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GLOBAL ASYMPTOTIC STABILITY FOR HALF-LINEAR
DIFFERENTIAL SYSTEMS WITH COEFFICIENTS

OF INDEFINITE SIGN

Jitsuro Sugie and Masakazu Onitsuka

Abstract. This paper is concerned with the global asymptotic stability of
the zero solution of the half-linear differential system

x′ = − e(t)x+ f(t)φp∗(y) , y′ = − g(t)φp(x)− h(t)y ,
where p > 1, p∗ > 1 (1/p + 1/p∗ = 1), and φq(z) = |z|q−2z for q = p or
q = p∗. The coefficients are not assumed to be positive. This system includes
the linear differential system x′ = A(t)x with A(t) being a 2 × 2 matrix as
a special case. Our results are new even in the linear case (p = p∗= 2). Our
results also answer the question whether the zero solution of the linear system
is asymptotically stable even when Coppel’s condition does not hold and the
real part of every eigenvalue of A(t) is not always negative for t sufficiently
large. Some suitable examples are included to illustrate our results.

1. Introduction

We consider a system of differential equations of the form

(S)
x′ = − e(t)x+ f(t)φp∗(y) ,

y′ = − g(t)φp(x)− h(t)y ,
where the prime denotes d/dt; the variable coefficients e(t), f(t), g(t), and h(t) are
continuous for t ≥ 0; the two numbers p and p∗ are positive and satisfy (p−1)(p∗−1)
= 1; the function φq(z) is defined by

φq(z) = |z|q−2z

for some q > 1. System (S) has a close relation to the half-linear differential
equation
(1.1) (φp(x′))′ + h(t)φp(x′) + g(t)φp(x) = 0 ,
because the substitution y = φp(x′) transforms equation (1.1) into system (S)
with e(t) = 0 and f(t) = 1. If x(t) is a solution of (1.1), then the function cx(t)
is also a solution, where c is any constant. However, the sum of two solutions
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of (1.1) is not always a solution. This means that the solution space of (1.1) is
homogeneous, but not additive. For this reason, equation (1.1) is often called
half-linear . Note that if

(
x(t), y(t)

)
is a solution of (S), then (cx(t), φp(c)y(t)) is

another solution. As for half-linear differential equations, we can refer the reader
to [1, 2, 6, 8, 7, 9, 14, 16, 18, 21, 22] and the references cited therein.

We say that the zero solution of (S) is globally asymptotically stable if it is stable
and if every solution

(
x(t), y(t)

)
of (S) tends to (0, 0) as time t increases. Although

many studies have been made on equation (1.1) and system (S) in the last four
decades, there seems to be little research on the global asymptotic stability of the
zero solution of (S). The first purpose of this paper is to give sufficient conditions
for the zero solution of (S) to be globally asymptotically stable.

System (S) naturally includes the linear system
(L) x′ = A(t)x ,
where

x =
(
x

y

)
and A(t) =

(− e(t) f(t)
− g(t) −h(t)

)
.

as a special case. Needless to say, the zero solution of (L) is globally asymptotically
stable if and only if it is (locally) attractive; that is, every solution x(t) of (L)
tends to (0, 0) as t→∞ whenever x(t0) is near enough (0, 0), where t0 ≥ 0 is the
initial time.

In the autonomous case A(t) = A, it is a well-known fact that the zero solution
of (L) is asymptotically stable if and only if every eigenvalue of A has negative
real part. However, this result does not hold for nonautonomous case. For example,
we consider the matrices

B(t) =
(−1− 9 cos2 6t+ 12 sin 6t cos 6t 12 cos2 6t+ 9 sin 6t cos 6t
−12 sin2 6t+ 9 sin 6t cos 6t −1− 9 sin2 6t− 12 sin 6t cos 6t

)
and

C(t) =

⎛⎜⎝ −1 + 3
2 cos2 t 1− 3

2 sin t cos t

−1− 3
2 sin t cos t −1 + 3

2 sin2 t

⎞⎟⎠.
Although the eigenvalues of B(t) and C(t) are −1, −10 and (−1 +

√
7i)/4, (−1−√

7i)/4, respectively, the nonautonomous linear systems x′ = B(t)x and x′ = C(t)x
have unbounded solutions

x(t) = e2t
(

cos 6t+ 2 sin 6t
2 cos 6t− sin 6t

)
and x(t) = et/2

(− cos t
sin t

)
,

respectively. Hence, the zero solutions of the systems are not asymptotically stable
(for more details, see [17, 23, 25]). For this reason, to show that the zero solution of
(L) is asymptotically stable, we need some alternative condition to the assumption
that every eigenvalue of A(t) has negative real part for all t ≥ 0. We can find such
an condition in the book of Coppel [3]. Before we state his result, let us introduce
some notations.



