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Abstract. This paper is based on a part of the author’s thesis, Constraint
qualifications and characterizations of solutions in convex optimization. This
paper consists of two topics; the first topic is about alternative theorems for
a separable convex inequality system, and the second topic is about constraint
qualifications for a locally Lipschitz inequality system.

1. Introduction

A mathematical optimization problem is described by the following form:

(P )

{
Minimize f(x)
subject to x ∈ S = {x ∈ Rn | gi(x) ≤ 0, ∀i ∈ I},

and optimality conditions and duality theorems of the problem have been investi-
gated by many researchers. Alternative theorems and constraint qualifications of
the following inequality system of (P):

σ = {gi(x) ≤ 0, i ∈ I},
are important for solving (P), which have been studied by many researchers, see
[3, 4, 7, 8, 9, 10, 12, 13, 16].
In this paper, we deal with constraint qualifications and characterizations of so-

lutions in convex optimization. Especially, we consider the following topics mainly:

(I) Alternative theorems for separable convex inequality system.
(II) Constraint qualifications for locally Lipschitz inequality systems.

The alternative theorem for a convex optimization problem, whose constraint
functions are separable convex, was studied. In 2008, the alternative theorem for a
convex optimization problem, whose objective function is sulinear and constraint
functions are separable sublinear was given by Jeyakumar and Li, see [12]. In
2010, the Lagrange strong duality theorem for a convex optimization problem,
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whose constraint functions are separable convex, was given by Jeyakumar and Li,
see [13]. This fact is a motivation for (I).
Recently, the KKT optimality conditions for a convex optimization problem,

whose constraint functions are not necessarily convex, was studied. In 2010, a
convex optimization problem, whose objective function is differentiable convex and
constraint functions are differentiable but not necessarily convex, was discussed and
a constraint qualification for the optimality condition was given by Lasserre, see
[15]. In 2013, a convex optimization problem, whose objective function is convex
not necessarily differentiable and constraint functions are locally Lipschitz but not
necessarily convex or differentiable, was discussed, and a constraint qualification
for the optimality condition was given by Dutta and Lalitha, see [5]. However, the
constraint qualification is not necessarily constraint qualification. This fact is a
motivation for (II).
This paper consists of four sections. Section 2 deals with notation and prelim-

inaries which are needed in this paper. Section 3 deals with alternative theorems
for a separable convex inequality system. We show two alternative theorems for
separable convex inequality system. In Section 3.1, we show a certain condition is
a necessary and sufficient one for an alternative theorem of separable convex func-
tions, and we give an interesting example. Based on the example, we prove another
alternative theorems in Section 3.2. Section 4 deals with constraint qualifications
for a locally Lipschitz inequality system. We give several constraint qualifications
for the KKT optimality condition, which are modifications of well-known constraint
qualifications of convex or nonlinear optimization, the basic constraint qualification
(BCQ), Guignard’s constraint qualification, Abadie’s constraint qualification, Cot-
tle’s constraint qualification and the linearly independent constraint qualification.
We discuss all relations among these constraint qualifications, especially, we show
that two of them are necessary and sufficient constraint qualifications for the KKT
optimality condition. In addition, we remark that the Slater condition is not a
constraint qualification for the optimality in this convex optimization problem.

2. Preliminaries

In this section, we introduce some notation and preliminaries in convex analysis.
In this paper, we deal with functions and sets on Rn. In section 2.1, we introduce
notions of convex set, convex function, and these properties. In section 2.2, we
introduce properties of locally Lipschitz function. In section 2.3, we introduce
important constraint qualifications and previous results in convex optimization.

2.1. Convex sets and functions.

Definition 2.1. Let C be a subset of Rn,

(i) C is said to be convex if for each x, y ∈ C and α ∈ (0, 1), (1−α)x+αy ∈ C,
(ii) C is said to be a cone if C is non-empty set, and for each λ ≥ 0 and x ∈ C,

λx ∈ C.

Let C be a set in Rn. We denote the closure, the interior, the conical hull and
the convex hull of C by clC, intC, coneC and coC, respectively. Also, we denote
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A + B = {a + b | a ∈ A, b ∈ B}, λA = {λa | a ∈ A} and Λa = {λa | λ ∈ Λ} for
any A,B ⊆ Rn, a ∈ Rn Λ ⊆ R and λ ∈ R.
The following separation theorem has important roles in convex analysis.

Theorem 2.2. Let C be non-empty convex subset of Rn, and x /∈ clC. Then there
exist a ∈ Rn \ {0} and α ∈ R such that for each y ∈ C, ⟨a, x⟩ < α ≤ ⟨a, y⟩

Let f be a function from Rn to R ∪ {+∞}. The effective domain of f , denoted
by domf , is defined by

dom f = {x ∈ Rn | f(x) < +∞}.
f is said to be convex if for any x, y ∈ Rn and for any λ ∈ (0, 1),

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Also f is said to be separable if f is written by the following form:

f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn), ∀x1, . . . , xn ∈ R,

where f1, . . . , fn : R → R. f is convex if and only if f1, . . . , fn are convex. The
epigraph of f , denoted by epif , is defined by

epif = {(x, r) ∈ Rn × R | f(x) ≤ r}.
f : Rn → R ∪ {+∞} is said to be proper and lower semicontinuous (lsc, for short)
if epif is non-empty and closed set, respectively. In addition f is convex if and
only if epif a convex set. The conjugate function of f , f ∗ : Rn → R ∪ {+∞}, is
defined by

f ∗(u) = sup{⟨u, x⟩ − f(x) | x ∈ Rn},
where ⟨u, x⟩ denotes the inner product of two vectors u and x. The following
inequality always holds:

⟨u, x⟩ − f(x) ≤ f ∗(u),

which is called the Young-Fenchel inequality. Also, if f is separable convex, that
is, f(x1, . . . , xn) = f1(x1)+ · · ·+fn(xn),∀x1, . . . , xn ∈ R, where f1, . . . , fn : R → R,
then

f ∗(y1 . . . , yn) = f ∗
1 (y1) + · · ·+ f ∗

n(yn),∀y1, . . . , yn ∈ R.
The subdifferential of f at x ∈ Rn, denoted by ∂f(x), is defined by

∂f(x) = {ξ ∈ Rn | f(x) + ⟨ξ, y − x⟩ ≤ f(y), ∀y ∈ Rn}.
¿From the Young-Fenchel inequality, it is clear that ξ ∈ ∂f(x) if and only if ⟨ξ, x⟩−
f(x) = f ∗(ξ). For non-empty convex set S ⊆ Rn, the indicator function of S,
denoted by δS : Rn → R ∪ {+∞}, is defined by

δS(x) =

{
0, if x ∈ S,

+∞, if x /∈ S.

