Asymptotic stability of coupled oscillators
with time-dependent damping
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Abstract. The present paper is devoted to an investigation on the asymptotic
stability for the damped oscillators with multiple degrees of freedom,
X" 4+ht)x +Ax=0

and its generalization

Mx" +C(t)x' +Kx =0,
whereh: [0,0) — [0,) is a function,A, M andK aren x n real constant ma-
trices. andC is ann x n matrix whose elements are real-valued functions. The
functionsh andC correspond to the damping coefficient and the damping ma-
trix, respectively. The origiiix,x’) = (0,0) is the only equilibrium of the above-
mentioned damped oscillators. Necessary and sufficient conditions are presented
for the equilibrium of these oscillators to be asymptotically stable. The obtained
conditions are given by the forms of certain growth conditions concerning the
dampingh andC, respectively.
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1. Introduction

The damped coupled oscillator
X" +h(t)x + Ax=0 (1.2)

is one of very important models that continue to be researched from many angles
in a wide range of fields which covers pure science, applied science, and technol-
ogy. Here, = d/dt, x is ann-dimensional vectorh is a nonnegative and locally
integrable function oif0,«), andA is a symmetria1 x n real matrix.

For example, consider a mechanical system consistingbfects as follows.
The masses of the objects are identical. The value iBhe objects are coupled by
n+ 1 springs, and the springs at both ends are attached to walls. The stiffness of the
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i-th spring from the lefti%; (i =1,2,...,n+1). The objects of this system repeat a
horizontal reciprocating motion over a flat floor. Rolling friction is caused between
the objects and the floor. The friction coefficient of this horizontal surface can be
varied and it can be expressed by the function

Letx (i=1,2,...,n) be the displacement of theth object from its equilib-
rium position. Then, the equation of motion of this mechanical system is

mx/ +c(t)x] +kixs —ko(xo —x1) =0,

M + c(t)X5 + ko (X2 — X1) — k3(Xs —X2) =0,
mxg + C(t)X; + k(X3 — X2) — ka(Xa —Xx3) = 0,
mx, 3 +C(t)X_1 +Kn-1(Xn-1—Xn-2) —Kn(Xn —Xn-1) =0,
MX; +C(t)Xy +Ka (X0 — Xn-1) +Kn2% = 0

This system can be rewritten to the oscillator (1.1) vhih) = c(t)/m,

|<1+|<2 _kl 0 0 O
X1 e ki ks 0 0
& 0 ke 0 0
X3 m m
X = : and A=
X1 o o o0 .. fet _k
0 0 0 .. -k etk

As another application example of (1.1), we can cite the coupled pendulum.
The pendulums of the same size are arranged at equal intervals in a row. The number
of pendulums is. The length of thread i6. Each weight is horizontally connected
to the next weight with a spring. The number of springs is 1. Natural lengths
of springs are equal to the spacing of pendulums. The stiffness adftthepring
from the left isk; (i =1,2,...,n—1). The friction works at the pivot points of
the pendulums. The friction coefficient is expressed by the funatidihen the
displacements of the weights are small, the equation of motion is approximated to
the oscillator (1.1) witth(t) = c(t)/m,

g, k k

1+ 5 - 0 0 0

kg ktk _k 0 0
mC e g Ke

| gy ket 0 0

: : : . . o 3
0 0 0 Z+ﬁ g_ﬁll
0 0 0 ~~m 7+T7

whereg is the acceleration of gravity. We can find other application examples of
(1.1) to electric circuit theory and structural dynamics, etc. For example, refer to the
books [7, 15, 17, 23].

The oscillator (1.1) has the only equilibriu(r,x’) = (0,0). The purpose of
this paper is to give a necessary and sufficient condition for the equilibrium of (1.1)
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to be asymptotically stable. Trasymptotic stabilityof the equilibrium referred to
here is that every solutionof (1.1) satisfies

. .,

tImex(t) = tIgr[]ox (t)y=0. (1.2)

Strictly speaking, the above-mentioned explanation is the definition in which the
equilibrium of (1.1) isattractive As known well, however, the attractivity implies
the asymptotic stability because the oscillator (1.1) is linear. Needless to say, the
asymptotic stability for the oscillator (1.1) is a global properties of the equilibrium.
About the definitions of stability and attractivity, refer to the books [4, 6, 16, 18, 24]
for example. The study of the (global) asymptotic stability is one of main themes in
the qualitative theory of differential equations.

