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Abstract. In this paper we obtain some inequalities for isotonic functionals via
a reverse of Young’s inequality due to Tominaga.

1. Introduction

Let L be a linear class of real-valued functions g : E → R having the properties

(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R;
(L2) 1 ∈ L, i.e., if f0 (t) = 1, t ∈ E then f0 ∈ L.

An isotonic linear functional A : L → R is a functional satisfying

(A1) A (αf + βg) = αA (f) + βA (g) for all f, g ∈ L and α, β ∈ R.
(A2) If f ∈ L and f ≥ 0, then A (f) ≥ 0.

The mapping A is said to be normalised if
(A3) A (1) = 1.

Isotonic, that is, order-preserving, linear functionals are natural objects in analy-
sis which enjoy a number of convenient properties. Thus, they provide, for example,
Jessen’s inequality, which is a functional form of Jensen’s inequality (see [2], [12]
and [13]). For other inequalities for isotonic functionals see [1], [4]-[11] and [14]-[17].
We note that common examples of such isotonic linear functionals A are given

by

A (g) =

∫
E

gdµ or A (g) =
∑
k∈E

pkgk,

where µ is a positive measure on E in the first case and E is a subset of the natural
numbers N, in the second (pk ≥ 0, k ∈ E).
As is known to all, the famous Young inequality for scalars says that if a, b > 0

and ν ∈ [0, 1], then

(1) a1−νbν ≤ (1− ν) a+ νb
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32 S. S. DRAGOMIR

with equality if and only if a = b. The inequality (1) is also called ν-weighted
arithmetic-geometric mean inequality.
Tominaga [18] had proved a reverse Young inequality with the Specht’s ratio [16]

as follows:

(2) (1− ν) a+ νb ≤ S
(a
b

)
a1−νbν .

We recall that Specht’s ratio is defined by

S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞)

1 if h = 1.

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h ̸= 1. The

function is decreasing on (0, 1) and increasing on (1,∞) .
Let a, b ∈ [m,M ] ⊂ (0,∞), then m

M
≤ a

b
≤ M

m
with m

M
< 1 < M

m
. If a

b
∈
[
m
M
, 1
)

then S
(
a
b

)
≤ S

(
m
M

)
= S

(
M
m

)
. If a

b
∈
(
1, M

m

]
then also S

(
a
b

)
≤ S

(
M
m

)
. Therefore

for any a, b ∈ [m,M ] we have

(3) (1− ν) a+ νb ≤ S

(
M

m

)
a1−νbν .

In this paper we obtain some inequalities for isotonic functionals via a reverse of
Young’s inequality due to Tominaga. Reverses of Callebaut, Hölder and Hölder’s
related inequalities are also provided. Some examples for integrals and n-tuples of
real numbers are given as well.

2. A Reverse of Callebaut’s Inequality

We start with the following result:

Theorem 2.1. Let A,B : L → R be two normalised isotonic functionals. If
f, g : E → R are such that f ≥ 0, g > 0, f 2, g2, f 2(1−ν)g2ν , f 2νg2(1−ν) ∈ L for some
ν ∈ [0, 1] and

(4) 0 < m ≤ f

g
≤ M < ∞

for some constants m,M, then

A
(
f 2(1−ν)g2ν

)
B
(
f 2νg2(1−ν)

)
(5)

≤ (1− ν)A
(
f 2
)
B
(
g2
)
+ νA

(
g2
)
B
(
f 2
)

≤ S

((
M

m

)2
)
A
(
f 2(1−ν)g2ν

)
B
(
f 2νg2(1−ν)

)
.

Proof. For any x, y ∈ E we have

m2 ≤ f 2 (x)

g2 (x)
,
f 2 (y)

g2 (y)
≤ M2.
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If we use the inequalities (1) and (3) for

a =
f 2 (x)

g2 (x)
, b =

f 2 (y)

g2 (y)
,

then we get(
f 2 (x)

g2 (x)

)1−ν (
f 2 (y)

g2 (y)

)ν

≤ (1− ν)
f 2 (x)

g2 (x)
+ ν

f 2 (y)

g2 (y)
(6)

≤ S

((
M

m

)2
)(

f 2 (x)

g2 (x)

)1−ν (
f 2 (y)

g2 (y)