GLOBAL ASYMPTOTIC STABILITY 319

Let ‖x‖ be an arbitrary norm of a vector x. For any matrix M , we define the
induced norm of M to be

‖M‖ = sup
‖x‖=1

‖Mx‖

and denote by M∗ the conjugate transpose of M . Let μ(M) be a measure defined
by

μ(M) = lim
h→+0

‖E + hM‖ − 1
h

,

where E is the unit matrix. If ‖x‖denotes the Euclidean norm of x, then the measure
μ(M) is equal to the largest eigenvalue of the Hermitian matrix H = (M +M∗)/2.
It is easy to show that if every eigenvalue of H has negative real part, then every
eigenvalue of M also has negative real part.

Coppel [3, Chap. 3] have presented a simple sufficient condition for the zero
solution of (L) to be asymptotically stable: if

(1.2) lim
t→∞

∫ t
μ[A(s)] ds = −∞,

then the zero solution of (L) is asymptotically stable. For example, we consider
the symmetric matrix

A(t) =
(−3 + t sin t cos t

cos t −3 + t sin t

)
.

Since the eigenvalues of A(t) are −3 + t sin t+ | cos t| and −3 + t sin t− | cos t|, both
eigenvalues are not always negative for all t ≥ 0. On the other hand, the matrix A(t)
satisfies condition (1.2). In fact, since μ[A(t)] = −3 + t sin t+ | cos t| ≤ −2 + t sin t,
we have ∫ t

μ[A(s)] ds ≤
∫ t

(−2 + s sin s) ds

= −2t− t cos t+ sin t ≤ −t+ 1,
which tends to −∞ as t→∞.

Note that if A(t) is a constant matrix A, then condition (1.2) is stronger than
the assumption that every eigenvalue of A has negative real part. From an easy
calculation, we see that the eigenvalues of (B(t) + B∗(t))/2 are −13 and 2, and
those of (C(t) +C∗(t))/2 are −1 and 1/2. Hence, if ‖x‖means the Euclidean norm
of x, then the measures μ[B(t)] and μ[C(t)] are 2 and 1/2 for t ≥ 0, respectively,
and therefore, the matrices B(t) and C(t) do not satisfy condition (1.2). Other
attempts were made to obtain an additional condition to the assumption that every
eigenvalue of A(t) has negative real part for all t ≥ 0 (for example, see [4, 5]).

Hatvani [10] have discussed the asymptotic stability for system (L) from a
different angle and obtained some theorems with applications. The following result
is reached by one of his theorems.

Theorem A. Suppose that e(t) = 0, f(t) > 0, g(t) > 0, h(t) ≥ 0, and g(t)/f(t) is
continuously differentiable for t ≥ 0. If
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(i) lim
t→∞

(
log

√
g(t)
f(t) +

∫ t
h(s)ds

)
=∞;

(ii) there exists a constant K > 0 such that
2
K

√
f(t)g(t) ≤ f(t)

g(t)

(
g(t)
f(t)

)′
+ 2h(t) for t ≥ 0 ;

(iii) lim
t→∞

∫ t
f(s)
∫ s
g(τ) exp

(
−
∫ s
τ

h(u)du
)
dτ ds =∞,

then the zero solution of (L) is asymptotically stable.

Since e(t) = 0, f(t) > 0, g(t) > 0, and h(t) ≥ 0 for t ≥ 0 in Theorem A, we see
that μ[A(t)] ≥ 0 for t ≥ 0. Hence, condition (1.2) is not satisfied. On the other
hand, every eigenvalue of A(t) has non-positive real part.

As to when condition (1.2) does not hold and the real part of every eigenvalue
of A(t) is not always non-positive for t sufficiently large, the following question
then arises. What kind of condition will guarantee that the zero solution of (L) is
asymptotically stable? The second purpose of this paper is to answer the question.

In Section 2, in order to accomplish our first purpose, we give our standard
theorem which declares that the zero solution of (S) is globally asymptotically stable
under the assumption that coefficients are bounded. A certain growth condition on
the coefficients plays a major role in the proof of the theorem.

For illustration of our theorem, we take some concrete examples and draw a
positive orbit of (S) (or (L)) in Section 3. Here, we call the projection of a positive
semitrajectory of (S) onto the phase plane a positive orbit. The positive orbit in
each figure exhibits complicated behavior and it ultimately tends to the origin.
Also, we gain the second purpose through an example.

Finally in Section 4, we ease the assumption that coefficients are bounded and
present the main theorem with an example.

2. The case in which coefficients are bounded

Let

E(t) =
∫ t

0
e(s) ds .