To describe our result concerning the asymptotic stability of (1.1), we intro-
duce two concepts as follows. A symmetnig n real matrixP is said to bepositive
definiteif v'Pv is positive for every nonzero column vectof n real numbers.
Here, v denotes the transposewafThe damping coefficiertt is said to belong to
Fwipy i

)3 / “hit)dt = e

n=1“Tn

for every pair of sequencds,} and{on} satisfying

liminf(on— 1) >0 and O<Ilimsup(Tnhi1— On) < .
n—o n—oo

The concept of the positive definite matrix is known well in linear algebra and its
applications. The concept of the weak integral positivity was first published in Hat-
vani [8]. It is clear that ith has a positive lower bound, thénbelongs toZ yp.-
There is a possibility that belongs toZp) even if liminf_,. h(t) = 0. For exam-
ple, I/(1+t) € Fjwip and sifft /(1+t) € Fwip (for the proof, see [21, Proposition
2.1]). The following result is our main theorem.

Theorem 1.1 Suppose that there exist & > 0 and ad > 0 such that|h(t) —
h(s)| < & for allt > 0 and s> 0 with |t —s| < & and suppose that h belongs to
Zwip- Then the equilibrium of1.1) is asymptotically stable if and only if A is a
positive definite matrix and

© [Lelods
where

H(t) = /Oth(s)ds

Remark 1.11f h is uniformly continuous orf0,); namely, for anye > 0, there
is ao(g) > 0 such thath(t) — h(s)| < € for allt > 0 ands > 0 with |t — 5| < J,
then the first assumption in Theorem 1.1 is satisfied with respect tegany) and
d = 0(&). Of course, the converse is not necessarily true.
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Remark 1.2If there exists arh > 0 such that 6< h(t) < hfor t > 0, then|h(t) —
h(s)| < |h(t)| + |h(s)| < 2h for all t > 0 ands > 0. Hence, the first assumption of
Theorem 1.1 is satisfied with respectsto= 2h and anyd, > 0.

Remark 1.3The first assumption of Theorem 1.1 may be satisfied evénisfa
discontinuous function. For example, if

a iftelp,
h(t) =
b iftel,

for n € N, where O< a < b and{l,} is a sequence of bounded intervals such that
linlj =g (i # j), then the first assumption holds. This step functidmelongs to

Fwip)-

Remark 1.4Condition (1.3) is the so-called growth condition on the damping coef-

ficienth. Since
© [pe'®ds et —(H(t)~H(s)
/0 e */o/oe dsdt

condition (1.3) can be expressed in the double integral. This double integral (1.3)
was given for the first time by Smith [19]. He discussed the asymptotic stability of
the equilibrium of a single degree of freedom system under the strong restriction
condition that there exists am> 0 such thath(t) > h for t > 0. Because of this
restriction, Smith’s result cannot be applied to the case of liminh(t) = 0. For

this reason, many attempts were carried out to weaken this restriction. One of the
attempts is a setting of the family of functions nam#gys. The historical devel-
opment of this research is concisely summarized in [10, 20].

Remark 1.5t is known that the equilibrium of dynamical systems with one degree

of freedom can be not become an asymptotically stable when the damping coeffi-
cient of the system increases fast or it decreases fast. In Theorem 1.1, the assumption
thath € #p prohibits too rapidly decline di. On the other hand, condition (1.3)
prohibits too rapidly growth oh. For example, ith is bounded oh(t) =t, then
condition (1.3) holds; ih(t) = t?, then condition (1.3) fails to hold. Zheng and the
present author [26] discussed the issue what the upper limit of the growth rate which
can guarantee that condition (1.3) is satisfied is.

As seen immediately from the definition oFp), if h belongs to.7 g,
then

tIim H(t) = co. 1.4
—»00
Hatvani et al. [11] proved that condition (1.3) is equivalent to

[

S (H ) -Hn-1)° =0

n=1
under the assumption (1.4), where

H™1(r) =min{t e R: H(t) > r}.
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Note that the integraH is not necessarily strictly increasing becabgg is
allowed to become zero at a certairfror this reason, the inverse functisin* may
be discontinuous but it is strictly increasing [@co).

Using their method, we can prove the following equivalence relation (we omit
the proof).

Proposition 1.2 Under the assumptiofi.4), condition(1.3) holds if and only if

© [LepHods

o erm Jt=®

foranyp > 0.

2. Damped single oscillator
Consider the damped linear oscillator
X' +h(t)X + w’x =0, (2.1)

wherew is a positive constant arids the same function given in Eq. (1.1). Needless
to say, the only equilibrium of (2.1) i, x') = (0, 0).

