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Abstract The error bound is an inequality that restricts the distance from
a vector to a given set by a residual function. The error bound has so many
useful applications, for example in variational analysis, in convergence anal-
ysis of algorithms, in sensitivity analysis, and so on. For convex inequality
systems, Lipschitzian error bounds are studied mainly. If an inequality system
is not convex, it is difficult to show the existence of a Lipschitzian global error
bound in general. Hence for nonconvex inequality systems, Hölderian error
bounds and nonlinear error bounds have been investigated. For quasiconvex
inequality systems, there are so many examples such that systems do not have
Lipschitzian and Hölderian error bounds. However, the research of nonlinear
error bounds for quasiconvex inequality systems have not been investigated
yet as far as we know.

In this paper, we study nonlinear error bounds for quasiconvex inequal-
ity systems. We show the existence of a global nonlinear error bound by a
generator of a quasiconvex function and a constraint qualification. We show
well-posedness of a quasiconvex function by the error bound.
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1 Introduction

The error bound is an inequality that restricts the distance from a vector in a
test set to a given set by a residual function. In many cases, the given set is de-
fined by an inequality system. The test set consists of vectors whose distances
to the given set are of interests in applications. Some important examples of
the test set are the whole space, a compact subset, and a neighborhood of a
vector. If the test set is the whole space, the error bound is called global, and
if the test set is a neighborhood of a vector, the error bound is called local.
The error bound says that the value of the residual function at a test vector is
a surrogate measure of the distance from the vector to the given set. The error
bound has so many useful applications, for example in variational analysis,
in convergence analysis of algorithms, in sensitivity analysis, and so on. One
of the most important applications is well-posedness that plays a key role in
convergence analysis of algorithms.

In the research of error bounds, various results are introduced by many re-
searchers, see [1–15]. Lipschitzian error bounds, which have linear-type residual
functions, are widely studied, see [1–4,6–15]. Especially, for convex inequality
systems, Lipschitzian error bounds have been investigated mainly. On the other
hand, if inequality system is not convex, it is difficult to show the existence
of a Lipschitzian global error bound in general. In this case, Hölderian error
bounds, whose residual functions are written by power functions, and nonlin-
ear error bounds, which have nonlinear-type residual functions, are studied,
see [4–6,10,12–15]. In quasiconvex analysis, relations between well-posedness,
well-behavior, and other related notions are studied precisely by Penot in [14–
18]. However, the research of error bounds for quasiconvex inequality systems
have not been investigated yet as far as we know. Moreover, for quasiconvex
inequality systems, there are so many examples such that systems do not have
Lipschitzian and Hölderian error bounds.

In this paper, we study nonlinear error bounds for quasiconvex inequality
systems. We introduce a notion of generators of quasiconvex functions in [19–
23]. We show the existence of a nonlinear global error bound by a generator and
a constraint qualification. We show well-posedness of a quasiconvex function
by the error bound.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce some preliminaries. In Section 3, we study nonlinear global error bounds
for quasiconvex inequality systems. In Section 4, we show well-posedness of a
quasiconvex function by the error bound. In addition, we show examples of
nonlinear global error bounds for quasiconvex inequality systems.

2 Preliminaries

Let X be a Hilbert space, and ⟨x, y⟩ denote the inner product of two vectors
x and y. Given a set A ⊂ X, we denote the closure, the convex hull, the
boundary, and the conical hull generated by A, by clA, coA, bdA, and coneA,
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respectively. By convention, we define cone ∅ = {0}. The normal cone of A
at x ∈ A is defined as NA(x) := {v ∈ X : ∀y ∈ A, ⟨v, y − x⟩ ≤ 0}. We define
d(x,A) := infy∈A d(x, y). The indicator function δA is defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise.