)ν

for any x, y ∈ E.
Now, if we multiply (6) by g2 (x) g2 (y) > 0 then we get

f 2(1−ν) (x) g2ν (x) f 2ν (y) g2(1−ν) (y)(7)

≤ (1− ν) f 2 (x) g2 (y) + νg2 (x) f 2 (y)

≤ S

((
M

m

)2
)
f 2(1−ν) (x) g2ν (x) f 2ν (y) g2(1−ν) (y)

for any x, y ∈ E.
Fix y ∈ E. Then by (7) we have in the order of L that

f 2ν (y) g2(1−ν) (y) f 2(1−ν)g2ν ≤ (1− ν) g2 (y) f 2 + νf 2 (y) g2(8)

≤ S

((
M

m

)2
)
f 2ν (y) g2(1−ν) (y) f 2(1−ν)g2ν .

If we take the functional A in (8) we get

f 2ν (y) g2(1−ν) (y)A
(
f 2(1−ν)g2ν

)
(9)

≤ (1− ν) g2 (y)A
(
f 2
)
+ νf 2 (y)A

(
g2
)

≤ S

((
M

m

)2
)
f 2ν (y) g2(1−ν) (y)A

(
f 2(1−ν)g2ν

)
,

for any y ∈ E.
This inequality can be written in the order of L as

A
(
f 2(1−ν)g2ν

)
f 2νg2(1−ν) ≤ (1− ν)A

(
f 2
)
g2 + νA

(
g2
)
f 2(10)

≤ S

((
M

m

)2
)
A
(
f 2(1−ν)g2ν

)
f 2νg2(1−ν).

Now, if we take the functional B in (10), then we get the desired result (5). □

The following reverse of Cauchy-Bunyakovsky-Schwarz inequality for isotonic
functionals holds:
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Corollary 2.2. Let A,B : L → R be two normalised isotonic functionals. If
f, g : E → R are such that f ≥ 0, g > 0, f 2, g2, fg ∈ L and the condition (4)
holds true, then

A (fg)B (fg) ≤ 1

2

[
A
(
f 2
)
B
(
g2
)
+ A

(
g2
)
B
(
f 2
)]

(11)

≤ S

((
M

m

)2
)
A (fg)B (fg) .

In particular,

(12) A2 (fg) ≤ A
(
f 2
)
A
(
g2
)
≤ S

((
M

m

)2
)
A2 (fg) .

The following reverse Callebaut type inequality holds:

Corollary 2.3. Let A : L → R be a normalised isotonic functional. If f, g : E → R
are such that f ≥ 0, g > 0, f 2, g2, f 2(1−ν)g2ν , f 2νg2(1−ν) ∈ L for some ν ∈ [0, 1]
and the condition (4) is valid, then

A
(
f 2(1−ν)g2ν

)
A
(
f 2νg2(1−ν)

)
(13)

≤ A
(
f 2
)
A
(
g2
)

≤ S

((
M

m

)2
)
A
(
f 2(1−ν)g2ν

)
A
(
f 2νg2(1−ν)

)
.

Remark 2.4. If we replace ν by 1
2
(1− ν) with ν ∈ [0, 1] in (13), then we get

A
(
f 1+νg1−ν

)
A
(
f 1−νg1+ν

)
≤ A

(
f 2
)
A
(
g2
)

(14)

≤ S

((
M

m

)2
)
A
(
f 1+νg1−ν

)
A
(
f 1−νg1+ν

)
,

provided that f ≥ 0, g > 0, f 2, g2, f 1+νg1−ν , f 1−νg1+ν ∈ L for some ν ∈ [0, 1] and
the condition (4) is valid.
Also, if we take ν = 1

2
γ with γ ∈ [0, 2] , then we get

A
(
f 2−γgγ

)
A
(
fγg2−γ

)
≤ A

(
f 2
)
A
(
g2
)

(15)

≤ S

((
M

m

)2
)
A
(
f 2−γgγ

)
A
(
fγg2−γ

)
,

provided that f ≥ 0, g > 0, f 2, g2, f 2−γgγ, fγg2−γ ∈ L for some ν ∈ [0, 1] and the
condition (4) is valid.
The inequality (15) is a reverse for the second inequality in the functional version

of Callebaut inequality

(16) A2 (fg) ≤ A
(
f 2−γgγ

)
A
(
fγg2−γ

)
≤ A

(
f 2
)
A
(
g2
)

provided that f 2, g2, f 2−γgγ, fγg2−γ, fg ∈ L for some γ ∈ [0, 2]. For the discrete
and integral of one real variable versions see [3].
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3. A Reverse of Hölder’s and Related Inequalities

First, observe that if a, b > 0 and

(17) 0 < L−1 ≤ a

b
≤ L < ∞,

for some L > 1, then by (2) we have

(18) (1− ν) a+ νb ≤ S (L) a1−νbν

for every ν ∈ [0, 1] .