The present author [20] has recently obtained a necessary and sufficient condi-
tion which guarantees that the equilibrium of damped nonlinear oscillators including
Eqg. (2.1) is globally asymptotically stable. By applying this result to Eq. (2.1), we
can derive the following result.

Theorem A Suppose that h is uniformly continugasd it belongs to7ypj. Then
the equilibrium of(2.1)is asymptotically stable if and only if conditi¢h.3) holds

Theorem A contains many results of previous researches concerning the as-
ymptotic stability for Eq. (2.1). We will try a further extension.

Theorem 2.1 Suppose that there exist @& > 0 and ady > 0 such that|h(t) —
h(s)| < & for all t > 0 and s> 0 with |t —s| < & and suppose that h belongs to
Zwip- Then the equilibrium of2.1)is asymptotically stable if and only if condition
(2.3)holds

Remark 2.1To prove the necessity of Theorem 2.1, we will show that there exists
a solution of (2.2) which does not approach the origin provided that

© [telods

The necessity was proved in Smith [19, Theorem 1]. This method was given by
Wintner [22]. Wintner's method was generalized so that nonlinear differential equa-
tions including Eq. (2.1) could be applied (see [20, Theorems 2.1 and 3.2]). We will
prove the necessity by using another method.
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Proof of Theorem 2.1By puttingy = X'/ w as a new variable, Eq. (2.1) becomes the
planar system
X = wy,

y = —wx—h(t)y.
System (2.2) has the zero solutipny) = (0,0), which corresponds to the equilib-
rium of (2.1). Hence, to prove Theorem 2.1, we have only to show that under the
assumptions concernirig every solution(x,y) of (2.2) approaches the orig{@, 0)
ast tends tow if and only if condition (1.3) holds.

2.2)

NecessityWe can choose & > 0 so large that
© [LeH®ds 1
/T o< . 2.3)
Consider the solutiofX, ) of (2.2) that passes througi, 0) att = T. Sincex(T) =
w¥(T)=0andy’(T) = — wX(T) —h(t)§(T) = — w < 0, it turns out tha{X, §) enters

the fourth quadrant
def

Qs = {(x,y):x>0 andy < 0}
in a right-hand neighborhood bf= T. Taking account of the vector field @4, we
see thatX,y) does not move to the first quadrant

Q1 d:e'({(x,y) :x>0andy > 0}

from Q4 directly ast increases. Also, we see that®X(t) < 1 as long agX, ¥) is in
Q.
Suppose that there existsTa > T such tha(T*) = 1/2 andx{t) > 1/2 for
T <t<T* Since
¥ (1) +h(t)y(t) = — wX(t) > —w
for T <t < T*, it follows that
(VY1) > —we!® for T<t<T".

Integrate both sides of this inequality fromtot < T* to obtain
t t
eHOy(t) > HTMy(T) - oo/ H®ds= —w/ e'¥ds
T T

Hence, by (2.2) we have
0P Jre'ds
eH
for T <t < T*. From this estimation and (2.3) it follows that
T 119 = [oe9d 1
Y A S _2/fo S 2
RT7) > 8(T) - o[ T Sat> 1 [ 05 Bt o
This contradicts the assumption th&f ) = 1/2. Hence, sucf* does not exist.
This fact means that the solutidR, §) of (2.2) stays in the region
{(xy):1/2<x<1 andy <0}
fort > T. Thus,(X,¥) does not approach the origin.

R (t) = wy(t) =
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SufficiencyLet (x,y) be any solution of (2.1) with the initial timg > 0 and

define L
vit) =5 (1) +yA(1)) - (2.4)

Then, we have

V(t) = X)X (t) +Y(1)Y () = —h(t)y*(t) <O
for t > to. Hence,v is a decreasing function 00, ). Sincev(t) > 0 for t > to,
there exists a limiting valug* > 0. If v* = 0, then it follows from (2.4) that the
solution(x,y) of (2.2) tends to the origin &s— . This is our desired conclusion.
Thus, we have only to show that the case in whith- 0 does not occur. By way of
contradiction, we suppose thétis positive. Then, there existsla > tg such that

O<v' <v(t)<2v" fort>Ti. (2.5)

Hereafter, we will complete the proof of sufficiency in two steps. In the first
step, we show that approaches zero @s— . If lim_,» y(t) = 0, then from (2.4)
we see that lim,.X(t) = v2v* > 0 or lim_,oX(t) = —v/2v* < 0. In the second
step, we will lead a contradiction.