For proper lsc convex functions g, h : Rn → R∪ {+∞}, the infimal convolution of
g with h, denoted by g ⊕ h, is defined by

(g ⊕ h)(x) := inf
x1+x2=x

{g(x1) + h(x2)}.
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It is well known that if domg ∩ domh ̸= ∅, then
(1) (g ⊕ h)∗ = g∗ + h∗ and (g + h)∗ = cl(g∗ ⊕ h∗).

If one of g and h is continuous at some a ∈ domg ∩ domh, the closure operation in
the second equation of (1) is superfluous,

(2) epi(g + h)∗ = epig∗ + epih∗, and

(3) ∂(g + h)(x) = ∂g(x) + ∂h(x), for each x ∈ domg ∩ domh,

see Theorem 2.8.7 in [24]. Let gi : Rn → R∪{+∞} be a proper lsc convex function

for each i ∈ I, and let λ ∈ R(I)
+ , that is, λ = (λi)i∈I such that λi ≥ 0 for each i ∈ I,

and with only finitely many λi different from zero. Assume that one of gi, i ∈ I, is
continuous at some a ∈

∩
i∈I dom gi. Then

(4) ∂

(∑
i∈I

λigi

)
(x) =

∑
i∈I

λi∂ gi(x),∀x ∈
∩
i∈I

dom gi,

where 0× (+∞) = 0. Let C be a set in Rn. The negative polar cone of C, denoted
by C−, is defined by

C− = {y ∈ Rn | ⟨y, x⟩ ≤ 0,∀x ∈ C}.
It is well-known that C− is a closed convex cone, and

C−− = (C−)− = clconecoC.

For any x ∈ C, the tangent cone of C at x, denoted by TC(x), is defined by

TC(x) = {y ∈ Rn | ∃{(xk, αk)} ⊆ C × R+ s.t. xk → x, αk(xk − x) → y},
where R+ = [0,+∞). The set TC(x̄) is a closed cone. The normal cone of C at x,
denoted by NC(x), is defined by NC(x) = (TC(x))

−. When C is a convex set, it is
well-known that

TC(x) = clcone(C − x) = NC(x)
−, and

NC(x) = (C − x)− = {ξ ∈ Rn | ⟨ξ, y − x⟩ ≤ 0,∀y ∈ C}.

2.2. Locally Lipschitz functions. A function g : Rn → R is said to be locally
Lipschitz if for each x ∈ Rn, there exist M > 0 and r > 0 such that |g(y)− g(z)| ≤
M∥y − z∥ for each y, z ∈ B(x, r), where B(x, r) = {y ∈ Rn | ∥y − x∥ < r}.

Definition 2.3. Let g : Rn → R be a locally Lipschitz function,

(i) the Clarke directional derivative of g at x ∈ Rn in direction d ∈ Rn, denoted
by g◦(x, d), is given by

g◦(x, d) = lim sup
y→x

t↓0

g(y + td)− g(y)

t
,

(ii) the Clarke subdifferential of g at x, denoted by ∂◦g(x), is defined by

∂◦g(x) = {ξ ∈ Rn | ⟨ξ, d⟩ ≤ g◦(x, d),∀d ∈ Rn}.
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For each x ∈ Rn, the function g◦(x, ·) is a positively homogeneous convex func-
tion. The set ∂◦g(x) is a non-empty, convex and compact subset of Rn. Moreover
the Clarke directional derivative is the support function of the Clarke subdifferen-
tial, that is,

g◦(x, d) = max
ξ∈∂◦g(x)

⟨ξ, d⟩ .

When g is convex, then g is locally Lipschitz, g◦(x, ·) = g′(x, ·) and ∂◦g(x) = ∂g(x)
for each x ∈ Rn, where

g′(x, d) = lim
t↓0

g(x+ td)− g(x)

t
.

In general, a locally Lipschitz function g is said to be regular at x if g is directionally
differentiable at x in the all directions d and g◦(x, ·) = g′(x, ·), see [2].

2.3. Convex optimization. In this section, we consider a given infinite convex
inequality system:

σ := {gi(x) ≤ 0, i ∈ I},
where I is an arbitrary, possibly infinite, index set, and gi : Rn → R ∪ {+∞}
are lower semicontinuous (lsc) proper convex functions for all i ∈ I. Let S be the
solution set of σ, that is,

S = {x ∈ Rn | gi(x) ≤ 0,∀i ∈ I}.
Throughout the paper, we assume the following general assumption

(H):

{
S ̸= ∅,
for each i ∈ I, there exists xi ∈ S such that gi is continuous at xi.

Constraint qualifications have important roles to solve convex optimization prob-
lems. The most famous constraint qualification is the Slater constraint qualification
as follows:

Definition 2.4. Assume that I is finite and gi are real-valued convex. The in-
equality system σ is said to satisfy the Slater constraint qualification if

there exists x0 ∈ S such that for each i ∈ I, gi(x0) < 0.

The following useful conditions (I) and (II) of Theorem 2.5 are assured by the
Slater constraint qualification.

Theorem 2.5. Let I be finite set, gi be real-valued convex on Rn, i ∈ I, and
x̄ ∈ S = {x ∈ Rn | gi(x) ≤ 0, ∀i ∈ I}. Assume that σ satisfies the Slater constraint
qualification. Then the following statements hold:
for each real-valued convex function f on Rn, the following statements are equiv-

alent:

(a) x̄ is a minimizer of the following optimization problem:{
min f(x)
s.t. gi(x) ≤ 0, i ∈ I,

(b) there exists λ ∈ RI
+ such that 0 ∈ ∂f(x̄) +

∑
i∈I λi∂gi(x̄) and λigi(x̄) = 0

for each i ∈ I.



16 S. YAMAMOTO

Condition (b) is called the Karush-Kuhn-Tucker (KKT, for short) optimality
condition. Constraint qualifications are have been studied by many researchers,
see [3, 4, 8, 9, 10, 16].
We introduce the basic constraint qualification (BCQ, for short) and a previous

result of BCQ.

Definition 2.6. ([9, 16]) σ is said to satisfy the basic constraint qualification
(BCQ) at x̄ ∈ S if

NS(x̄) = coneco
∪

i∈I(x̄)
∂gi(x̄),

where I(x̄) = {i ∈ I | gi(x̄) = 0}.