In this section, we assume that f(t), g(t), h(t), and E(t) are bounded and g(t)/f(t)
is continuously differentiable for t ≥ 0, and
(2.1) f(t)g(t) > 0 for t ≥ 0 and lim inf

t→∞ f(t)g(t) > 0 .

We will relax the boundedness of g(t) and E(t), and lim inft→∞ f(t)g(t) > 0 later.
Although Theorem 2.1 below is a special case of the main result given in Section 4,
the proof of the main result will be made clear if we first demonstrate Theorem 2.1.

For the sake of convenience, we write

(2.2) ψ(t) = p∗h(t)− p e(t) + f(t)
g(t)

(
g(t)
f(t)

)′
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and define
V (t, x, y) = exp(pE(t))

(
f(t)|y|p∗
p∗g(t) + |x|

p

p

)
.

From (2.1) and the boundedness of f(t), g(t), and E(t), there exist positive constants
α, α, β, and β such that

(2.3) α ≤ f(t)
g(t) ≤ α and β ≤ exp(pE(t)) ≤ β

for t ≥ 0. Hence, we have

β

(
α|y|p∗
p∗

+ |x|
p

p

)
≤ V (t, x, y) ≤ β

(
α|y|p∗
p∗

+ |x|
p

p

)
for t ≥ 0 and (x, y) ∈ R

2, and therefore, V (t, x, y) is positive definite and decrescent,
and

V (t, x, y)→∞ as |x|+ |y| → ∞ uniformly for t ≥ 0 .
Taking account of the equalities

d

dz
|z|q = qφq(z) and zφq(z) = |z|q

for q = p or q = p∗, we have

V̇(S)(t, x, y) = pe(t) exp(pE(t))
(
f(t)|y|p∗
p∗g(t) + |x|

p

p

)
+ exp(pE(t))

{
f(t)
g(t)φp

∗(y)y′ + φp(x)x′ +
(
f(t)
g(t)

)′ |y|p∗
p∗

}

= pe(t) exp(pE(t))
(
f(t)|y|p∗
p∗g(t) + |x|

p

p

)
+ exp(pE(t))

(
−f(t)φp(x)φp∗(y)− f(t)h(t)

g(t) yφp
∗(y)
)

+ exp(pE(t))
(− e(t)xφp(x) + f(t)φp(x)φp∗(y)

)
+ exp(pE(t))

(
f(t)
g(t)

)′ |y|p∗
p∗

= exp(pE(t))f(t)|y|p∗
p∗g(t)

(
pe(t)− p∗h(t))+ exp(pE(t))

(
f(t)
g(t)

)′ |y|p∗
p∗

= −exp(pE(t))f(t)|y|p∗
p∗g(t)

{
p∗h(t)− pe(t)− g(t)

f(t)

(
f(t)
g(t)

)′}
.

Since
− g(t)
f(t)

(
f(t)
g(t)

)′
= f(t)
g(t)

(
g(t)
f(t)

)′
,

we obtain
V̇(S)(t, x, y) = −exp(pE(t))f(t)|y|p∗ψ(t)

p∗g(t) .
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If ψ(t) ≥ 0 for t ≥ 0, then by (2.1) we have
V̇(S)(t, x, y) ≤ 0

for t ≥ 0 and (x, y) ∈ R
2. We therefore conclude that the zero solution of (S) is uni-

formly stable and all solutions of (S) are uniformly bounded by using Liapunov-type
theorems (for example, see [15, 20, 24]). Thus, it is enough to give sufficient condi-
tions for every solution

(
x(t), y(t)

)
of (S) to tend to (0, 0) as t→∞.

It is well-known that the condition

(2.4)
∫ ∞

0
ψ(t) dt =∞

is insufficient for the zero solution of (S) to be attractive. For example, consider
system (L) with

(2.5) A(t) =
(

0 k

−k −h(t)

)
,

where k is a positive number and h(t) is an on-off function defined by

h(t) =

⎧⎪⎨⎪⎩
1 if (2n− 1)π − 1

n
≤ t ≤ (2n− 1)π, n ∈ N

0 otherwise.

Then ψ(t) = 2h(t) and condition (2.4) is satisfied. However, the zero solution is
not asymptotically stable (for the proof, see [11, 12, 13, 19]).

For the reason above, we have to impose a stronger condition on ψ(t) than (2.4)
for the attractivity of the zero solution of (S). We adopt the following concept
given by Hatvani and Totik [13] (see also [10]). The function ψ(t) is said to be
weakly integrally positive if ∫

I

ψ(s) ds =∞

holds on every set I =
∞⋃
n=1

[τn, σn] such that τn+ δ ≤ σn < τn+1 ≤ σn+ Δ for some

δ > 0 and Δ > 0. For example, ψ(t) = sin2 t/(1 + t) is weakly integrally positive
(refer to [10]). If ψ(t) is weakly integrally positive, then condition (2.4) is naturally
satisfied.