Sincely| is bounded, it has finite lower and upper limits. In the first step, we
show that the inferior limit is zero, and then show that the superior limit is also zero.
In the second step, we examine the movemen(ixgf) in the wholex-y plane in
details.

Step(1): We first suppose that liminf |y(t)| > 0. Then, we can choose a
y > 0 and T, > tg such thafy(t)| > y fort > T,. Hence, we have

V(t) = —htyA(t) < — y?h(t)

fort > T,. Integrating this inequality frory tot, we obtain
t t
—V(tg) < V" —V(to) < V(t) —Vv(tg) = [ V(s)ds< — y2/ h(s)ds
to T2

However, the integral di diverges tox ast tends tow, becausé belongs toZ|yp).
Hence, this inequality does not hold. Thus, we conclude that liminfy(t)| = 0.

Next, we suppose that limsup, [y(t)| d:Efu > 0. Lete be so small enough as
to satisfy the inequalities @ € < min{u/z, ,/v*/z},

%+2(1+2£0)s <y/2(v —2¢?) w. (2.6)

Note that the left-hand side of this inequality approaches 0 and the right-hand side of
this inequality approacheg2vw ase — 0.. Hence, we can find a positive number
€ which satisfies (2.6).
We can choose three sequenéss, {Tn} and{on} with Ty < Th < Sh < 0 <
Tny1 @andt, — o asn — oo such thaty(sy)| = 2¢, |y(1n)| = |y(on)| = € and

ly(t)| > € for 1h <t < Op, (2.7)
ly(t)| <2¢ for on <t < Tni1, (2.8)
e<|yt) <2 for h<t<sn. (2.9
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In fact, since the inferior limit ofly(t)| is zero, there exists & > T; such that
ly(t.)| < &. Because

limsup|y(t)| = p > 2,
t—oo

we can choose numbess, T and oy such thats; = inf{t >t |y(t)] > 28}, 1=
sup{t <si:|y(t)| < €} andoy =inf{t > s;: |y(t)| < €}. Itis clear thaty(s;)| = 2,
ly(11)| = |y(01)| = € and|y(t)| > € for 11 <t < 01. Usingo instead of.., we define
7, and o, similarly to 11 andog, and so on. Then, we obtain three sequeregg,
{Tn} and{on} with n € N such thas, = inf{t > on_1: |y(t)| > 2}, Tn = sup(t <
s ly(t)| < €} andon = inf{t > s,: |y(t)| < €}. Itis also clear thaly(s)| = 2,

ly(T)| = [y(0n)| = €,
ly(t)| > € for 1y <t < oy,

ly(t)| <2e for on<t< Tny1
and
e<|ylt)| <2 for h<t<s.

Hence, the inequalities (2.7)—(2.9) are satisfied.
Using (2.9) and the second equality of (2.2), we can estimate that

367 = (s) () =2 YOy Wt

Sn Sn
=—2w /[ xt)yt)dt—2[ h(t)y>(t)dt

Tn
Sn Sn
<20 X0yt < 42w [ xOldL
Tn Tn

By (2.5), we have
IX(1)] < V2(T) < 2V

fort > T;. Hence, we obtain
S
3e? < 4800/ X(t)|dt < 8VVrew(sn — Tn);
Jtn

namely, 3
€ def

=m>0
8vVVFw
for eachn € N. It is clear that the positive numberis independent afl € N. Since
[Th,Sn] € [T, O], we see that liminf..(on— 1) > m>0.
From the assumption d@f(t) it follows that
[h(t) —h(on)| < & for on—3d <t < on+ &. (2.10)
Let us examine the value bft) att = gy, for eachn € N. Define
S={neN:h(on) > 1+¢&}.

We will show that the number of elements in the Sds finite. Suppose that the
number of elements is infinite. Let caBdenote the cardinal number of the &t
As shown abovert, + m < g, for eachn € N. Let £ = min{dy,m}. Then, from (2.7)
and (2.10) it follows that

ly(t)| > € for on— ¢ <t <o,

Si—Th=>
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and thath € Simplies
h(t)>1 for on—¢ <t <o
Hence, we obtain

