \to \mathbf{R}^1$, locally Lipschitzian, satisfying

 $(2.4) W(t, x, y) \rightarrow \infty as ||x|| \rightarrow \infty for each fixed (t, y),$

and there exists ψ of class \mathcal{G} such that

(2.5) $\dot{W}_{(2.1)}(t, x, y) \leq \psi(t, W(t, x, y)).$

Then every solution of (2.1) exists in the future.

Let $D_{MT} = \{(x, y) : V(T, x, y) \leq M\}$ for each M > 0 and T > 0.

Theorem 2.2. Let $V: [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^1$ be locally Lipschitzian, satisfying

(2.6) $V(t, x, y) \rightarrow \infty$ as $||y|| \rightarrow \infty$ for each fixed (t, x),

and there exists ϕ of class \mathcal{G} such that

(2.7) $\dot{V}_{(2.1)}(t, x, y) \leq \phi(t, V(t, x, y)).$

Moreover, assume that D_{MT} is unbounded for each T > 0 and sufficiently large M > 0, and there exists $W : [0, T] \times D_{MT} \rightarrow \mathbb{R}^{1}$, locally Lipschitzian, satisfying

(2.8) $W(t, x, y) \rightarrow \infty$ as $||x|| \rightarrow \infty$ uniformly in y for each fixed t, and there exists ψ of class \mathcal{G} such that

(2.9) $\dot{W}_{(2.1)}(t, x, y) \leq \psi(t, W(t, x, y)).$

Then every solution of (2.1) exists in the future.

Remark. If D_{MT} is bounded, then

(2.10) $V(t, x, y) \rightarrow \infty$ as $||x|| + ||y|| \rightarrow \infty$ for each fixed t.

In this case (2.7) and (2.10) assure the global existence of every solution of (2.1) ([1], [3]). Thus we consider the case that D_{MT} is unbounded for each T > 0 and sufficiently large M > 0.

We give the following lemmas (Lemmas 3.1 and 3.2 in [2]) which are used in the proof of main results.

Let $E_{MT} = \{(x, y) : W(T, x, y) \leq M\}$ for each M > 0 and T > 0.

Lemma 2.1. Let $W: [0, T] \times \mathbb{R}^n \times S_{\kappa} \to \mathbb{R}^n$ be a continuous function, satisfying (2.4) in Theorem 2.1. Then for any M > 0 the set E_{MT} is bounded.

Lemma 2.2. Let $V: [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^1$ be a continuous function, satisfying (2.6) in Theorem 2.2. Then for any M > 0, T > 0 and K > 0, the set $D_{MT} \cap \Omega_K$ is bounded.

3. Proof. The following lemma is a generalized continuous dependence result for non-unique systems ([4], Theorems 3.6 and 5.1).

Lemma 3.1. Let F be continuous on an open set $D \subset \mathbb{R}^1 \times \mathbb{R}^d$. Let $(\tau_0, \xi_0) \in D$ and suppose all solutions of (1.1) through (τ_0, ξ_0) exist on $[a, b], \tau_0 \in [a, b]$. Then for each $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$, such that if $d((\tau, \xi), (\tau_0, \xi_0)) < \delta$, then for each solution $x(\cdot; \tau, \xi)$ of (1.1), there exists a solution of (1.1) through $(\tau_0, \xi_0), x(\cdot; \tau_0, \xi_0)$, such that $||x(t; \tau, \xi) - x(t; \tau_0, \xi_0)| < \varepsilon$ for all $t \in [a, b]$.

Let $S_{\alpha}(t_0, z_0)$ be the intersection of the solution funnel through (t_0, z_0) and the hyperplane $t = \alpha$.

Proof of Theorem 2.1. Suppose that there exist $(\tau, \zeta) \in [0, \infty)$ $\times \mathbb{R}^{n+m}, \omega > \tau$ and a solution $z(\cdot; \tau, \zeta) = (x(\cdot; \tau, \zeta), y(\cdot; \tau, \zeta))$ of (2.1) such that

 $||z(t;\tau,\zeta)|| = ||x(t;\tau,\zeta)|| + ||y(t;\tau,\zeta)|| \to \infty \quad \text{as } t \to \omega^-,$

and $z(\cdot; \tau, \zeta)$ is defined on $[\tau, \omega)$. There exists (t_0, z_0) such that $\tau < t_0 < \omega$ and all solutions through (t_0, z_0) exist on $[t_0, \omega]$ by an application of local existence.

Define $z_1 = z(t_0; \tau, \zeta)$ and $L = \{z_{\lambda} = \lambda z_1 + (1-\lambda)z_0: 0 \le \lambda \le 1\}$, and let $\lambda_* = \sup \{\lambda : z(\omega; t_0, z_{\mu}) \text{ is finite for all } \mu : 0 \le \mu < \lambda \text{ and for all solutions } z(\cdot) \text{ through } (t_0, z_{\mu})\}$. By an application of Lemma 3.1, we see that $0 < \lambda_* \le 1$.

We first claim that not all solutions through (t_0, z_{λ_*}) exist up to $t = \omega$. If they do, then by Lemma 3.1, there would exist a neighborhood of z_{λ_*} such that all solutions passing through that neighborhood exist at $t = \omega$, contradicting the definition of λ_* . This establishes the claim. Define $\omega_* = \sup \{T : \text{all solutions through } (t_0, z_{\lambda_*}) \text{ exist on } [t_0, T) \}$.