Let f be a function from X to R := [−∞,∞]. We denote the domain of f
by domf , that is, domf := {x ∈ X : f(x) < ∞}. The epigraph of f is defined
as epif := {(x, r) ∈ X × R : f(x) ≤ r}, and f is said to be convex if epif is
convex. Define level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, β) := {x ∈ X : f(x) ⋄ β}

for each β ∈ R. A function f is said to be quasiconvex if for each β ∈ R, L(f,≤
, β) is a convex set. Any convex function is quasiconvex, but the opposite is not
true. A function f is said to be quasiaffine if f and −f are quasiconvex. It is
important to notice that f is lower semi-continuous (lsc) quasiaffine if and only
if there exists k ∈ Q and w ∈ X such that f = k ◦w, where Q := {h : R → R :
h is lsc and non-decreasing}. Furthermore, f is lsc quasiconvex if and only if
there exists {(kj , wj) : j ∈ J} ⊂ Q×X such that f = supj∈J kj◦wj , see [24,25]
for more details. This result indicates that a lsc quasiconvex function consists
of the supremum of a some family of lsc quasiaffine functions. A set G =
{(kj , wj) : j ∈ J} ⊂ Q×X is said to be a generator of f if f = supj∈J kj ◦wj .
All lsc quasiconvex functions have at least one generator. Next, we introduce
a generalized notion of the inverse function. The following function h−1 is said
to be the hypo-epi-inverse of h ∈ Q:

h−1(a) := sup{b ∈ R : h(b) ≤ a}

for each a ∈ R. It is known that if h ∈ Q has the inverse function, then
the hypo-epi-inverse of h equals to the inverse, see [25]. In the present paper,
we denote the hypo-epi-inverse of h by h−1. Furthermore, we define [α]+ :=
max{0, α} for each α ∈ R. It is clear that if α ≥ β, then [α]+ ≥ [β]+.

In this paper, we study the existence of the following non-decreasing func-
tion h on R+ := [0,∞) satisfying h(0) = 0, and for each x ∈ T ,

d(x,A) ≤ h([g(x)]+), (1)

where T is a subset of a Hilbert space X. Inequality (1) is called an error
bound and h([g(·)]+) is called a residual function. If h is a linear function,
inequality (1) is called a Lipschitzian error bound. Especially, for convex in-
equality systems, Lipschitzian error bounds have been investigated mainly.
On the other hand, for nonconvex inequality systems, Hölderian error bounds,
h(t) = tγ for some γ > 0, and nonlinear error bounds, h is a nonlinear func-
tion, are studied. The set T consists of vectors whose distances to A are of
interests in applications. If T is the whole space, inequality (1) is called a
global error bound, and if T is a neighborhood of a vector, inequality (1) is
called a local error bound. Inequality (1) says that the value of the residual
function at x ∈ T is a surrogate measure of the distance from x to A.
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3 Nonlinear Global Error Bounds for Quasiconvex Inequality
Systems

Throughout this paper, let X be a Hilbert space, g a lsc quasiconvex function
from X to R, and A = {x ∈ X : g(x) ≤ 0} a nonempty set.

In this section, we study nonlinear global error bounds for quasiconvex
inequality systems. At first, we introduce a suitable generator for nonlinear
global error bounds. For each w ∈ X, let gw be the following function from R
to R:

gw(a) := inf{g(x) : ⟨w, x⟩ ≥ a}.
It is clear that gw is non-decreasing. Additionally, if g is lsc quasiconvex, then

g = sup
∥w∥=1

gw ◦ w = sup
∥w∥=1

(cl gw) ◦ w,

where cl gw is the lsc hull of gw. We can prove the above equation by the separa-
tion theorem. Actually, it is clear that g ≥ sup∥w∥=1 gw◦w ≥ sup∥w∥=1(cl gw)◦
w. By using the separation theorem for x ∈ X and L(g,≤, g(x) − ε) for each
ε > 0, we can show that g = sup∥w∥=1(cl gw) ◦ w, in detail, see [21,23,25].
This means that G = {(cl gw, w) : ∥w∥ = 1} ⊂ Q×X is a generator of g. By
using this generator G = {(cl gw, w) : ∥w∥ = 1}, we study nonlinear global
error bounds for quasiconvex inequality systems.