/o" ht)y2(t)dt > €2 if ne s

on—/
Using this inequality, we get

v~ Vito) < (D)~ vito) = | V(9)ds= [ h(sh2(9ds

fo to

On
< - ZS/ h(t)y?(t)dt = — fe?cardS= — co.
nes” on—{

This is a contradiction.
Since the number of elements in the Sés finite, we can find atN € N such
that
h(on) <1+¢& for n>N. (2.11)
We next show that, 1 — g, < & for n > N. Suppose there exists ag > N such
that

Gno + &) < Tno+1. (212)
From (2.4), (2.5) and (2.8), we obtain
Lew) vt - %yz(t) > v — 262 2y

2

for gp, <t < Thy41. Note thatw* is positive because € € < v/2v*. We proceed
the proof by dividing into two cases: (&jt) > v2w* > 0 for gp, <t < Tp,41; (D)
X(t) < —v2w* < 0 for gp, <t < Tpy41. Note that

h(t) < g0+ h(on,) <1+2& for op, <t < 0ny+ &

because of (2.10) and (2.11). In the former case, using (2.6) and (2.8) with the
second equation of (2.2), we get

Y (t) = — ax(t) — ht)y(t) < —vV2w w+h(t)|y(t)]

4
< V2w w+2(1+2¢6)€ < —%

for on, <t < on, + &. In the latter case, we get
Y (t) = —wx(t) —h(t)y(t) > v2w w—h(t)|y(t)|
> Vowrw—2(1+2g)e > %i

for gn, <t < ony + &. Thus, in either case, we have

4¢
Iy ()| > & for on, <t < Tng1
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Taking (2.12) into account and integrating this inequality frogp to g, + &, we
obtain

1¥(Gng + G0)| +[¥(Gng) | =

/ Gn°+60)/(t)dt| - / TR ) [dt > de.

Ong o
However, it follows from (2.8) that

V(Ony + &)| + |Y(Gny )| < 4e.

This is a contradiction. We therefore conclude that limsup Tn+1— 0n) < & < o.
From how to choose sequendas } and{ g}, we see that
0 < limsup(Tn+1— On).
n—oo
Recall that liminf_,.(on — Tn) > m > 0. Sinceh belongs to@[wm], we conclude
that

4] On
h(t)dt = co. (2.13)
n=1"Tn
On the other hand, it follows from (2.7) that

[ 00 o On
V(t)dt=— [ h(t)y?(t)dt < —&? h(t)dt.
to fo n=171n
Since -
/ V()dt = lim v(t) — v(to) = V* — V(to) < O,
to t—o0
we obtain
0 On —
h(t)dt < V(toiiz"* <.

n=1"Tn
This contradicts (2.13). Thus, we conclude that limsydy(t)| = ¢ = 0. The proof
of Step (1) is now complete.
Step(2): From the conclusion of Step (1) it follows that fim, x(t) = v/2v* >
0 or lim_eX(t) = —v2v* < 0. Taking into account of the vector field of (2.2),
we see that the solutiofx,y) has to approach the poinﬁVZv*,O) or the point
(—v/2v*,0) by passing through the region

{(xy):x>+v2v andy < 0}
or the region
{(xy):x< —=v2v- andy> 0}

ultimately. Hence, we can find®& > tg such that

X(t) >v2v¢ and y(t)<0 fort>Ts (2.14)
or
X(t) < —v2v¢ and yt)>0 fort>Ts. (2.15)

We consider only the former, because the latter is carried out in the same way by
using (2.15) instead of (2.14). In the former, by (2.14) we have

Y (1) +ht)y(t) = —wx(t) < —vV2¥w < 0
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fort > T3. Hence, by (2.14) again, we get

' 19ds
y(t) < y(t) — MM HOy (1) < —y 2\/*0)%

for t > Ts. From this inequality it follows that

®ds

40 = oyt) < —vaFRr s 0
fort > Ts. Integrating this inequality frorﬂ'g tot, we obtain
fT3
X(t) < —v2v* w/ ds+x(T3)

Sinceh(t) > 0fort >0, it is clear that

/“eH<t>dt:
JO

Hence, there exists® > T3 such that
S 1 S
e0dr > —/ e'Odr  for s> Ta.
T 2Jo

Using this inequality, we can evaluate that

Vv < x(t) < —\/;w A el des Vaviw / st ds+x(T3)

eHs
fort > T4. This contradicts condition (1.3). The proof of Step (2) is now complete.
Theorem 2.1 is thus proved. O

Remark 2.2 The damping coefficiertis said to belong to7p if
Y] On
h(t)dt =

n=1"T
for every pair of sequencds,} and{o,} satisfying
liminf(on — 1h) > 0.
n—oo

The integral positivity was introduced by Matrosov [14]. The concept of the integral
positivity is quite strong than that of the weak integral positivity. For example, the
functions ¥/ (1+t) and sirft /(1+t) belong taZwip), but these functions do not be-
long to.7(p. In the step (1) of the sufficiency, we proved thatlim |y(t)| = 0. Ifh
belongs to7 5, the convergence gft) is shown even in more general mechanical
systems (for example, see [9, 20]).