We next claim that $B = \bigcup_{0 \le \lambda \le \lambda_*} S_{\omega_*}(t_0, z_{\lambda})$ is unbounded. In fact, if $\bigcup_{0 \le \lambda \le \lambda_*} S_{\omega_*}(t_0, z_{\lambda})$ is bounded, $S_{\omega_*}(t_0, z_{\lambda_*})$ is unbounded by the same argument in [1].

Hence we can choose a sequence of solutions $\{z_n(\omega_*; t_0, z_{\lambda_n})\}$ such that

 $(3.1) \quad \|z_n(\omega_*; t_0, z_{\lambda_n})\| = \|x_n(\omega_*; t_0, z_{\lambda_n})\| + \|y_n(\omega_*; t_0, z_{\lambda_n})\| \to \infty \quad \text{as } n \to \infty,$ where $0 \leq \lambda_n \leq \lambda_*, \ \lambda_n \to \lambda_*.$

By the continuity of V, there exists $v_0 > 0$ such that

 $V(t_0, z_\lambda) \leq v_0$ for all $0 \leq \lambda \leq 1$.

Using the comparison theorem, we have from (2.3) that

 $V(\omega_{*}, x_{n}(\omega_{*}; t_{0}, z_{\lambda_{n}}), y_{n}(\omega_{*}; t_{0}, z_{\lambda_{n}})) \leq v(\omega_{*}; t_{0}, v_{0})$

for all *n*, where $v(t; t_0, v_0)$ is the maximal solution of $v' = \phi(t, v)$ through (t_0, v_0) . Hence it follows from (2.2) that there exists K > 0 such that

 $\|y_n(\omega_*; t_0, z_{\lambda_n})\| \leq K$ for all n.

Choose $w_0 > 0$ such that

 $W(t_0, z_\lambda) \leq w_0$ for all $0 \leq \lambda \leq 1$.

Let $w(t; t_0, w_0)$ be the maximal solution of $w' = \psi(t, w)$ through (t_0, w_0) . Then from the differential inequality (2.5) we conclude that

 $W(\omega_*, x_n(\omega_*; t_0, z_{\lambda_n}), y_n(\omega_*; t_0, z_{\lambda_n})) \leq N \quad \text{for all } n$ where $N = |w(\omega_*; t_0, w_0)|$, that is,

 $(x_n(\omega_*; t_0, z_{\lambda_n}), y_n(\omega_*; t_0, z_{\lambda_n})) \in E_{N\omega_*}$ for all n.

While $E_{N\omega_*}$ is bounded by Lemma 2.1. Hence $||x_n(\omega_*; t_0, z_{\lambda_n})||$ are bounded for all *n*. This contradicts (3.1) and the proof is completed.

The proof of Theorem 2.2 is similar to that of Theorem 2.1, and is omitted (cf. [2]).

4. Application. Consider the forced generalized Liénard equation

(4.1) x'' + f(t, x, x') + g(x)h(x') = e(t)

or an equivalent system

(4.2) $x' = y, \quad y' = -f(t, x, y) - g(x)h(y) + e(t)$

where $f:[0,\infty)\times \mathbb{R}^2 \to \mathbb{R}^1$, $g:\mathbb{R}^1 \to \mathbb{R}^1$, $h:\mathbb{R}^1 \to (0,\infty)$ and $e:[0,\infty)\to \mathbb{R}^1$ are continuous. We assume the following conditions:

(i) $yf(t, x, y) \ge 0$ for $(t, x, y) \in [0, \infty) \times \mathbb{R}^2$,

(ii) there exist M > 0 and $m \ge 0$ such that

$$rac{|y|}{h(\eta)}\!\leq\!m\!+\!M\int_{\scriptscriptstyle 0}^{y}\!rac{\eta}{h(\eta)}d\eta\qquad ext{for }y\in {\it I\!\!R}^{\scriptscriptstyle 1}.$$

Under these conditions, we have

Theorem 4.1. Suppose that there exists a positive number P such that

(4.3)
$$\int_0^x g(\xi) d\xi \ge -P \qquad for \ x \in \mathbf{R}^1,$$

(4.4)
$$\int_{0}^{y} \frac{\eta}{h(\eta)} d\eta \to \infty \qquad as |y| \to \infty.$$

Then every solution of (4.2) exists in the future.

Proof. Let

therefore (2.3

$$V(x,y) = \int_0^y \frac{\eta}{h(\eta)} d\eta + \int_0^x g(\xi) d\xi + P$$

and W(x, y) = |x|, then these satisfy (2.2) and (2.4) in Theorem 2.1, and we obtain

$$V_{(4,2)}(t, x, y) = -yf(t, x, y)/h(y) + e(t)y/h(y)$$

$$\leq \left(m + M \int_{0}^{y} \frac{\eta}{h(\eta)} d\eta\right) |e(t)|$$

$$\leq M |e(t)| V + m |e(t)|,$$
b) holds. Let $(t, x, y) \in [0, T] \times \mathbb{R}^{1} \times S_{\kappa}$, then

$$\dot{W}_{\scriptscriptstyle(4.2)}(t,x,y) \leq |y| \leq K,$$

thus (2.5) is satisfied. Hence every solution of (4.2) exists in the future.

References

- S. R. Bernfeld: Global existence without uniqueness. Ann. Mat. Pura Appl., 87, 227-236 (1970).
- [2] T. Hara, T. Yoneyama, and J. Sugie: Continuation results for differential equations by two Liapunov functions. Ann. Mat. Pura Appl., 133, 79-92 (1983).
- [3] A. Strauss: A note on a global existence result of R. Conti. Boll. Un. Mat. Ital., 22, 434-441 (1967).
- [4] T. Yoshizawa: Stability theory by Liapunov's second method. Math. Soc. Japan, Tokyo (1966).