For each w ∈ X with ∥w∥ = 1 and g−1
w (0) ∈ R, let hw be the following

function from R to R:

hw(t) = g−1
w (t)− g−1

w (0).

Lemma 3.1 Let w0 ∈ X with ∥w0∥ = 1 and g−1
w0

(0) ∈ R. Then, the following
statements hold:

(i) hw0 is non-decreasing,
(ii) hw0(0) = 0,
(iii) inft>0 hw0(t) = 0,
(iv) for each t ∈ R, hw0 ◦ gw0(t) ≥ t− g−1

w0
(0).

Proof We can easily check that (i) and (ii) hold by the definition of hw0 .
(iii) By the statements (i) and (ii), inft>0 hw0(t) ≥ hw0(0) = 0. Assume that

inft>0 hw0(t) > 0. Then, there exists a, b ∈ R such that inft>0 hw0(t) > a > b >
0. Since a > b > 0 = g−1

w0
(0)− g−1

w0
(0), gw0(a+ g−1

w0
(0)) ≥ gw0(b+ g−1

w0
(0)) > 0.

Hence, there exists t0 ∈ R such that gw0(b + g−1
w0

(0)) > t0 > 0. This implies
that a + g−1

w0
(0) > b + g−1

w0
(0) ≥ g−1

w0
(t0) = sup{t ∈ R | gw(t) ≤ t0}, that is,

a > g−1
w0

(t0)− g−1
w0

(0) = hw0(t0) ≥ inft>0 hw0(t). This is a contradiction.

(iv) For each t ∈ R,

hw0 ◦ gw0(t) = g−1
w0

(gw0(t))− g−1
w0

(0)

= sup{a ∈ R : gw0(a) ≤ gw0(t)} − g−1
w0

(0)

≥ t− g−1
w0

(0).

This completes the proof. ⊓⊔
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Let h be the following function on R+:

h(t) = sup
∥w∥=1

g−1
w (0)∈R

hw(t).

If A ̸= X, there exists w0 ∈ X such that ∥w0∥ = 1 and g−1
w0

(0) ∈ R. Actually,
if g−1

w (0) = ∞ for each w ∈ X with ∥w∥ = 1, gw(t) ≤ 0 for each t ∈ R.
Then, A = X since 0 ≥ sup∥w∥=1 gw ◦ w(x) = g(x) for each x ∈ X. This is a
contradiction. Hence we can prove that h is a non-decreasing, h(0) = 0, and
{h(t) : t ∈ R+} ⊂ [0,∞] by Lemma 3.1.

In the following theorem, we show that if a lsc quasiconvex inequality
system satisfies a certain condition, then it has a nonlinear global error bound.

Theorem 3.1 Assume that A ̸= X, and for each x ∈ bdA,

NA(x) ⊂ cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x⟩}.

Then, g has a nonlinear global error bound, that is, for each x ∈ domg,

d(x,A) ≤ h([g(x)]+).

Proof Let x ∈ domg. If x ∈ A, then it is clear that the inequality holds since
g(x) ≤ 0 and h(0) = 0.

Assume that x /∈ A, then g(x) > 0. Since A is closed convex, there exists
the metric projection of x on A, PA(x) ∈ bdA. Then, d(x,A) = ∥x − PA(x)∥
and 0 ̸= x−PA(x) ∈ NA(PA(x)). By the assumption, there exists w0 ∈ X and
λ > 0 such that x−PA(x) = λw0, ∥w0∥ = 1, and g−1

w0
(0) = ⟨w0, PA(x)⟩. Since

∥w0∥ = 1, λ = ∥x− PA(x)∥. Hence,

∥x− PA(x)∥2 = ⟨x− PA(x), x− PA(x)⟩
= ⟨λw0, x− PA(x)⟩
= λ(⟨w0, x⟩ − ⟨w0, PA(x)⟩)
= ∥x− PA(x)∥(⟨w0, x⟩ − g−1

w0
(0)).