We are now ready to state Theorem 2.1.

Theorem 2.1. Suppose that E(t), f(t), g(t), and h(t) are bounded and that
g(t)/f(t) is continuously differentiable for t ≥ 0. Suppose also that condition (2.1)
holds. If ψ(t) is nonnegative for t ≥ 0 and it is weakly integrally positive, where ψ(t)
is the function given by (2.2), then the zero solution of (S) is globally asymptotically
stable.

Proof. Let

V (t, x, y) = exp(pE(t))
(
f(t)|y|p∗
p∗g(t) + |x|

p

p

)
.
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Then, as mentioned above, it follows from classical Lyapunov’s direct methods that
the zero solution of (S) is stable and all solutions of (S) are uniformly bounded.
The global existence of solutions of (S) are guaranteed as a matter of course. For
this reason, we have only to prove that every solution of (S) approaches the origin.

Let (x(t), y(t)) be a solution of (S) with the initial time t0 ≥ 0 and let v(t) =
V (t, x(t), y(t)). From (2.3), we see that

(2.6) β

(
α|y(t)|p∗
p∗

+ |x(t)|
p

p

)
≤ v(t) ≤ β

(
α|y(t)|p∗
p∗

+ |x(t)|
p

p

)
for t ≥ t0. Since

(2.7) v′(t) = −exp(pE(t))f(t)|y(t)|p∗ψ(t)
p∗g(t) ≤ 0 ,

v(t) is nonincreasing for t ≥ t0, and therefore, v(t) has a limiting value v0 ≥ 0. For
the case in which v0 = 0, it follows from (2.6) that the solution

(
x(t), y(t)

)
tends

to (0, 0) as t→∞, as required. Hereafter, we will show that the other case does
not occur.

Suppose that v0 > 0. Let

z(t) = exp(pE(t))f(t)|y(t)|p∗
p∗g(t) .

Then, using (2.3) again, we have

(2.8)
αβ|y(t)|p∗
p∗

≤ z(t) ≤ αβ|y(t)|
p∗

p∗

for t ≥ t0. Since y(t) is bounded, z(t) is also bounded. Hence, z(t) has the inferior
limit and the superior limit.
Claim 1: lim inft→∞ z(t) = 0. By way of contradiction, we suppose that there exist
an ε0 > 0 and a T1 ≥ t0 such that z(t) > ε0 for t ≥ T1. From (2.7) and the fact
that v(t) ≥ v0 for t ≥ t0, it turns out that

v(t0)− v0 ≥ v(t0)− v(t) = −
∫ t
t0

v′(s) ds =
∫ t
t0

z(s)ψ(s) ds .

Since ψ(t) is nonnegative for t ≥ 0 and weakly integrally positive, we obtain

v(t0) >
∫ ∞
t0

z(s)ψ(s) ds > ε0
∫ ∞
T1

ψ(s) ds =∞ ,

which is a contradiction. We therefore conclude that lim inft→∞ z(t) = 0.
Claim 2: lim supt→∞ z(t) = 0. We suppose that lim supt→∞ z(t) > 0. From (2.1)
and the boundedness of g(t) and h(t), we can choose two positive numbers g and h
such that
(2.9) g ≤ |g(t)| and |h(t)| ≤ h
for t ≥ 0. Let ε > 0 be so small that

(2.10) h

(
p∗ε
αβ

)1/p∗
< g

(
p(v0 − ε)
β

)1/p∗
.
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Taking account of Claim 1, we can find two sequences {τn} and {σn} with t0 <
τn < σn < τn+1 and τn →∞ as n→∞ such that z(τn) = z(σn) = ε and

z(t) ≥ ε for τn < t < σn ,

0 ≤ z(t) ≤ ε for σn < t < τn+1 .

From (2.3), we have
|x(t)|p
p

= exp(−pE(t))(v(t)− z(t)) ≥ v0 − ε
β
> 0

for σn ≤ t ≤ τn+1. This inequality is rewritten as

(2.11)
∣∣φp(x(t))∣∣ ≥ (p(v0 − ε)

β

)1/p∗
for σn ≤ t ≤ τn+1 .