The termw?x in Eq. (1.1) expresses the restoring force. Since the restoring
force is power that returns the object to the original position when the object is
displaced slightly from the equilibrium, we assumed the spring constant (named
w?) to be positive in the argument above. Of course, from a mathematical interest,
we may treat the case that the spring constant is negative.
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Proposition 2.2 Consider the equation
X"+ h(t)x + Ax=0. (2.16)

Then the equilibrium is not asymptotically stabla\if O.

Proof Let ¢ be any solution of (2.16) with the initial tintg > 0. Consider the case
that (¢ (to), ¢’ (to)) is in the first quadran®;. We can easily confirm thad; is a
positively invariant set for the system

X =y,
y = —Ax—h(t)y

which is equivalent to Eq. (2.16). Lék,y) be a solution of (2.17), which corre-
sponds to the solutiog. Then, from the vector field of (2.17), we see that the
solution curve of(x,y) moves from the left to the right througd;. Hence, it turns
out thatx(t) > X(tp) andy(t) > 0 fort > to, and therefore, the solutiofx,y) does
not approach the origin adends too. This means that the equilibrium of (2.16) is
not asymptotically stable. O

(2.17)

Remark 2.3In the proof of Proposition 2.2, we do not use the assumptiorhtisat
a nonnegative function o, ).

Remark 2.4All nontrivial solutions(x,y) of (2.17) are not necessarily unbounded.
There is a possibility that a solution curve of (2.17) approaches a certain point other
than the origin on th&-axis.

Remark 2.5In the case thad = 0, the equilibrium of (2.16) is not asymptotically
stable.

3. Proof of the main result

SinceA is a symmetri x n real matrix, all eigenvalues & are real numbers. As
a basic knowledge of linear algebra, it is well-known thAais a positive definite
matrix if and only if all of its eigenvalues are positive.

Proof of Theorem 1.1Fori =1,2,...,n, let A; be an eigenvalue ¢k andv; be an
eigenvector foA corresponding to the eigenvaldg Let B be then x n matrix such
that

B=(vi vy --- V)"
Then, it is clear that d& # 0. Multiplying Eqg. (1.1) by the matril from the left,
we get
Bx” +h(t)Bx + BAx = 0. 3.1)
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Taking into account thaiv)T = vl AT and(Avi)T = (Ajvi)T = A v] fori=1,2,...,
n, we see that

T T AT T

v+ v% AT A v%

BA— BAT — Vs AT vy A _ A2V,
T TAT T

Vi vy A AnVp

Lety, = v x. Then, Eq. (3.1) becomes the isolated system of second-order differen-
tial equations

yi +h(t)y; +A1y1 =0,
Yy +h(t)y,+ Azy2 =0,

yn+h(t)yn +Anyn =0,

(3.2)

because
vi le vi xi (vi x): Y
Bx — V2 XN | [ X ] (vex) _ Ya
= . : = : — : - : 9
v X, va X (V%) Yh
and
(4 i (7 %
Bx" — V2 X2 _ Vo X _ (VZ X) }/2
v\ % (Vix)” Vi

Note that the system (3.2) consistsMfoscillators which are not coupled to each
other. Lety = (y1,Y2,...,¥n)'. Then, we can rewrite system (3.2) as

y’ +h(t)y' + Dy =0, (3.3)
where
A O 0
D— 0 )\-2 0
0 0 .. A

Sufficiency SinceA is a positive definite matrix, all eigenvalues are positive.
Hence, we may denote the eigenvaluesdgy> 0 instead of\;. By virtue of Theo-
rem 2.1, we conclude that every solutigrof the single oscillator

Y +ht)y +wfyi=0, i=12....n (3.4)

and its derivativey, approach zero astends too. Hence, every solutiop of (3.3)
satisfies
limy(t) = limy'(t) =0.

t—o0 t—o0
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Since .
Y1 VJ['X
Y2 Vy X
y=| "7 |= 2 =(vy V2 --- Vp)Tx = BX,
Yn Vi X

it follows thatx = B~1y. Hence, every solution(t) of (3.1) satisfies condition (1.2).
We therefore conclude that the equilibrium of (1.1) is asymptotically stable.