By Lemma 3.1,

d(x,A) = ∥x− PA(x)∥
= ⟨w0, x⟩ − g−1

w0
(0)

≤ hw0 ◦ gw0(⟨w0, x⟩)
≤ hw0 ◦ g(x)
≤ h ◦ g(x)
= h([g(x)]+).

This completes the proof. ⊓⊔
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Remark 3.1 The following assumption

NA(x) ⊂ cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x⟩}

is called the basic constraint qualification for quasiconvex programming (Q-
BCQ). Q-BCQ is a necessary and sufficient constraint qualification for an
optimality condition via quasiconvex programming. If A is compact, or f is
convex and L(f,<, 0) is nonempty, then the assumption holds. Hence, Q-BCQ
is not so strong for quasiconvex inequality systems, in detail, see [20,21] and
Section 4.

4 Discussion

In this section, we discuss applications and usefulness of our results. We study
well-posedness of a quasiconvex function as an application of a nonlinear global
error bound. We show examples of nonlinear global error bounds which are not
consequences of previous results. In addition, we observe the basic constraint
qualification for quasiconvex programming, Q-BCQ, as an assumption of our
results.

At first, we show the following result concerned with well-posedness.

Corollary 4.1 Assume that A ̸= X,

NA(x) ⊂ cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x⟩}

for each x ∈ bdA, and inft>0 h(t) = 0. Let {xk} ⊂ X such that g(xk) converges
to 0. Then, {d(xk, A)} converges to 0.

Proof Since g(xk) converges to 0, we assume that {xk} ⊂ domg without loss of
generality. Now we prove that h([g(xk)]+) converges to 0. Since inft>0 h(t) = 0,
for each ε > 0, there exists t0 > 0 such that h(t0) < ε. Since g(xk) converges
to 0, there exists K ∈ N such that for each k ≥ K, g(xk) < t0. Since h is
non-decreasing, for each k ≥ K,

h([g(xk)]+) ≤ max{h(0), h(g(xk))} ≤ h(t0) < ε.

Hence h([g(xk)]+) converges to 0. By Theorem 3.1, for each k ∈ N,

0 ≤ d(xk, A) ≤ h([g(xk)]+),

This shows that d(xk, A) converges to 0. ⊓⊔

Remark 4.1 A sequence {xk} ⊂ X satisfying g(xk) converges to infx∈X g(x) is
called a minimizing sequence. A function g is well-posed if for each minimizing
sequence {xk} ⊂ X, {d(xk, S)} converges to 0, where S = {x ∈ X : g(x) =
infx∈X g(y)}. Hence, if ∅ ≠ S ̸= X, infx∈X g(y) = 0,

NS(x) ⊂ cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x⟩}

for each x ∈ bdS, and inft>0 h(t) = 0, then g is well-posed by Corollary 4.1.
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Next, we show examples of nonlinear global error bounds for quasiconvex
inequality systems.

Example 4.1 Let g be the following function on R2:

g(x) :=

{
log(∥x∥) x ̸= 0,
−∞ x = 0.

Then, g is lsc quasiconvex, and A = {x ∈ R2 : g(x) ≤ 0} = {x ∈ R2 : ∥x∥ ≤ 1}.
It is clear that the inequality system does not have Lipschitzian and Hölderian
global error bounds. We study a nonlinear global error bounds by our results.

Let w ∈ R2 with ∥w∥ = 1. Then,

gw(t) =

{
log t t > 0,
−∞ t ≤ 0,

and g−1
w (t) = et.