It also follows from (2.8) that

(2.12) |y(t)| ≤
(
p∗z(t)
αβ

)1/p∗
≤
(
p∗ε
αβ

)1/p∗
for σn ≤ t ≤ τn+1. Using the second equation in system (S), we get
(2.13)

∣∣g(t)φp(x(t))∣∣ ≤ |y′(t)|+ |h(t)y(t)| for t ≥ t0 .
Hence, by (2.9)–(2.12), we have

|y′(t)| ≥ ∣∣g(t)φp(x(t))∣∣− |h(t)y(t)|
≥ g
(
p(v0 − ε)
β

)1/p∗
− h
(
p∗ε
αβ

)1/p∗
> 0

for σn ≤ t ≤ τn+1. Let

λ = g
(
p(v0 − ε)
β

)1/p∗
− h
(
p∗ε
αβ

)1/p∗

,

which is independent of n. Then we obtain
|y(τn+1)|+ |y(σn)| ≥ |y(τn+1)− y(σn)|

=
∣∣∣ ∫ τn+1

σn

y′(s) ds
∣∣∣ = ∫ τn+1

σn

|y′(s)| ds ≥ λ (τn+1 − σn) .

Since y(t) is bounded for t ≥ t0, there exists a constant Δ > 0 such that
(2.14) τn+1 ≤ σn + Δ for n ∈ N .

Again, from (2.7), we see that

ε

∫ σn
τn

ψ(s) ds ≤
∫ σn
τn

z(s)ψ(s) ds = −
∫ σn
τn

v′(s) ds = v(τn)− v(σn)

for each n ∈ N. Since v(t) positive and nonincreasing for t ≥ t0, we have

ε

∫
I

ψ(s) ds ≤ v(τ1) <∞ ,
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where I =
∞⋃
n=1

[τn, σn]. Hence, from (2.14) and the weak integral positivity of ψ(t),

we see that
(2.15) lim inf

n→∞ (σn − τn) = 0 .

Now, let ν = lim supt→∞ z(t) > 0. Then, by means of Claim 1 again, we can
select two sequences {ti} and {si} with t0 < ti < si < ti+1 and ti →∞ as i→∞
such that z(ti) = ν/2, z(si) = 3ν/4 and

ν

2 < z(t) <
3ν
4 for ti < t < si .

Judging from (2.10), we may regard ε as being small enough. Hence, for any i ∈ N

there exists an n ∈ N such that [ti, si] ⊂ [τn, σn]. From (2.15), we see that
(2.16) lim inf

i→∞
(si − ti) = 0 .

Since x(t), y(t), and f(t) are bounded for t ≥ t0, there exists an L > 0 such that
|f(t)φp(x(t))φp∗(y(t))| ≤ L for t ≥ t0 .

Hence, by (2.3) and (2.7), we have

z′(t) = v′(t)−
(

exp(pE(t))|x(t)|p
p

)′
= v′(t)− exp(pE(t))φp(x(t))

{
e(t)x(t) + x′(t)

}
≤ f(t) exp

(
pE(t)

)
φp
(
x(t)
)
φp∗(y(t))

≤ exp
(
pE(t)

)∣∣f(t)φp(x(t))φp∗(y(t))∣∣ ≤ βL
for t ≥ t0. Integrate this inequality from ti to si to obtain

ν

4 = z(si)− z(ti) ≤ βL(si − ti)
for each i ∈ N. This contradicts (2.16). Thus, we conclude that ν = 0. Claim 2 is
now proved.

From (2.8) and Claim 2 it turns out that y(t) tends to zero as t → ∞. Since
limt→∞ v(t) = v0 and limt→∞ z(t) = 0, it follows that

lim
t→∞

exp(pE(t))|x(t)|p
p

= v0 .

Hence, together with (2.3) and (2.9), we get

lim inf
t→∞

∣∣g(t)φp(x(t))∣∣ ≥ lim inf
t→∞

g exp((p− 1)E(t))|φp(x(t))|
β

1/p∗

= g
(
pv0

β

)1/p∗
> 0 .

Since h(t) is bounded for t ≥ 0 and y(t) tends to zero as t→∞, we see that
lim
t→∞ |h(t)y(t)| = 0 .
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Hence, using (2.13) again, we obtain

lim inf
t→∞ |y

′(t)| > 0 .

We therefore conclude that there exist numbers T2 > t0 and an M > 0 such that
|y′(t)| ≥M for t ≥ T2. Integrating this inequality from T2 to t ≥ T2, we have

|y(t)− y(T2)| =
∣∣∣∣∫ t
T2

y′(s) ds
∣∣∣∣ = ∫ t

T2

|y′(s)| ds ≥M(t− T2) ,

which tends to ∞ as t→∞. This contradicts the fact that y(t) tends to zero as
t→∞. Thus, the case of v0 > 0 does not happen.