Theorem 2.7. ([9, 16]) Let x̄ ∈ S. Then the following statements are equivalent:

(i) σ satisfies BCQ at x̄,
(ii) for each lsc proper convex function f on Rn such that domf ∩ S ̸= ∅ and

epiδ∗S + epif ∗ is closed, the following statements are equivalent:
(a) x̄ is a minimizer of the following optimization problem:{

min f(x)
s.t. gi(x) ≤ 0, i ∈ I,

(b) there exists λ ∈ R(I)
+ such that 0 ∈ ∂f(x̄)+

∑
i∈I λi∂gi(x̄) and λigi(x̄) =

0 for each i ∈ I.

By Theorem 2.7, BCQ is a necessary and sufficient condition for the optimality
condition.
Finally, the following result is used in our results.

Theorem 2.8. ([19]) Let f be a real-valued convex function on Rn. If there exists
x0 ∈ Rn such that f(x0) < 0, then we have {x ∈ Rn | f(x) < 0} = int{x ∈ Rn |
f(x) ≤ 0}.

Proof. The proof is shown by using Theorem 11 and Remark 1 in [19]. □
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3. Alternative theorems for separable convex functions

In this section, we consider the following type alternative theorem: exactly one
of the following two statements is true:

(i) There exists x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0.

(ii) There exist λ1, . . . , λm ≥ 0 such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0,

where fi : Rn → R., i = 0, 1, . . . ,m. In 1902, Farkas established an alternative
theorem when fi, i = 0, 1, . . . ,m, are linear functions. This alternative theorem is
well-known as the Farkas Lemma and plays very important roles to have duality
results in mathematical programming problems. In 2009, Jeyakumar and Li proved
the following alternative theorem:

Theorem 3.1. ([12]) Let f0 : Rn → R be a sublinear function and let fi : Rn → R,
i = 1, . . . ,m, be separable sublinear functions. Then exactly one of the following
two statements is true:

(i) there exist x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i = 1, . . . ,m such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Clearly, this result is a generalization of Farkas Lemma because linear function
is separable sublinear function.
On the other hand, Tseng showed some Lagrange duality theorem for separable

convex programming problems in 2009. If fi, i = 0, 1, . . . ,m, are separable convex
function, then

inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m} = sup
µ∈Rm

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
,

where R+ = [0,∞), see [20]. In 2010, Jeyakumar and Li proved another Lagrange
strong duality theorem for separable convex programming problems under certain
constraint qualification, see [13]. In this section, we show two alternative theorems
for separable convex functions. One is a generalization of Theorem 3.1, and the
proof is given by using a result of [13] in Section 3.1. The other is a generalization
of the original Farkas Lemma, which is motivated from example of Section 3.1, and
the proof is given in Section 3.2. All results of this section is based on [22].
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3.1. A necessary and sufficient condition for an alternative theorem of
separable convex functions. In this section, we give a necessary and sufficient
condition for an alternative theorem of separable convex functions.

Theorem 3.2. ([22]) Let fi : Rn → R, i = 1, . . . ,m, be separable convex functions.
Then (A) and (B) are equivalent:

(A) epi inf
λi≥0

(
m∑
i=1

λifi

)∗

=
∪

λi≥0

epi

(
m∑
i=1

λifi

)∗

,

(B) for each convex function f0 : Rn → R, exactly one of the following two
statements is true:
(i) there exists x ∈ Rn such that{

f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i =, 1, . . . ,m such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Proof. We show that the following (I) and (II) are equivalent:

(I) for each convex function f0 : Rn → R, inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m} =

max
µ∈Rm

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
,

(II) for each convex function f0 : Rn → R, exactly one of the following two
statements is true:
(i) there exists x ∈ Rn such that{

f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i =, 1, . . . ,m such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

First we assume (I). Let f0 be a convex function from Rn to R. It is clear that (i) and
(ii) do not hold simultaneously. If (i) does not hold, then f1(x) ≤ 0, . . . , fm(x) ≤ 0
implies f0(x) ≥ 0. This shows

inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m} ≥ 0,

we have

max
µ∈Rm

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
≥ 0.

So, there exist µ ∈ Rm
+ such that for each x ∈ Rn

f0(x) +
m∑
i=1

µifi(x) ≥ 0.

Therefore (ii) holds, and then (II) holds.
Next we assume (II). Let f0 be a convex function from Rn to R, and put
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p := inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m}.

It is clear that p < +∞. When p = −∞, (I) holds for any µ ∈ Rm
+ by using the

weak duality. When p is finite, put f̂0 = f0 − p, then

f1(x) ≤ 0, . . . , fm(x) ≤ 0 implies f̂0(x) ≥ 0,

that is, (i) does not hold, and then (ii) holds. So, there exist µ̂ ∈ Rm
+ such that for

each x ∈ Rn

f̂0(x) +
m∑
i=1

µ̂ifi(x) ≥ 0, that is, f0(x) +
m∑
i=1

µ̂ifi(x) ≥ p.

Therefore

sup
µ∈Rn

+

inf
x∈Rn

(
f0(x) +

m∑
i=1

µifi(x)

)
≥ inf

x∈Rn

(
f0(x) +

m∑
i=1

µ̂ifi(x)

)
≥ p.

¿From this and the weak duality, (I) holds. □

This theorem is a generalization of Theorem 3.1. It is impossible to find any
weaker conditions than (A) where (B) holds. However, the following example
shows us possibility of another alternative theorems.

Example 3.3. Let f1(x1, x2) = f11(x1)+f12(x2) be a separable function satisfying

f11(x1) =


1
2
(x1 + 1)2 (x1 < −1)

0 (−1 ≤ x1 ≤ 1)
1
2
(x1 − 1)2 (x1 > 1)

, and f12(x2) = |x2|.

Then we can calculate

f ∗
1 (y1, y2) =

1

2
y21 + |y1|+ δ[−1,1](y2)

and

(λ1f1)
∗(y1, y2) =

{
y21
2λ1

+ |y1|+ δ[−λ1,λ1](y2) (λ1 > 0),

δ{(0,0)}(y1, y2) (λ1 = 0).

Thus

epi inf
λ1≥0

(λ1f1)
∗ = {(x1, x2, α) | |x1| ≤ α} , but∪

λ1≥0

epi(λ1f1)
∗ = {(x1, x2, α) | |x1| < α}

∪
{(0, 0, 0)} .