Theorem 3.1. Let A : L → R be a normalised isotonic functional and p, q > 1
with 1

p
+ 1

q
= 1. If f, g : E → R are such that fg, f p, gq ∈ L and

(19) 0 < m1 ≤ f ≤ M1 < ∞, 0 < m2 ≤ g ≤ M2 < ∞,

then

(20) [A (f p)]1/p [A (gq)]1/q ≤ S

((
M1

m1

)p(
M2

m2

)q)
A (fg) .

Proof. Observe that, by (19) we have

mp
1 ≤ A (fp) ≤ Mp

1 and mq
2 ≤ A (gq) ≤ M q

2 .

Also (
m1

M1

)p

≤ fp

A (f p)
≤
(
M1

m1

)p

and (
m2

M2

)q

≤ gq

A (gq)
≤
(
M2

m2

)q

giving that [(
M1

m1

)p(
M2

m2

)q]−1

≤
fp

A(fp)

gq

A(gq)

≤
(
M1

m1

)p(
M2

m2

)q

.

Using the inequality (18) for ν = 1
q
, a = fp

A(fp)
, b = gq

A(gq)
and L =

(
M1

m1

)p (
M2

m2

)q
,

we get

(21)
1

p

f p

A (fp)
+

1

q

gq

A (gq)
≤ S

((
M1

m1

)p(
M2

m2

)q)
fg

[A (f p)]1/p [A (gq)]1/q
.

If we take the functional A in (21) we get

1 =
1

p

A (f p)

A (f p)
+

1

q

A (gq)

A (gq)
≤ S

((
M1

m1

)p(
M2

m2

)q)
A (fg)

[A (f p)]1/p [A (gq)]1/q
,

which is equivalent with the desired result (20). □

The following reverse of Cauchy-Bunyakovsky-Schwarz inequality for isotonic
functionals holds:
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Corollary 3.2. Let A : L → R be a normalised isotonic functional, f, g : E → R
such that fg, f 2, g2 ∈ L and the condition (19) is valid, then

(22)
[
A
(
f 2
)]1/2 [

A
(
g2
)]1/2 ≤ S

((
M1

m1

)2(
M2

m2

)2
)
A (fg) .

Further, observe that if a, b > 0 and

(23) 0 < l−1 ≤ a

b
≤ L < ∞,

for some L, l > 0 with Ll > 1,then

S
(a
b

)
≤ max

{
S
(
l−1
)
, S (L)

}
= max {S (l) , S (L)}

and by (2) we have

(24) (1− ν) a+ νb ≤ max {S (l) , S (L)} a1−νbν

for every ν ∈ [0, 1] .

Theorem 3.3. Let A, B : L → R be two normalised isotonic functionals and p,
q > 1 with 1

p
+ 1

q
= 1. If f, g, u, v : E → R are such that u, v ≥ 0, u, v, uf, vg,

ufp, vgq ∈ L and the conditions (19) hold, then

A (uf)B (vg) ≤ 1

p
A (ufp)B (v) +

1

q
A (u)B (vgq)(25)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}
A (uf)B (vg) .

In particular,

A (uf)A (vg) ≤ 1

p
A (ufp)A (v) +

1

q
A (u)A (vgq)(26)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}
A (uf)A (vg) .

Proof. Observe that, by (19) we have

mp
1

M q
2

≤ f p (x)

gq (y)
≤ Mp

1

mq
2

for any x, y ∈ E.