The proof of Theorem 2.1 is now complete. �

3. Illustrations

As mentioned in Section 1, the zero solution of (L) with

A(t) = A =
(−e f

−g −h

)
,

where e, f , g, and h are constants, is asymptotically stable if and only if every
eigenvalue of A has negative real part. It is clear that the condition

−(e+ h) = trA < 0 < detA = eh+ fg

is necessary and sufficient for every eigenvalue of A to have negative real part.
Hence, to show that the zero solution is asymptotically stable, we need to assume
that either e or h is positive. For this reason, it might be natural to consider system
(L) (or system (S)) under the assumption that the variable coefficients e(t) and
h(t) are nonnegative for t ≥ 0 (for example, see Theorem A). However, in order to
cover many practical cases, we did not assume the nonnegativity of e(t) and h(t)
in Theorem 2.1.

To illustrate Theorem 2.1, we give two examples: one is used for system (S) and
the other is used for system (L). Since systems (S) and (L) are nonautonomous,
positive orbits have various shapes even if those initial times are the same. Conse-
quently, if we describe several positive orbits in the same figure, then we cannot
find the essential feature of positive orbits. For this reason, we sketch only one
positive orbit in each figure.

Example 3.1. Consider system (S) with p = 3,

(3.1) e(t) = 3
2 sin t , f(t) = 1

7 , g(t) = e−3 cos t and h(t) = sin t+ 2 sin2 t

3(1 + t) .

Then the zero solution of (S) is globally asymptotically stable.

It is clear that f(t), g(t), h(t) and E(t) are bounded and g(t)/f(t) is continuously
differentiable for t ≥ 0. Since f(t)g(t) = 7e−3 cos t ≥ 7/e3 for t ≥ 0, condition (2.1)
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is satisfied. Also, we have

ψ(t) = 3
2

(
sin t+ 2 sin2 t

3(1 + t)

)
− 9

2 sin t+ e
3 cos t

7

(
7
e3 cos t

)′
= 3

2

(
sin t+ 2 sin2 t

3(1 + t)

)
− 9

2 sin t+ 3 sin t = sin2 t

1 + t ≥ 0

for t ≥ 0. Hence, ψ(t) is weakly integrally positive. Thus, by Theorem 2.1 the zero
solution of (S) is globally asymptotically stable.

��

���

������

���

���

�

��

�� ��

��

��

�

�

��

��

���

���

���

���

�

�

��

��

��

��
�

�

(b)

��

��

���

���

���

���

�

�

��

��

��

��
�

�

(a) (c)

Fig. 1: A positive orbit of (S) with p = 3 and (3.1).

In Figure 1, we give a positive orbit of (S) with p = 3 and (3.1). The curves
in Figure 1 indicate the same positive orbit starting from the point (−6, 0) at the
initial time t0 = 1. Figures 1(a), 1(b) and 1(c) show three shapes of the positive
orbit for 1 ≤ t ≤ 5000, for 5000 ≤ t ≤ 20000 and for t ≥ 20000, respectively.
First the movement of the positive orbit fluctuates in unpredictable ways (see
Figure 1(a)), and then steadies down slightly (see Figures 1(b) and (c)). The
positive orbit is inextricably intertwined with itself in Figures 1(b) and (c). The
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region drawn by the positive orbit in Figure 1(c) is smaller than that in Figure 1(b).
This means that the positive orbit approaches the origin very slowly as it moves
about in confusion.

Recall our earlier question whether the zero solution of (L) is asymptotically
stable even if Coppel’s condition (1.2) does not hold and the real part of every
eigenvalue of A(t) is not always non-positive for t sufficiently large. To settle the
question, we give the following example to which Theorem 2.1 is applied.

Example 3.2. Consider system (L) with

(3.2) A(t) =

⎛⎜⎜⎝ −2 sin t 1
7

−e−2 cos t − sin t− sin2 t

2(1 + t)

⎞⎟⎟⎠.
Then the zero solution of (L) is asymptotically stable.

It is easy to confirm that all assumptions of Theorem 2.1 are satisfied. We omit
the details.

In Figure 2 below, we draw four shapes of the positive orbit of (L) with (3.2)
starting from the point (−6, 0) at the initial time t0 = 1. The positive orbit
runs for 1 ≤ t ≤ 5000 in Figure 2(a), for 5000 ≤ t ≤ 10000 in Figure 2(b), for
10000 ≤ t ≤ 20000 in Figure 2(c) and for t ≥ 20000 in Figure 2(d). Although the
positive orbit displays intricate behavior, it approaches the origin ultimately.

In Example 3.2, the characteristic equation is

det(λE −A(t)) = λ2 +
(

3 sin t+ sin2 t

2(1 + t)

)
λ+
(

2 sin2 t+ sin3 t

1 + t + 1
7e2 cos t

)
= 0

and its roots λ+(t) and λ−(t) are given by

λ±(t) = −3
2 sin t− sin2 t

4(1 + t) ±
1
2

√
sin2 t

(
1− sin t

2(1 + t)

)2
− 4

7e2 cos t .