Thus (A) of Theorem 3.2 does not hold.
Now, we consider linear functions f0(x1, x2) = ax1 + bx2, a, b ∈ R. In this case,

the alternative holds, that is, exactly one of the following two statements is true:

(i) there exists x ∈ R2 such that f1(x) ≤ 0 and f0(x) < 0,
(ii) there exist λ1 ≥ 0 such that for each x ∈ R2, f0(x) + λ1f1(x) ≥ 0.

Because a ̸= 0 whenever (i) holds, and a = 0 whenever (ii) holds.
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3.2. Other alternative theorems of separable convex functions. By inspir-
ing Example 3.3, we have other alternative theorems.

Theorem 3.4. ([22]) Let f0 : Rn → R be a convex function such that f0(0) = 0, and
let fi : Rn → R, i = 1, 2, . . . ,m be separable convex functions such that fi(0) = 0.
Then (C) implies (D):

(C) there exists δ > 0 such that for each x ∈ B(0, δ) and i = 1, . . . ,m,

f ′
i(0;x) = fi(x),

where B(0, δ) = {x ∈ Rn | ∥x∥ < δ},
(D) exactly one of the following two statements is true:

(i) there exists x ∈ Rn such that{
f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λ1, . . . , λm ≥ 0 such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Proof. It can be checked easily that f ′
0(0; ·) is sublinear and f ′

i(0; ·), i = 1, . . . ,m are
separable sublinear. By Theorem 3.1, exactly one of the following two statements
is true:

(i′) there exist x ∈ Rn such that{
f ′
1(0;x) ≤ 0, . . . , f ′

m(0;x) ≤ 0,
f ′
0(0;x) < 0,

(ii′) there exist λi ≥ 0, i = 1, . . . ,m such that for each x ∈ Rn,

f ′
0(0;x) +

m∑
i=1

λif
′
i(0;x) ≥ 0.

First, we prove that (i′) implies (i). Suppose that (i′) holds. Clearly, x ̸= 0. For
any i = 1, 2, . . . ,m and t ∈ (0, δ

2∥x∥ ], since tx ∈ B(0; δ),

fi(tx) = f ′(0; tx) = tf ′
i(0;x) ≤ 0.

¿From f ′
0(0;x) < 0, there exists t0 > 0 such that for any t ∈ (0, t0],

f0(0 + tx)− f0(0)

t
< 0, that is f0(tx) < 0.

Put µ = min
{

δ
2||x|| , t0

}
, we have fi(µx) ≤ 0 for each i = 1, . . . ,m and f0(µx) < 0.

Thus (i) holds.
Next, we prove that (ii′) implies (ii). Since f0 is convex and f0(0) = 0, f ′

0(0, ·) ≤
f0 holds because t 7→ f0(0+tx)−f0(0)

t
is non-increasing when t ↓ 0. In the same reason,

f ′
i(0, ·) ≤ fi holds for each i = 1, . . . ,m. So we have (ii).
Hence, the conclusion now follows as (i) and (ii) do not hold simultaneously. □

Remark 3.5. A family of functions fi in Example 3.3 holds condition (C).

We showed an example (C) holds but (A) does not hold. That is, condition (C)
does not imply condition (A). Next we show an example (A) holds but (C) does
not hold.
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Example 3.6. Let f1(x1, x2) = f11(x1)+f12(x2) be a separable function satisfying
f1j(xj) =

1
2
x2
j + |xj|. Then we can verify that f ∗

1 (y1, y2) = f ∗
11(y1) + f ∗

12(y2), and

f ∗
1j(yj) =


1
2
(yj + 1)2 (yj ∈ (−∞,−1)),

0 (yj ∈ [−1, 1]),
1
2
(yj − 1)2 (yj ∈ (1,∞)).

We can check that

epi

(
inf
λ≥0

(λf1)
∗
)

=
∪
λ≥0

epi (λf1)
∗ = R× [0,∞).

That is, (A) holds. But (C) does not hold. Indeed, for each δ > 0, (1
2
δ, 0) ∈

B((0, 0), δ) and f ′
1((0, 0); (

1
2
δ, 0)) = 1

2
δ < 1

8
δ2 + 1

2
δ = f1(

1
2
δ, 0).

Finally, we have the following alternative theorem:

Corollary 3.7. ([22]) Let x̄ ∈ Rn, f0 : Rn → R be convex such that f0(x̄) = 0 and
fi : Rn → R, i = 1, 2, . . . ,m, be separable convex such that fi(x̄) = 0. Then (E)
implies (D):

(E) there exists δ > 0 such that for each x ∈ B(0, δ), and i = 1, . . . ,m,

f ′
i(x̄;x) = fi(x+ x̄)− fi(x̄),

(D) exactly one of the following two statements is true:
(i) there exists x ∈ Rn such that{

f1(x) ≤ 0, . . . , fm(x) ≤ 0,
f0(x) < 0,

(ii) there exist λi ≥ 0, i = 1, . . . ,m such that for each x ∈ Rn,

f0(x) +
m∑
i=1

λifi(x) ≥ 0.

Proof. For each i = 0, 1, . . . ,m, define gi a function from Rn to R by gi = fi(·+ x̄).
Then we can verify that gi(0) = fi(x̄) = 0 and g′i(0;x) = f ′

i(x̄;x) hold for each
i = 0, 1, . . . ,m. This and Theorem 3.4 completes the proof. □
3.3. Conclusion. In this section, we have presented alternative theorems in a con-
vex optimization problem under separable convex constraints. First, we introduced
an alternative theorem, which is a generalization of Theorem 3.1, and we gave an
interesting example. Based on the example, we introduced other alternative theo-
rems.
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4. Constraint qualifications for locally Lipschitz inequality
systems

Recently, the KKT optimality conditions for a convex optimization problem,
whose constraint set S is described by the inequality constraints but every con-
straint functions are not necessarily convex, was studied. In 2013, a convex opti-
mization problem, whose objective function is convex not necessarily differentiable
and constraint functions are locally Lipschitz but not necessarily convex or differ-
entiable, was discussed, and a constraint qualification for the optimality condition
was given by Dutta and Lalitha, see [5]. In this section, we investigate several
constraint qualifications, which are modifications of well-known constraint quali-
fications, for the KKT optimality in condition the convex optimization problem
(P), which was discussed by Dutta and Lalitha in [5], and compare our results and
previous ones. All results of this section is based on [23].