Now we show that

NA(x) ⊂ cone{w ∈ R2 : ∥w∥ = 1, g−1
w (0) = ⟨w, x⟩}

for each x ∈ bdA. Let x0 ∈ bdA and v ∈ NA(x0). Then ∥x0∥ = 1 and
v ∈ cone{x0}. Furthermore,

g−1
x0

(0) = e0 = 1 = ⟨x0, x0⟩ .

This shows that x0 ∈ {w ∈ R2 : ∥w∥ = 1, g−1
w (0) = ⟨w, x0⟩}. Hence,

v ∈ cone{x0} ⊂ cone{w ∈ R2 : ∥w∥ = 1, g−1
w (0) = ⟨w, x0⟩}.

By Theorem 3.1, g has a nonlinear global error bound.
For each w ∈ R2 with ∥w∥ = 1,

hw(t) = g−1
w (t)− g−1

w (0) = et − 1.

Hence,

h(t) = sup
∥w∥=1

g−1
w (0)∈R

hw(t) = et − 1.

Let x ∈ R2. If x /∈ A, then

h([g(x)]+) = h(g(x)) = elog(∥x∥) − 1 = ∥x∥ − 1 = d(x,A).

Additionally, if x ∈ A, then

h([g(x)]+) = h(0) = 0 = d(x,A).

This shows that g has a nonlinear global error bound.
In addition, since inft>0 h(t) = 0, for each {xk} ⊂ X satisfying g(xk)

converges to 0, {d(xk, A)} converges to 0 by Corollary 4.1.
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Example 4.2 Let g be the following function on R2:

g(x1, x2) :=



−1
2 (x1, x2) = (0, 0),

1
2 (x1, x2) ∈ (R \ {0})× {0},
x2 +

1
2 (x1, x2) ∈ R× (0,∞),

|x1|√
x2
1+x2

2

− 1
2 (x1, x2) ∈ R× [−1, 0),

−x2 − 1
2 (x1, x2) ∈ R× (−∞,−1).

Then, g is lsc quasiconvex, and

A = {x ∈ R2 : g(x) ≤ 0} = co

{
(0, 0),

(
1√
3
,−1

)(
− 1√

3
,−1

)}
.

We can check that the inequality system does not have Lipschitzian and
Hölderian global error bounds.

Since A is compact,

NA(x) ⊂ cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x0⟩}

for each x ∈ A, in detail, see [21] and the latter half of this section. Hence by
Theorem 3.1, g has a nonlinear global error bound.

We can calculate h(±1,0) and h(0,±1) as follows:

h(±1,0)(t) =


−∞ t ∈

(
−∞,−1

2

)
,

2t+1√
4−(2t+1)2

− 1√
3

t ∈
[
− 1

2 ,
1
2

]
,

∞ t ∈
(
1
2 ,∞

)
,

h(0,±1)(t) =

−∞ t ∈
(
−∞,−1

2

)
,

0 t ∈
[
− 1

2 ,
1
2

]
,

t− 1
2 t ∈

(
1
2 ,∞

)
.

Let ĥ = max{h(0,1), h(0,−1), h(1,0), h(−1,0)}, then h ≥ ĥ. In this example, we

can show the existence of nonlinear global error bounds by ĥ. Actually,

ĥ(t) =

{
2t+1√

4−(2t+1)2
− 1√

3
t ∈

[
0, 1

2

]
,

∞ t ∈
(
1
2 ,∞

)
,

and

ĥ([g(x1, x2)]+) =


∞ (x1, x2) ∈ R× ((−∞,−1) ∪ (0,∞)),
∞ (x1, x2) ∈ (R \ {0})× {0},
0 (x1, x2) ∈ A,

− |x1|
x2

− 1√
3

(x1, x2) ∈ Ac ∩ (R× [−1, 0)),

where Ac is the complement of A. Let x = (x1, x2) ∈ R2. If x ∈ A, it is clear
that

ĥ([g(x)]+) = 0 = d(x,A).
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If x /∈ A and x2 = −1, then

ĥ([g(x)]+) = |x1| −
1√
3
= d(x,A). (2)

If x /∈ A and 0 > x2 > −1, then

ĥ([g(x)]+) = −|x1|
x2

− 1√
3

= −

∣∣∣x1

x2

∣∣∣
−1

− 1√
3

= ĥ

([
g

(
x1

x2
,−1

)]
+

)

= d

((
x1

x2
,−1

)
, A

)
> d(x,A).