Necessitylf Ais not a positive definite matrix though it is symmetric, then we
can find an integej with 1 < j < nsuch that\; < 0. Hence, from Proposition 2.2
and Remark 2.3, it turns out that a solutigrt) of the equation

)/j/-i-h(t))/j +Ajyj=0

orits derivativg/j (t) do not approach zero &is+ . Sincey = (y1,Y2,...,...,Yn)' =
Bx and deB # 0, we can choose a solutiat) of (3.1) which does not satisfy con-
dition (1.2). Thus, the equilibrium of (1.1) is not asymptotically stable.

If Alis a positive definite matrix, then all the eigenvalueé\d real and posi-
tive. Hence, we may denote the eigenvaluesBy> 0 (i = 1,2,...,n). If condition
(1.3) does not hold, then by means of Theorem 2.1, we see that the equilibrium of
(3.4) is not asymptotically stable for dll Hence, the equilibrium of (3.3) is also
not asymptotically stable. Recall that Eq. (3.1) is equivalent to Eq.(3.3), because
y = Bx andBA = DB. Since deB # 0, we conclude that the equilibrium of (1.1) is
not asymptotically stable. O

4. Generalization to proportional viscous damping systems

The equation of motion of dynamical systems with multiple degrees of freedom can
be written in matrix form as:

Mx” +Cx' +Kx =0,

whereM, C andK aren x n real constant matrices. In mechanical, civil, architec-
tural, and other fields of engineering, the matritgsC andK are called the mass,
damping and stiffness matrices, respectively. For example, refer to [3, 12, 13, 23,
25]. It is often assumed that these matrices have the relation that

C=aM+pBK,

wherea andf are positive numbers. When the damping matris represented by
such a linear combination of the mass malvband the stiffness matrilX, this sys-
tem is said to be a proportional viscous damping model. As to proportional viscous
damping, see [1, 2, 5] for example.
In this section, we will attempt to extend Theorem 1.1 to be able to apply to

the time-varying system

Mx” +C(t)x' + Kx =0, (4.1)
in which M is ann x n real regular matrixM K is a symmetria x n real matrix
andC is ann x n matrix whose elements are real-valued functions. We assume that

C(t) = f(M+g(t)K for t>0, 4.2)
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wheref, g: [0,00) — [0, ) is locally integrable functions. Let

R(t) = f(t)+g(t) and ﬁ(t):/()tﬁ(s)ds

fort > 0. Then, we have the following result.

Theorem 4.1 Suppose that there exist @ > 0 and ady > 0 such that|f(t) —
f(s)| < eoand|g(t) —g(s)| < & forallt > 0and s> Owith |t — | < & and suppose
that h belongs toZwip)- Then under the assumptiof#.2),the equilibrium of(4.1)
is asymptotically stable if and only if MK is a positive definite matrix and

o [t H(9)
/ he'¥ds, o, 4.3)
o il

Proof Let A1, A2, ..., Ay be eigenvalues oK. SinceM K is a symmetric
n x n real matrix, all eigenvalue; (i = 1,2,...,n) are real numbers. Let be an
eigenvector foM 1K corresponding to the eigenvalue and letB be then x n

matrix such that

B=(vy V2 --- vp)\.
Then, by the same manner as in the proof of Theorem 1.1, we can confirm that
BM~K = DB, where

MO 0
B
0 0 ... A

Multiplying Eq. (4.1) by the matriBM~1 from the left, we get
BEX" +BM~IC(t)x + BMKx =0,
whereE is then x nidentity matrix. From (4.2) it follows that
BM~IC(t) = f(t)B+g(t)BM)K for t >0.
SinceBM~K = DB, we see that Eq. (4.1) is equivalent to
(Bx)”+ (f(t)E+g(t)D)(Bx) +D(Bx) =0 (4.4)

provided that (4.2) holds. Lgt =V x (i=1,2,...,n) andy = (y1,Y2,...,Yn)" = Bx.
Then, we obtain

y'+ (f()E+g(t)D)y'+Dy =0; (4.5)
namely, the isolated system of second-order differential equations

yi+ (F(t)+A19(t)) ¥ +A1y1 =0,

Yo+ (F() +A20(1)) Yo+ A2y2 = O,

Y+ (f(t) +Ang(t)) Yo+ Anyn = 0.
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Sufficiency SinceM K is a positive definite matrix, all eigenvaluds (i =
1,2,...,n) are positive. For=1,2,...,n, letg = (1+ A;j)&. Then, by the assump-
tion of f andg, we have