Now, if we write the inequality (24) for l =
Mq

2

mp
1
, L =

Mp
1

mq
2
, a = fp (x) , b = gq (y)

and ν = 1
q
, and use Young’s inequality, then we get

(27) f (x) g (y) ≤ 1

p
fp (x) +

1

q
gq (y) ≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}
f (x) g (y)

for any x, y ∈ E.
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If we multiply (27) by u (x) v (y) ≥ 0 we get

v (y) g (y) fu ≤ 1

p
v (y) fpu+

1

q
gq (y) v (y)u(28)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}
v (y) g (y) fu

in the order of L, where y ∈ E.
If we take the functional A in (28), then we get

vgA (fu) ≤ 1

p
A (f pu) v +

1

q
A (u) gqv(29)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}
A (fu) vg

in the order of L.
Finally, if we take the functional B in (29) then we get the desired result (25). □

Corollary 3.4. Let A : L → R be a normalised isotonic functionals and p, q > 1
with 1

p
+ 1

q
= 1. Let f, g : E → R be such that the conditions (19) hold.

(i) If f, g, f 2, g2, f p+1, gq+1 ∈ L, then

A
(
f 2
)
A
(
g2
)
≤ 1

p
A
(
fp+1

)
A (g) +

1

q
A (f)A

(
gq+1

)
(30)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}
A
(
f 2
)
A
(
g2
)
.

(ii) If f, g, fg, gf p, fgq ∈ L, then

A2 (fg) ≤ 1

p
A (gf p)A (f) +

1

q
A (g)A (fgq)(31)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}
A2 (fg) .

The following result also holds:

Corollary 3.5. Let A : L → R be a normalised isotonic functionals and p, q > 1
with 1

p
+ 1

q
= 1. Let ℓ, h : E → R, with ℓ ≥ 0, h > 0 be such that the following

condition holds

(32) 0 < m ≤ ℓ

h
≤ M < ∞.

If h2, hℓ, h2−pℓp, h2−qℓq ∈ L, then we have

A2 (hℓ) ≤
[
1

p
A
(
h2−pℓp

)
+

1

q
A
(
h2−qℓq

)]
A
(
h2
)

(33)

≤ max

{
S

(
M q

mp

)
, S

(
Mp

mq

)}
A2 (hℓ) .

Proof. Follows by Theorem 3.3 for f = g = ℓ
h
, M1 = M2 = M, m1 = m2 = m, and

u = v = h2. □



38 S. S. DRAGOMIR

We observe that for p = q = 2 we recapture from (33) the inequality (12).

4. Applications for Integrals

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ -algebra A of parts
of Ω and a countably additive and positive measure µ on A with values in R∪{∞} .
For a µ-measurable function w : Ω → R, with w (x) ≥ 0 for µ -a.e. (almost every)
x ∈ Ω and p ≥ 1 consider the Lebesgue space

Lp
w (Ω, µ) := {f : Ω → R, f is µ-measurable and

∫
Ω

|f (x)|pw (x) dµ (x) < ∞}.

For simplicity of notation we write everywhere in the sequel
∫
Ω
wdµ instead of∫

Ω
w (x) dµ (x). The same for other integrals involved below. We assume that∫

Ω
wdµ = 1.
Let f, g be µ-measurable functions with the property that there exists the con-

stants M, m > 0 such that

0 < m ≤ f

g
≤ M < ∞ µ-almost everywhere (a.e.) on Ω.

If f 2, g2 ∈ Lw (Ω, µ), then by (13) we have∫
Ω

wf 2(1−s)g2sdµ

∫
Ω

wf 2sg2(1−s)dµ(34)

≤
∫
Ω

wf 2dµ

∫
Ω

wg2dµ

≤ S

((
M

m

)2
)∫

Ω

wf 2(1−s)g2sdµ

∫
Ω

wf 2sg2(1−s)dµ

for any s ∈ [0, 1] and, in particular,

(35)

(∫
Ω

wfgdµ

)2

≤
∫
Ω

wf 2dµ

∫
Ω

wg2dµ ≤ S

((
M

m

)2
)(∫

Ω

wfgdµ

)2

.

From (33) we also have(∫
Ω

wfgdµ

)2

≤
[
1

p

∫
Ω

wg2−pf pdµ+
1

q

∫
Ω

wg2−qf qdµ

] ∫
Ω

wg2dµ(36)

≤ max

{
S

(
M q

mp

)
, S

(
Mp

mq

)}(∫
Ω

wfgdµ

)2

.