Otherwise,

ĥ([g(x)]+) = ∞ > d(x,A).

Hence, g has a nonlinear global error bound with a residual function ĥ(g[·]+).
It is not necessary to calculate hw for each w ∈ R2 with ∥w∥ = 1 in this
example.

Furthermore, since inft>0 ĥ(t) = 0, for each {xk} ⊂ X satisfying g(xk)
converges to 0, {d(xk, A)} converges to 0 by Corollary 4.1.

Example 4.3 Let g be the following function on R:

g(x) :=



0 x ∈ [−1, 1],
(x+ 1)2 x ∈ [−2,−1],
1 x ∈ [−3,−2] ∪ (1, 2],
x− 1 x ∈ [2, 3],
−x− 2 x ∈ [−4,−3],
2 x ∈ (−∞,−4] ∪ [3,∞).

It is clear that the inequality system does not have Lipschitzian and Hölderian
global error bounds. Additionally, we can check easily that

NA(x) ⊂ cone{w ∈ R : ∥w∥ = 1, g−1
w (0) = ⟨w, x0⟩}

for each x ∈ A. Hence by Theorem 3.1, g has a nonlinear global error bound.
We can calculate that

g1(t) =


0 t ∈ (∞, 1],
1 t ∈ (1, 2],
t− 1 t ∈ [2, 3],
2 t ∈ [3,∞),
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and

g−1(t) =


0 t ∈ (∞, 1],
(t− 1)2 t ∈ [1, 2],
1 t ∈ [2, 3]
t− 2 t ∈ [3, 4],
2 t ∈ [4,∞).

Hence

h1(t) =


−∞ t ∈ (∞, 0),
0 t ∈ [0, 1),
t t ∈ [1, 2),
∞ t ∈ [2,∞),

h−1(t) =


−∞ t ∈ (∞, 0),√
t t ∈ [0, 1),

t+ 1 t ∈ [1, 2)
∞ t ∈ [2,∞),

and

h(t) := max{h1(t), h−1(t)} =


−∞ t ∈ (∞, 0),√
t t ∈ [0, 1),

t+ 1 t ∈ [1, 2)
∞ t ∈ [2,∞),

Then

h([g(x)]+) =


0 x ∈ [−1, 1],
|x+ 1| x ∈ (−4,−3] ∪ (−2,−1],
2 x ∈ [−3,−2] ∪ (1, 2],
x x ∈ [2, 3),
∞ x ∈ (−∞,−4] ∪ [3,∞),

that is, g has a nonlinear global error bound with a residual function h(g[·]+).
In addition, since inft>0 h(t) = 0, g is well-posed by Corollary 4.1.

The nonlinear global error bound in Example 4.3 is not a consequence
of previous results for nonlinear error bounds, especially, the following The-
orem 4.1. Actually, if equation (3) holds for each x /∈ A, then β ≡ 0. Since

β is not a nondecreasing function and
∫ d(x,A)

0
β(t)dt = 0 for each x ∈ R, we

cannot show the existence of nonlinear global error bound in Example 4.3 by
Theorem 4.1.