4.1. Definition of constraint qualifications for a locally Lipschitz systems.
In this section, we consider the following convex optimization problem:

(P )

{
min f(x)
s.t. x ∈ S,

where f is a real-valued convex function on Rn and S is a convex set. Throughout
this section we assume that the feasible set S is given as

S = {x ∈ Rn | gi(x) ≤ 0, i ∈ I},
where gi, i ∈ I = {1, . . . ,m}, are real-valued locally Lipschitz functions on Rn and
gi is regular at every x ∈ S and every i ∈ I(x), where I(x) = {i ∈ I | gi(x) = 0}.
The following theorem is shown by Dutta and Lalitha in [5].

Theorem 4.1. ([5]) Let gi : Rn → R, i ∈ I = {1, . . . ,m}, be locally Lipschitz
functions, and let x̄ ∈ S = {x ∈ Rn | gi(x) ≤ 0,∀i ∈ I}. Assume that S is a convex
set, all gi are regular at x̄, the Slater condition holds, that is, there exists x0 ∈ Rn

such that gi(x0) < 0 for each i ∈ I, and 0 /∈ ∂◦gi(x̄) for each i ∈ I(x̄). Then for
each real-valued convex function f on Rn, the following statements are equivalent:

(i) for each x ∈ S, f(x̄) ≤ f(x),
(ii) there exists λ ∈ RI

+ such that 0 ∈ ∂f(x̄)+
∑

i∈I λi∂
◦gi(x̄) and for each i ∈ I,

λigi(x̄) = 0.

Condition (ii) of this theorem is the KKT optimality condition of the problem
(P).
In this section, we discuss the following conditions:

(A) NS(x̄) = coneco
∪

i∈I(x̄) ∂
◦gi(x̄),

(B) TS(x̄) =
∩

i∈I(x̄)(∂
◦gi(x̄)

−) and coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed,

(C) there exists y0 ∈ Rn such that ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈
∂◦gi(x̄),

(D) the Slater condition holds, that is, there exists x0 ∈ Rn such that gi(x0) < 0
for each i ∈ I, and 0 /∈ ∂◦gi(x̄), for each i ∈ I(x̄),

(E) 0 /∈ co
∪

i∈I(x̄) ∂
◦gi(x̄),
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(F) intS ̸= ∅ and 0 /∈ ∂◦gi(x̄), i ∈ I(x̄),
(G) for each yi ∈ ∂◦gi(x̄), i ∈ I(x̄), {yi}i∈I(x̄) is linearly independent.

4.2. Observations of constraint qualifications. At first, we provide the fol-
lowing lemma, which is important to show our results:

Lemma 4.2. Let x̄ ∈ S. Then for each i ∈ I(x̄), ξi ∈ ∂◦gi(x̄) and x ∈ S,

⟨ξi, x− x̄⟩ ≤ 0.

That is, ∂◦gi(x̄) ⊆ NS(x̄) for each i ∈ I(x̄).

Proof. For each i ∈ I(x̄), ξi ∈ ∂◦gi(x̄) and x ∈ S,

⟨ξi, x− x̄⟩ ≤ g◦i (x̄, x− x̄).

From the regularity of gi at x̄,

⟨ξi, x− x̄⟩ ≤ g′i(x̄, x− x̄) = lim
t↓0

gi(x̄+ t(x− x̄))− gi(x̄)

t
.

Since x̄+ t(x− x̄) ∈ S for each t ∈ (0, 1) and i ∈ I(x̄), we have g′i(x̄, x− x̄) ≤ 0, so
⟨ξi, x− x̄⟩ ≤ 0. □
Now we show a result that conditions (A) and (B) are necessary and sufficient

constraint qualifications for the optimality conditions in convex optimization prob-
lem (P).

Theorem 4.3. ([23]) Let x̄ ∈ S. Then the following statements are equivalent:

(A) NS(x̄) = coneco
∪

i∈I(x̄) ∂
◦gi(x̄),

(B) TS(x̄) =
∩

i∈I(x̄) (∂
◦gi(x̄)

−) and coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed,

(O) for each real-valued convex function f on Rn, the following statements are
equivalent:
(i) f(x) ≥ f(x̄) for each x ∈ S,
(ii) there exists λ ∈ RI

+ such that 0 ∈ ∂f(x̄) +
∑

i∈I λi∂
◦gi(x̄) and for each

i ∈ I, λigi(x̄) = 0.

Proof. First, we prove (A)⇔(B). It is clear that (A) holds if and only if NS(x̄) =
coneco

∪
i∈I(x̄) ∂

◦gi(x̄) and coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed. From convexity of S, we

have NS(x̄)
− = TS(x̄). Therefore, it is enough to show that (

∩
i∈I(x̄)(∂

◦gi(x̄)
−))− =

coneco
∪

i∈I(x̄) ∂
◦gi(x̄). This equality is given by the following property:∩

i∈I

(A−
i ) = (

∪
i∈I

Ai)
− for any Ai ⊆ Rn(i ∈ I).

Next, we prove (A)⇒(O). Let f be a real-valued convex function on Rn. The proof
that (ii) implies (i) is easy and omitted. Conversely, assume (i). For each x ∈ S,
since x̄+ α(x− x̄) ∈ S for each α ∈ (0, 1),

f(x̄) ≤ f(x̄+ α(x− x̄)),

that is,
0 ≤ f ′(x̄, x− x̄) = max

ξ∈∂f(x̄)
⟨ξ, x− x̄⟩ .
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Therefore 0 ≤ infx∈S maxξ∈∂f(x̄) ⟨ξ, x− x̄⟩. According to Sion’s minimax theorem
(see e.g. [18, 14]), we can invert the infimum and the maximum, and we get
0 ≤ maxξ∈∂f(x̄) infx∈S ⟨ξ, x− x̄⟩. Then there exists η ∈ ∂f(x̄) such that

⟨−η, x− x̄⟩ ≤ 0 for each x ∈ S.

Thus, −η ∈ NS(x̄). From (A), −η ∈ coneco
∪

i∈I(x̄) ∂
◦gi(x̄). Then there exist µi ≥ 0

and ξi ∈ ∂◦gi(x̄), i ∈ I(x̄), such that −η =
∑

i∈I(x̄) µiξi. Put

λi =

{
µi if i ∈ I(x̄),
0 if i ∈ I \ I(x̄),

for each i ∈ I. Then it is clear that λigi(x̄) = 0 for each i ∈ I. Moreover,

−η =
∑
i∈I(x̄)

λiξi =
∑
i∈I

λiξi ∈
∑
i∈I

λi∂
◦gi(x̄).