(1) +Aig(t) — (F(9) +Aig(s)) | < [F(t) — f(s)| +Ailg(t) —g(s)| < &

for allt > 0 ands > 0 with |t — 5| < dp.
If Aj > 1 for some, then

%(f(t)—s—/\ig(t)) <h(t) < f(t)+Aig(t)

fort > 0, becausd (t) > 0 andg(t) > 0 fort > 0. Sinceh belongs toZ|wip), We see
that

o0 00

Z/Un(f(t)Hig(t))dtz > Unﬁ(t)dt:oo.

n=17T n=1/T

Hence,f + Ai g also belongs ta7 yp. Let

/f s)ds and Gt /g

ds>—/ 1)+ Nig(T)) dt

Then, we have

( ()= F(9)+A (G - G(9)) ),

and therefore,

)\G
/ Jo& 9" dsdtf// A(G1)-6) g5 dt

(t)+AiG(t
// XA dsdt_/ Jée“

From (4.3) and Proposition 1.2, we see that

o [t AH(S)
[he sy
0o ehiH()
Hence, by means of Theorem 2.1, we conclude that every solytioithe single
oscillator

v+ (F(t) +Aig(t)) Y, +Aiyi =0, i=12...,n (4.6)

and its derivative/, approach zero astends to.
If 0 < Aj < 1 for some, then
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for t > 0, becausef (t) > 0 andg(t) > 0 fort > 0. Hence,h ¢ Fwip) iImplies
Ai(f+ g) € Zjwip and f +Aig € F - Also, we see that

/h ds>/ £(1) + Aig(1)) d
F(t) —F(s) +Ai(G(t) — G(s)).

From this estimation and (4.3), we obtain

AiG(s)
/ Jo€ +AG ds gy _ // +4i(G(1)-6(5) g it
+
_ _ o [t H
2//ef<H<t)fH<s))dsdt:/ Jo&'¥ds
0.Jo 0 eH)

Hence, by virtue of Theorem 2.1, we conclude that every solytiofi(4.6) and its
derivativey approach zero gstends towo.

Thus, every solutioy = (y1,Y2,...,yn)" oOf (4.5) satisfies

lim y(t) = lim y'(t) = 0.
Taking into account thay = Bx and deB # 0, we see that every solution of
(4.4) satisfies condition (1.2). We therefore conclude that the equilibrium of (4.1) is
asymptotically stable provided that (4.2) holds.

Necessity There are two cases to be consideredMi)K is not a positive
definite matrix; (ii)M K is a positive definite matrix and condition (1.3) does not
hold. In both cases, we can proceed our argument by the same way as the proof of
the necessity of Theorem 1.1.

Case (i). There exists a nonpositive eigenvalyef M~ for some integer
j with 1 < j < n. Proposition 2.2 and Remark 2.3 assert that the equilibrium of the
equation

Yi + (F() +A590)) ¥ +Ajy; =0

is not asymptotically stable. Singe= Bx and deB =# 0, the equilibrium of (4.4) is
also not asymptotically stable. Hence, the equilibrium of (4.1) is not asymptotically
stable provided that (4.2) holds.

Case (ii). All eigenvalues o1~ K are positive. Hence, from Theorem 2.1 it
turns out that the equilibrium of (4.6) is not asymptotically stable for.althis
means that the equilibrium of (4.5) is not asymptotically stable. Sindg g€ and
BM~1K = DB, we conclude that the equilibrium of (4.1) is not asymptotically stable
provided that (4.2) holds. O

Remark4.1Fori=1,2,...,n,leth; = f + A;g. In Theorem 4.1, we may assume that
there exist argg > 0 and adp > 0 such thatt — 5| < & implies|hi(t) —hi(s)| < &
for all i, instead of the assumption éfandg.
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Remark 4.2Sincef(t) > 0 andg(t) > 0 fort > 0, if f € Fyp Org € F|wip), then

h= f +g € Fwp. However, the converse is not true. For example, let

© 1/(1+t) if 2(n—1)<t<2n-1,
f(t)=
0 if 2n—1<t<2n

and
0 if 2(n—1) <t<2n-1,

1/(1+t) if 2n—-1<t<2n

forneN. Then,ﬁ(t) =1/(1+t)fort >0. Henceh belongs to%p though both
f andg do not belong toZ yp;.-
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