The real parts of λ+(t) and λ−(t) are not always non-positive for t ≥ 0. To show
this, we let tn = (2n− 2/3)π for n ∈ N. Then

sin2 tn

(
1− sin tn

2(1 + tn)

)2
− 4

7e2 cos tn
= 3

4

(
1 +

√
3

4(1 + tn)

)2
− 4e

7

<
3
4

(
1 + 1

8

)2
− 4e

7 < 0

for each n ∈ N. Hence, we see that

Reλ±(tn) = −3
2 sin tn − sin2 tn

4(1 + tn)
>

3
√

3
4 − 3

16 > 0

for all n ∈ N. Let sn = (2n− 1/2)π for n ∈ N. Then, we have

sin2 sn

(
1− sin sn

2(1 + sn)

)2
− 4

7e2 cos sn
=
(

1 + 1
2(1 + sn)

)2
− 4

7 > 1− 4
7 > 0
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Fig. 2: A positive orbit of (L) with (3.2).

for each n ∈ N, and therefore, we get
Reλ+(sn) > Reλ−(sn)

= −3
2 sin sn − sin2 sn

4(1 + sn)
− 1

2

√
sin2 sn

(
1− sin sn

2(1 + sn)

)2
− 4

7e2 cos sn

≥ 3
2 −

1
4 −

1
2

√(
1 + 1

2

)2
− 4

7 > 0

for all n ∈ N.
The matrix A(t) in Example 3.2 does not satisfy Coppel’s condition (1.2). Since

A∗(t) =

⎛⎜⎝−2 sin t −e−2 cos t

1
7 − sin t− sin2 t

2(1 + t)

⎞⎟⎠,
the largest eigenvalue of the Hermitian matrix H(t) = (A(t) +A∗(t))/2, namely,
μ[A(t)] is

−3
2 sin t− sin2 t

4(1 + t) + 1
2

√(
sin t− sin2 t

2(1 + t)

)2
+
(

1
e2 cos t −

1
7

)2
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for t ≥ 0. Hence, we have

μ[A(t)] ≥ −3
2 sin t− sin2 t

4(1 + t) + 1
2 | sin t|

(
1− sin t

2(1 + t)

)

=

⎧⎨⎩− sin t− sin2 t

2(1 + t) if sin t ≥ 0

−2 sin t if sin t < 0 .

From this inequality, we can estimate that

lim
t→∞

∫ t
μ[A(s)] ds =∞ .

Hence, Coppel’s result mentioned in Section 1 is of no use to Example 3.2.
Incidentally, Theorem A is also inapplicable to Example 3.2. In fact, since

e(t) = 2 sin t and h(t) = sin t+ sin2 t

2(1 + t) ,

e(t) and h(t) change sign.

4. Extensions

Having achieved our two purposes which were stated in Section 1, we may now
proceed to a generalization of Theorem 2.1. Although we assume the boundedness
of g(t) and E(t) in Theorem 2.1, we can relax the assumption by changing variables.

Theorem 4.1. Suppose that
(i) E(t)is bounded from below;
(ii) g(t)/f(t) is continuously differentiable for t ≥ 0 ;
(iii) f(t) exp(E(t)) and g(t)/ exp((p− 1)E(t)) are bounded, and

f(t)g(t) > 0 for t ≥ 0 and lim inf
t→∞

f(t)g(t)
exp((p− 2)E(t)) > 0 ;

(iv) h(t) is bounded.
If ψ(t) is nonnegative for t ≥ 0 and it is weakly integrally positive, where ψ(t) is
the function given by (2.2), then the zero solution of (S) is globally asymptotically
stable.

Proof. Let w = x exp
(
E(t)
)
. Then we can transform system (S) into the system

(S̃)
w′ = f̃(t)φp∗(y) ,
y′ = − g̃(t)φp(w)− h(t)y ,

where f̃(t) = f(t) exp(E(t)) and g̃(t) = g(t)/ exp((p − 1)E(t)). We will confirm
that Theorem 2.1 can be applied to system (S̃).

It follows from assumption (i) that if w(t) tends to zero as t → ∞, then x(t)
also tends to zero as t → ∞. By assumptions (iii) and (iv), the coefficients f̃(t),
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g̃(t) and h(t) in system (S̃) are bounded for t ≥ 0. From assumption (iii) again, it
turns out that

f̃(t)g̃(t) > 0 for t ≥ 0 and lim inf
t→∞ f̃(t)g̃(t) > 0 .