Hence, 0 = η + (−η) ∈ ∂f(x̄) +
∑

i∈I λi∂
◦gi(x̄). Finally, we prove (O)⇒(A),

coneco
∪

i∈I(x̄) ∂
◦gi(x̄) ⊆ NS(x̄) is shown by using Lemma 4.2. Conversely, let

η ∈ NS(x̄). Then
⟨−η, x̄⟩ ≤ ⟨−η, x⟩ for each x ∈ S.

Put f = ⟨−η, ·⟩, then f is a convex function, and (i) of (O) holds. So, (ii) of (O)
holds. Hence, there exists λ ∈ RI

+ such that{
0 ∈ ∂f(x̄) +

∑
i∈I λi∂

◦gi(x̄),
λigi(x̄) = 0 for each i ∈ I.

From ∂f(x̄) = {−η} and 0 ∈ ∂f(x̄) +
∑

i∈I ∂
◦gi(x̄), η ∈

∑
i∈I λi∂

◦gi(x̄). Since
λigi(x̄) = 0 for each i ∈ I, we have∑

i∈I

λi∂
◦gi(x̄) =

∑
i∈I(x̄)

λi∂
◦gi(x̄) ⊆ coneco

∪
i∈I(x̄)

∂◦gi(x̄).

Thus, η ∈ coneco
∪

i∈I(x̄) ∂
◦gi(x̄). This completes the proof. □

Remark 4.4. (1) We remark that Theorem 4.3 holds even if the index set I is
infinite. In this case, (ii) of (O) is as follows: there exist a finite subset J ⊆ I(x̄)
and λ ∈ RJ

+ such that 0 ∈ ∂f(x̄) +
∑

i∈I λi∂
◦gi(x̄) and for each i ∈ I, λigi(x̄) = 0.

(2) When all gi are convex, then condition (A),

NS(x̄) = coneco
∪

i∈I(x̄)

∂gi(x̄),

is called basic constraint qualification (BCQ).
(3) When all gi are continuously differentiable at x̄ and S is not necessarily

convex, then condition (A),

NS(x̄) = coneco
∪

i∈I(x̄)

{∇gi(x̄)},

which is equivalent to

clcoTS(x̄) = {x ∈ Rn | ⟨∇gi(x̄), x⟩ ≤ 0,∀i ∈ I(x̄)},
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is called Guignard’s constraint qualification, and condition (B),

TS(x̄) = {x ∈ Rn | ⟨∇gi(x̄), x⟩ ≤ 0, ∀i ∈ I(x̄)},
is called Abadie’s constraint qualification, see [21]. In this case, both Guignard’s
and Abadie’s constraint qualifications are necessary and sufficient constraint qual-
ifications for optimality condition of (P).

Next we show a result that condition (C) is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). When all gi are
continuously differentiable at x̄, condition (C), that is,

there exists y0 ∈ Rn such that ⟨∇gi(x̄), y0⟩ < 0 for each i ∈ I(x̄),

is called Cottle’s constraint qualification, see [21]. To show the result, we give the
following lemma:

Lemma 4.5. Let Λ be an index set, and let Aλ ⊆ Rn, λ ∈ Λ, be non-empty convex
sets. If

∩
λ∈Λ intAλ ̸= ∅, then cl

∩
λ∈Λ intAλ =

∩
λ∈Λ clAλ.

Proof. The equality cl
∩

λ∈Λ Aλ =
∩

λ∈Λ clAλ is shown straightforwardly and omit-
ted. Since clintAλ = clAλ for each λ ∈ Λ, the equality of this lemma holds. □
Theorem 4.6. ([23]) Let x̄ ∈ S. Then (C) implies (B).

Proof. Assume (C). There exists y0 ∈ Rn such that ⟨ξi, y0⟩ < 0 for each i ∈ I(x̄)
and ξi ∈ ∂◦gi(x̄). That is, for each i ∈ I(x̄),

g◦i (x̄, y0) = max
ξ∈∂◦gi(x̄)

⟨ξi, y0⟩ < 0.

Since g◦i (x̄, ·) is a real-valued convex function on Rn and g◦i (x̄, y0) < 0, by using
Theorem 2.8,

int{y ∈ Rn | g◦i (x̄, y) ≤ 0} = {y ∈ Rn | g◦i (x̄, y) < 0}.
Also, it is clear that ∂◦gi(x̄)

− = {y ∈ Rn | g◦i (x̄, y) ≤ 0}. Thus,
(5) int∂◦gi(x̄)

− = {y ∈ Rn | g◦i (x̄, y) < 0} ∋ y0.

Consequently, we have
∩

i∈I(x̄) int(∂
◦gi(x̄)

−) ̸= ∅. By using Lemma 4.5, we have

(6) cl
∩

i∈I(x̄)

int(∂◦gi(x̄)
−) =

∩
i∈I(x̄)

cl(∂◦gi(x̄)
−) =

∩
i∈I(x̄)

(∂◦gi(x̄)
−).

Next, we show

(7)
∩

i∈I(x̄)

int(∂◦gi(x̄)
−) ⊆ TS(x̄).

Let y ∈
∩

i∈I(x̄) int(∂
◦gi(x̄)

−). For each i ∈ I(x̄), from (5) and the regularity of

gi at x̄, we have g′i(x̄, y) < 0. Then, there exists ti > 0 such that gi(x̄ + ty) < 0
for each t ∈ (0, ti]. Moreover, for each i ∈ I \ I(x̄), from the continuity of gi and
gi(x̄) < 0, there exists ti > 0 such that gi(x̄ + ty) < 0 for each t ∈ (0, ti]. Put
t0 = min{ti | i ∈ I}, for each t ∈ (0, t0)

(8) for each i ∈ I, gi(x̄+ ty) < 0.
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Then x̄+ ty ∈ S for each t ∈ (0, t0]. For each k ∈ N, put xk = x̄+ t0
k
y and αk =

k
t0
.

Then {αk(xk − x̄)} ⊆ cone(S − x̄) and αk(xk − x̄) → y, that is, y ∈ TS(x̄). Thus
(7) holds. By using (6) and (7), we have∩

i∈I(x̄)

(∂◦gi(x̄)
−) ⊆ TS(x̄).