Theorem 4.1 [5] Let (X, d) be a complete metric space, g a lsc function from
X to R ∪ {∞}, a ∈ R, b ∈ R ∪ {∞}, and β a continuous and nondecreasing
function from (0,∞) to (0,∞). Assume that a < b, L(g,≤, a) is nonempty,
and for each x ∈ X with a < g(x) < b,

|∇g|(x) ≥ β(d(x, L(g,≤, a))), (3)

where

|∇g|(x) =


0 x : local min. of f,

lim sup
y→x

f(x)− f(y)

d(x, y)
otherwise.
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Then, for each x ∈ X with a < g(x) < b,

f(x)− a ≥
∫ d(x,L(g,≤,a))

0

β(t)dt.

At the last of the paper, we introduce the following constraint qualification
for quasiconvex inequality systems.

Definition 4.1 [20,21] Let {gi : i ∈ I} be a family of lsc quasiconvex func-
tions from X to R, {(k(i,j), w(i,j)) : j ∈ Ji} ⊂ Q×X a generator of gi for each
i ∈ I, T = {t = (i, j) : i ∈ I, j ∈ Ji}, and A = {x ∈ X : ∀i ∈ I, gi(x) ≤ 0}.
Assume that A is non-empty.

A lsc quasiconvex inequality system {gi(x) ≤ 0 : i ∈ I} is said to satisfy
the basic constraint qualification for quasiconvex programming (Q-BCQ) with
respect to {(kt, wt) : t ∈ T} at x ∈ A if

NA(x) = cone co
∪

t∈T (x)

{wt},

where T (x) = {t ∈ T : ⟨wt, x⟩ = k−1
t (0)}.

The Q-BCQ is a necessary and sufficient constraint qualification for an
optimality condition and Lagrange-type min-max duality via quasiconvex pro-
gramming. Furthermore, {gi(x) ≤ 0 : i ∈ I} satisfies Q-BCQ with respect to
{(kt, wt) : t ∈ T} at x ∈ A if and only if

NA(x) ⊂ cone co
∪

t∈T (x)

{wt},

in detail, see [20–22]. The following assumption in Theorem 3.1,

NA(x) ⊂ cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x0⟩},

is equivalent to Q-BCQ w.r.t. G = {(cl gw, w) : ∥w∥ = 1}, see the following
proposition.

Proposition 4.1 Let x0 ∈ A. Then, the following statements hold:

(i) {w ∈ X : g−1
w (0) = ⟨w, x0⟩} is a convex cone,

(ii) {w ∈ X : g−1
w (0) = ⟨w, x0⟩} = cone{w ∈ X : ∥w∥ = 1, g−1

w (0) = ⟨w, x0⟩},
(iii) {g(x) ≤ 0} satisfies Q-BCQ w.r.t. G = {(cl gw, w) : ∥w∥ = 1} at x0 if and

only if
NA(x) ⊂ cone{w ∈ X : ∥w∥ = 1, g−1

w (0) = ⟨w, x0⟩}.

Proof (i) Let v ∈ {w ∈ X : g−1
w (0) = ⟨w, x0⟩} and λ ≥ 0. If v = 0 or λ = 0,

then λv = 0. Since A is nonempty,

g−1
λv (0) = sup{t ∈ R : inf{g(x) : ⟨0, x⟩ ≥ t} ≤ 0} = 0 = ⟨λv, x0⟩ .

Hence λv ∈ {w ∈ X : g−1
w (0) = ⟨w, x0⟩}.
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Assume that v ̸= 0 and λ ̸= 0. Then

g−1
λv (0) = sup{t ∈ R : inf{g(x) : ⟨λv, x⟩ ≥ t} ≤ 0}

= λ sup{t ∈ R : inf{g(x) : ⟨v, x⟩ ≥ t} ≤ 0}
= λg−1

v (0)

= ⟨λv, x0⟩ .

This shows that λv ∈ {w ∈ X : g−1
w (0) = ⟨w, x0⟩}. Hence, {w ∈ X : g−1

w (0) =
⟨w, x0⟩} is a cone.