From assumption (ii), we see that g̃(t)/f̃(t) is continuously differentiable for t ≥ 0.
Let

ψ̃(t) = p∗h(t) + f̃(t)
g̃(t)

(
g̃(t)
f̃(t)

)′
.

Then we have

ψ̃(t) = p∗h(t) + f(t) exp(pE(t))
g(t)

(
g(t)

f(t) exp(pE(t))

)′
= p∗h(t)− p e(t) + f(t)

g(t)

(
g(t)
f(t)

)′
= ψ(t) .

Hence, it follows from the assumption on ψ(t) that ψ̃(t) is nonnegative for t ≥ 0 and
weakly integrally positive. Thus, all conditions of Theorem 2.1 are satisfied, and
therefore, the zero solution of (S) is globally asymptotically stable. This completes
the proof of Theorem 4.1. �

Theorem 4.1 is applicable to the following example, but Theorem 2.1 is inappli-
cable.
Example 4.2. Let p > 1 be arbitrary. Consider system (S) with

e(t) = 1+2 sin t , f(t) = e−t , g(t) = e(p−1)t and h(t) = 2(p−1) sin t+sin2 t

1 + t .

Then the zero solution of (S) is globally asymptotically stable.
It is clear that the assumptions in Theorem 4.1 are satisfied. We have

ψ(t) = p∗h(t)− p e(t) + f(t)
g(t)

(
g(t)
f(t)

)′
= p

∗ sin2 t

1 + t + 2p sin t− p(1 + 2 sin t) + p

= p
∗ sin2 t

1 + t ≥ 0

for t ≥ 0. Hence, ψ(t) is weakly integrally positive. Thus, by Theorem 4.1 the zero
solution of (S) is globally asymptotically stable. Since E(t) = t− 2 cos t and g(t) =
e(p−1)t, both functions tend to ∞ as t→∞. If p < 2, then f(t)g(t) = e(p−2)t → 0
as t→∞. Hence, we cannot apply Theorem 2.1 to Example 4.2.

Finally, we give other expressions for Theorem 4.1. For this purpose, we need
the following lemma.
Lemma 4.3. Let a(t) and b(t) be piecewise continuous functions on (0,∞) satis-
fying
(4.1) a(t)b(t) > 0 for t ≥ 0 .
Then the following conditions are equivalent:
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(i) a(t) and b(t) are bounded, and lim inft→∞ a(t)b(t) > 0;
(ii) a(t) and 1/b(t) are bounded, and lim inft→∞ a(t)/b(t) > 0;
(iii) 1/a(t) and b(t) are bounded, and lim inft→∞ b(t)/a(t) > 0;
(iv) 1/a(t) and 1/b(t) are bounded, and lim inft→∞ 1/(a(t)b(t)) > 0.

Proof. We first prove (i) ⇒ (ii). From (4.1) and (i), we can find positive numbers
m1 and m2 such that

a(t)b(t) ≥ m1 and |a(t)| ≤ m2 for t ≥ 0 .
Hence, we have

1
|b(t)| ≤

|a(t)|
m1
≤ m2
m1

for t ≥ 0 ,

namely, 1/b(t) is bounded. Since b(t) is bounded, there exists an m3 > 0 such that
b2(t) ≤ m3 for t ≥ 0 .

From this, we get
a(t)
b(t) = a(t)b(t)

b2(t) ≥
m1
m3
> 0 for t ≥ 0 .

We next prove (ii) ⇒ (i). Let b̃(t) = 1/b(t). Then, as in the proof of part (i) ⇒
(ii), we can show that 1/b̃(t) is bounded and lim inft→∞ a(t)/b̃(t) > 0. Hence, b(t)
is bounded and lim inft→∞ a(t)b(t) > 0.

Similarly, we can prove (i) ⇔ (iii) and (i) ⇔ (iv). We omit the details. �
By means of Lemma 4.3, we can replace assumption (iii) in Theorem 4.1 with

one of the following conditions:
(v) f(t) exp(E(t)) and exp((p− 1)E(t))/g(t) are bounded, and

f(t)g(t) > 0 for t ≥ 0 and lim inf
t→∞

f(t) exp(pE(t))
g(t) > 0 ;

(vi) 1/(f(t) exp(E(t))) and g(t)/ exp((p− 1)E(t)) are bounded, and

f(t)g(t) > 0 for t ≥ 0 and lim inf
t→∞

g(t)
f(t) exp(pE(t)) > 0 ;

(vii) 1/(f(t) exp(E(t))) and exp((p− 1)E(t))/g(t) are bounded, and

f(t)g(t) > 0 for t ≥ 0 and lim inf
t→∞

exp((p− 2)E(t))
f(t)g(t) > 0 .
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