The converse inclusion TS(x̄) ⊆
∩

i∈I(x̄)(∂
◦gi(x̄)

−) holds from Lemma 4.2.

Finally, we prove that coneco
∪

i∈I(x̄) ∂
◦gi(x̄) is closed, that is,

clconeco
∪

i∈I(x̄)

∂◦gi(x̄) ⊆ coneco
∪

i∈I(x̄)

∂◦gi(x̄).

We may assume that I(x̄) ̸= ∅. Let y ∈ clconeco
∪

i∈I(x̄) ∂
◦gi(x̄). There exists

{yk} ⊆ coneco
∪

i∈I(x̄) ∂
◦gi(x̄) such that yk → y. For each k ∈ N , there exist λk =

(λk
i )i∈I(x̄) ∈ RI(x̄)

+ and xk = (xk
i )i∈I(x̄) ∈

∏
i∈I(x̄) ∂

◦gi(x̄) such that yk =
∑

i∈I(x̄) λ
k
i x

k
i .

From (C), there exists y0 ∈ Rn such that g◦i (x̄, y0) < 0. Put r = maxi∈I(x̄) g
◦
i (x̄, y0).

For each i ∈ I(x̄),
⟨
xk
i , y0

⟩
≤ r < 0. Thus, ⟨yk, y0⟩ ≤ r

∑
i∈I(x̄) λ

k
i . Since ⟨yk, y0⟩ →

⟨y, y0⟩,
⟨y, y0⟩ − 1 < ⟨yk, y0⟩ ≤ r

∑
i∈I(x̄)

λk
i

hold for sufficiently large k, that is,

∥λk∥ ≤
∑
i∈I(x̄)

λk
i ≤

⟨y, y0⟩ − 1

r
(=: K).

Therefore, {(λk, xk)} ⊆ clB(0, K) ×
∏

i∈I(x̄) ∂
◦gi(x̄). From the compactness of

clB(0, K)×
∏

i∈I(x̄) ∂
◦gi(x̄), there exist (λ, x) = (λi, xi)i∈I(x̄) ∈ clB(0, K)×

∏
i∈I(x̄) ∂

◦gi(x̄)

and a subsequence {(λkj , xkj)} of {(λk, xk)} such that (λkj , xkj) → (λ, x). More-
over, we have λi ≥ 0, xi ∈ ∂◦gi(x̄), i ∈ I(x̄), and y =

∑
i∈I(x̄) λixi. Thus,

y ∈ coneco
∪

i∈I(x̄) ∂
◦gi(x̄). This completes the proof. □

Remark 4.7. (1) The converse of Theorem 4.6 is not true in general, see Example 4.8.
(2) From (8), (C) implies the Slater condition. However, the converse is not true

in general, see Example 4.9.
(3) In Example 4.9, the Slater condition does not imply (A). Therefore, the Slater

condition is not a constraint qualification for the optimality conditions in convex
optimization problem (P).

Example 4.8. Let g : R → R be a function defined by

g(x) = |x|.

Then S = {0}, TS(0) = {0} and ∂◦g(0) = [−1, 1]. So that, ∂◦g(0)− = {0} and
∂◦g(0) is closed. Thus (B) holds. On the other hand, for each y ∈ R, y

|y|+1
∈ ∂◦g(0)

and y
|y|+1

y ≥ 0, and then (C) does not hold.
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Example 4.9. Let g : R2 → R be a function defined by

g(x1, x2) =


x1 + x2 if x1 ≥ 0, x2 ≥ 0,
∥(x1, x2)∥+ x2 if x1 ≥ 0, x2 < 0,
∥(x1, x2)∥+ x1 if x1 < 0, x2 ≥ 0,
−x1x2 if x1 < 0, x2 < 0.

Then S = −R2
+, S is convex, g is regular at (0, 0) and the Slater condition holds.

On the other hand, NS(0, 0) = R2
+ and cone∂◦g(0, 0) = {(0, 0)} ∪ intR2

+. Hence,
(A) does not hold. Thus (C) does not hold.

Next we consider the relationship of (C), (D), (E) and (F). From Theorem 4.1,
condition (D), given by Dutta and Lalitha, is a sufficient constraint qualification
for the optimality conditions in convex optimization problem (P). Conditions (E)
and (F) are motivated by (C) and (D), respectively.
We show the relationship of (C), (D), (E) and (F) as follows:

Theorem 4.10. ([23]) Let x̄ ∈ S. Then (C), (D), (E) and (F) are equivalent.

Proof. First, we prove (C) implies (D). Assume (C). There exists y0 ∈ Rn such that
⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈ ∂◦gi(x̄). It is clear that 0 /∈ ∂◦gi(x̄) for each
i ∈ I(x̄). In addition, Slater condition holds from (2) of Remark 4.7. Thus (D)
holds.
Next, we prove (D) implies (F). Assume (D). Then 0 /∈ ∂◦gi(x̄) for each i ∈

I(x̄), and it is easy to show that intS is non-empty from Slater condition and the
continuity of all gi. Thus (F) holds.
Next, we prove (F) implies (E). Assume that (E) dos not hold. Then, there exist

λi ∈ R+ and ξi ∈ ∂◦gi(x̄), i ∈ I(x̄), such that{ ∑
i∈I(x̄) λi = 1,∑

i∈I(x̄) λiξi = 0.

From (F), we have ξi ̸= 0 for each i ∈ I(x̄). Also from (F), there exists x0 ∈ Rn and
r > 0 such that B(x0, r) ⊆ S. For each i ∈ I(x̄), since x0 +

r
2∥ξi∥ξi ∈ B(x0, r) ⊆ S,

then for each i ∈ I(x̄), ∂◦gi(x̄) ⊆ NS(x̄) from Lemma 4.2, that is, ξi ∈ NS(x̄). So
for each i ∈ I(x̄),

⟨ξi, x0 − x̄⟩+ r

2
∥ξi∥ =

⟨
ξi, x0 +

r

2∥ξi∥
ξi − x̄

⟩
≤ 0.

Therefore,

r

2

∑
i∈I(x̄)

λi∥ξi∥ =

⟨∑
i∈I(x̄)

λiξi, x0 − x̄

⟩
+

r

2

∑
i∈I(x̄)

λi∥ξi∥ ≤ 0.

From
∑

i∈I(x̄) λi = 1 and ξi ̸= 0 for each i ∈ I(x̄),

0 <
r

2

∑
i∈I(x̄)

λi∥ξi∥.