Let v1, v2 ∈ {w ∈ X : g−1
w (0) = ⟨w, x0⟩}. Since gv1+v2 ◦ (v1 + v2)(x0) ≤

g(x0) ≤ 0, g−1
v1+v2(0) ≥ (v1+v2)(x0) = g−1

v1 (0)+g−1
v2 (0). Assume that g−1

v1+v2
(0) >

(v1+v2)(x0) = g−1
v1 (0)+g−1

v2
(0). Then there exist t1 > g−1

v1
(0) and t2 > g−1

v2
(0)

such that

g−1
v1+v2

(0) > t1 + t2 > g−1
v1

(0) + g−1
v2 (0).

Since gv1+v2 is non-decreasing, gv1+v2(t1 + t2) ≤ 0. For each k ∈ N, there
exists xk ∈ X such that ⟨v1 + v2, xk⟩ ≥ t1 + t2 and g(xk) < 1

k . This shows
that ⟨v1, xk⟩ ≥ t1 or ⟨v2, xk⟩ ≥ t2. Without loss of generality, we assume that
{k ∈ N : ⟨v1, xk⟩ ≥ t1} is infinite set. Then, t1 ≤ g−1

v1
(0) since gv1(t1) =

inf{g(x) : ⟨v1, x⟩ ≥ t1} ≤ 0. This is a contradiction. Hence g−1
v1+v2

(0) = (v1 +
v2)(x0) = g−1

v1
(0)+ g−1

v2 (0), that is, v1+ v2 ∈ {w ∈ X : g−1
w (0) = ⟨w, x0⟩}. This

shows that {w ∈ X : g−1
w (0) = ⟨w, x0⟩} is a convex cone.

(ii) By the statement (i),

cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x0⟩} ⊂ {w ∈ X : g−1

w (0) = ⟨w, x0⟩}.

Let v ∈ {w ∈ X : g−1
w (0) = ⟨w, x0⟩}. If v = 0, then v ∈ cone{w ∈ X : ∥w∥ =

1, g−1
w (0) = ⟨w, x0⟩}. Assume that v ̸= 0. We can see that

g−1
v

∥v∥
(0) =

1

∥v∥
g−1
v (0) =

1

∥v∥
⟨v, x0⟩ =

⟨
v

∥v∥
, x0

⟩
.

Hence

v = ∥v∥ v

∥v∥
∈ cone{w ∈ X : ∥w∥ = 1, g−1

w (0) = ⟨w, x0⟩},

that is, v ∈ cone{w ∈ X : ∥w∥ = 1, g−1
w (0) = ⟨w, x0⟩}.

(iii) By the statement (iv) of Lemma 1 in [21], cl g−1
w (0) = g−1

w (0). Ad-
ditionally, by the definition of Q-BCQ and the statements (i) and (ii) in this
theorem, the statement (iii) holds. ⊓⊔

In [19–23,26,27], we study constraint qualifications for some dualities via
quasiconvex programming. In these results, we show that if g is a real-valued
convex function, then Slater condition implies Q-BCQ w.r.t. G at for each
x ∈ bdA. In addition, if A is compact, then Q-BCQ w.r.t. G holds. Hence,
Q-BCQ is not so strong in quasiconvex analysis.
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5 Conclusion

In this paper, we study global nonlinear error bounds for quasiconvex inequal-
ity systems. By a generator of a quasiconvex function, we introduce a nonlinear
residual function. In Theorem 3.1, we prove that a lsc quasiconvex inequality
system satisfying Q-BCQ has a global nonlinear error bound. In Corollary 4.1,
we show well-posedness of a quasiconvex function by the error bound. In ad-
dition, we show some examples which demonstrate usefulness of our results.
In these examples, we can easily compute residual functions and show stan-
dard property ‘inft>0 h(t) = 0’. However, in other cases, it might not be easy
to compute these residual functions and residual functions does not always
satisfy such a standard property. These are future research.
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and suggestions improved the quality of the paper.
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