Let f, g be µ-measurable functions with the property that there exists the con-
stants m1, M1, m2, M2 such that

(37) 0 < m1 ≤ f ≤ M1 < ∞, 0 < m2 ≤ g ≤ M2 < ∞ µ-a.e. on Ω.
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Let p, q > 1 with 1
p
+ 1

q
= 1, then by (20) we have the following reverse of Hölder’s

inequality

(38)

(∫
Ω

wf pdµ

)1/p(∫
Ω

wgqdµ

)1/q

≤ S

((
M1

m1

)p(
M2

m2

)q)∫
Ω

wfgdµ

and, in particular, the reverse of Cauchy-Bunyakovsky-Schwarz inequality

(39)

(∫
Ω

wf 2dµ

)1/2(∫
Ω

wg2dµ

)1/2

≤ S

((
M1

m1

M2

m2

)2
)∫

Ω

wfgdµ.

From (30) and (31) we also have∫
Ω

wf 2dµ

∫
Ω

wg2dµ ≤ 1

p

∫
Ω

wf p+1dµ

∫
Ω

wgdµ+
1

q

∫
Ω

wfdµ

∫
Ω

wgq+1dµ(40)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}∫
Ω

wf 2dµ

∫
Ω

wg2dµ

and (∫
Ω

wfgdµ

)2

≤ 1

p

∫
Ω

wgf pdµ

∫
Ω

wfdµ+
1

q

∫
Ω

wgdµ

∫
Ω

wfgqdµ(41)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}(∫
Ω

wfgdµ

)2

.

5. Applications for Real Numbers

We consider the n-tuples of positive numbers a = (a1, ..., an) , b = (b1, ..., bn) and
the probability distribution p = (p1, ..., pn) , i.e. pi ≥ 0 for any i ∈ {1, ..., n} with∑n

i=1 pi = 1.
If there exist the constants m, M > 0 such that

0 < m ≤ ai
bi

≤ M < ∞ for any i ∈ {1, ..., n} ,

then by (34) and (35) for the counting discrete measure, we have

n∑
i=1

pia
2(1−s)
i b2si

n∑
i=1

pia
2s
i b

2(1−s)
i ≤

n∑
i=1

pia
2
i

n∑
i=1

pib
2
i(42)

≤ S

((
M

m

)2
)

n∑
i=1

pia
2(1−s)
i b2si

n∑
i=1

pia
2s
i b

2(1−s)
i

for any s ∈ [0, 1] and, in particular,

(43)

(
n∑

i=1

piaibi

)2

≤
n∑

i=1

pia
2
i

n∑
i=1

pib
2
i ≤ S

((
M

m

)2
)(

n∑
i=1

piaibi

)2

.
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From (36) we also have(
n∑

i=1

piaibi

)2

≤

[
1

p

n∑
i=1

pib
2−p
i api +

1

q

n∑
i=1

pib
2−q
i aqi

]
n∑

i=1

pib
2
i(44)

≤ max

{
S

(
M q

mp

)
, S

(
Mp

mq

)}( n∑
i=1

piaibi

)2

.

If there exists the constants m1,M1,m2,M2 such that

(45) 0 < m1 ≤ ai ≤ M1 < ∞, 0 < m2 ≤ bi ≤ M2 < ∞ for any i ∈ {1, ..., n}

and p, q > 1 with 1
p
+ 1

q
= 1, then by (38) we have the following reverse of Hölder’s

discrete inequality

(46)

(
n∑

i=1

pia
p
i

)1/p( n∑
i=1

pib
q
i

)1/q

≤ S

((
M1

m1

)p(
M2

m2

)q) n∑
i=1

piaibi

and, in particular, the reverse of Cauchy-Bunyakovsky-Schwarz inequality

(47)

(
n∑

i=1

pia
2
i

)1/2( n∑
i=1

pib
2
i

)1/2

≤ S

((
M1

m1

M2

m2

)2
)

n∑
i=1

piaibi.

From (40) and (41) we also have

n∑
i=1

pia
2
i

n∑
i=1

pib
2
i ≤

1

p

n∑
i=1

pia
p+1
i

n∑
i=1

pibi +
1

q

n∑
i=1

piai

n∑
i=1

pib
q+1
i(48)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)} n∑
i=1

pia
2
i

n∑
i=1

pib
2
i

and (
n∑

i=1

piaibi

)2

≤ 1

p

n∑
i=1

pibia
p
i

n∑
i=1

piai +
1

q

n∑
i=1

pibi

n∑
i=1

piaib
q
i(49)

≤ max

{
S

(
M q

2

mp
1

)
, S

(
Mp

1

mq
2

)}( n∑
i=1

piaibi

)2

.
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