This is a contradiction.
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Finally, we prove (E) implies (C). Assume (E). Since co
∪

i∈I(x̄) ∂
◦gi(x̄) is a non-

empty closed convex set and 0 /∈ co
∪

i∈I(x̄) ∂
◦gi(x̄) from (E), there exists y0 ∈ Rn

such that ⟨ξ, y0⟩ < 0 for each ξ ∈ co
∪

i∈I(x̄) ∂
◦gi(x̄) from Theorem 2.2. Thus,

⟨ξi, y0⟩ < 0 for each i ∈ I(x̄) and ξi ∈ ∂◦gi(x̄). Therefore (C) holds. This completes
the proof. □

Finally, we consider the relationship of (E) and (G). When all gi are continuously
differentiable at x̄, condition (G), that is

{∇gi(x̄)}i∈I(x̄) is linearly independent,

is called the linearly independent constraint qualification, see [6, 21].

Theorem 4.11. ([23]) Let x̄ ∈ S. Then (G) implies (E).

Proof. Assume that (E) does not hold. Then, there exist λi ∈ R+ and xi ∈ ∂◦gi(x̄),
i ∈ I(x̄), such that { ∑

i∈I(x̄) λi = 1,∑
i∈I(x̄) λixi = 0.

Thus (G) does not hold. □

The converse of Theorem 4.11 is not true in general. See the following example:

Example 4.12. Let g1, g2 : R → R be functions as follows:

g1(x) = (x− 1)(x+ 1), g2(x) =
1

2
(x− 1)(x+ 1).

Then S = [−1, 1], intS ̸= ∅, I(1) = {1, 2}, ∂◦g1(1) = {2} and ∂◦g2(1) = {1}. Thus
(F) holds. On the other hand, it is clear that {2, 1} is not linearly independent.
Hence (G) does not hold.

4.3. Conclusion. In this section, we have presented constraint qualifications for
KKT optimality condition in a convex optimization problem under locally Lips-
chitz constraints which was discuss by Dutta and Lalitha in [5], and compared
our results to previous ones. First, we introduced two necessary and sufficient
constraint qualifications for KKT optimality condition. Moreover we proposed
constraint qualifications, and discussed the relationship of these constraint qual-
ifications. On the other hand, it was shown that the Slater condition was not a
constraint qualification in this optimization. The following figure shows the rela-
tionship of the constraint qualifications, which were introduced in this paper, for
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optimality conditions:

(G)

(E) (D) (A)

(B)

Slater

(F) (C)

The figure is reprinted from [23].
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[1] R. I. Boţ, Conjugate Duality in Convex Optimization, Springer-Verlag, Berlin
(2010).

[2] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, (1983).
[3] N. Dinh, M. A. Goberna, M. A. Lopez, From linear to convex systems: Consistency,

Farkas’ lemma and applications, Journal of Convex Analysis, 13 (2006) pp. 113–133.
[4] N. Dinh, M. A. Goberna, M. A. Lopez, T. Q. Son, New Farkas-type constraint quali-

fication in convex infinite programming, ESAIM: COCV, 13 (2007) pp. 580–597.
[5] J. Dutta and C. S. Lalitha, Optimality conditions in convex optimization revisited,

Optim. Lett. 7 (2013), pp. 221–229.
[6] R. G. Eustaquio, E. W. Karas, A. A. Ribeiro, Constraint qualifications for nonlinear

programming, Federal University of Parana, Brazil, (2008).
[7] J. Farkas, Theorie der einfachen Ungleichungen, J. Reine Angew. Math. 124 (1902), pp.

1–27.
[8] M. A. Goberna, V. Jeyakumar, M. A. Lopez, Necessary and sufficient constraint qualifi-

cations for solvability of systems of infinite convex inequalities, Nonlinear Analysis 68 (2008),
pp. 1184–1194.

[9] J. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms
I, Grundlehren der Mathematschen Wissenschaften 305 (1993), Springer-verlag, New York.

[10] V. Jeyakumar, Constraint qualifications characterizing Lagrangian Duality in convex opti-
mization, J Optim Theory Appl 136 (2008) pp. 31–41.

[11] V. Jeyakumar, N. Dinh, G. M. Lee, A new closed cone constraint qualification for
convex optimization, Applied Mathematics Report AMR 04/8, University of New South
Wales (2004).

[12] V. Jeyakumar and G. Y. Li, Farkas’ lemma for separable sublinear inequalities without
qualifications, Optim. Lett. 3 (2009) pp. 537–545.

[13] V. Jeyakumar and G. Y. Li, New strong duality results for convex programs with separable
constraints, European J. Oper. Res. 207 (2010) pp. 1203–1209.

[14] H. Komiya, Elementary proof for Sions minimax theorem, Kodai Math. J. 11 (1988) pp.
5–7.

[15] J. B. Lasserre, On representations of the feasible set in convex optimization, Optim. Lett.
4 (2010) pp. 1–5.

[16] C. Li, K. F. Ng, T. K. Pong, Constraint qualifications for convex inequality system with
applications in constrained optimization, SIAM J. Optim. 19 (2008) pp. 163–187.

[17] R. T. Rockafellar, Convex Analysis, Priceton University Press, Princeton, (1970).



30 S. YAMAMOTO

[18] M. Sion, On general minimax theorems, Pac. J. Math. 8 (1958) pp. 171–176.
[19] S. Suzuki and D. Kuroiwa, Set containment characterization for quasiconvex program-

ming, J. Glob. Optim. 45 (2009) pp. 551–563.
[20] P. Tseng, Some convex programs without a duality gap, Math. Program. Ser. B, 116 (2009)

pp. 553–578.
[21] Z. Wang, S.-C. Fang, W. X. Xing, On constraint qualification, Design and inter-relations,

J. Ind. Manag. Optim. 9 (2013) pp. 983–1001.
[22] S. Yamamoto, S. Suzuki, D. Kuroiwa, An observation of alternative theorem for sep-

arable convex functions, The Seventh International Conference on Nonlinear Analysis and
Convex Analysis proceedings (2011) pp. 297–304

[23] S. Yamamoto and D. Kuroiwa, Constraint qualifications for KKT optimality condition
in convex optimization with locally Lipschitz inequality constraints, Linear and Nonlinear
Analysis, accepted.

[24] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge
(2002).

S. Yamamoto: Department of Mathematics, Shimane University, Matsue, Shi-
mane, 690-8504, Japan

E-mail address: yamamoto@math.shimane-u.ac.jp


