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Abstract 

A three-point eccentric end-notched flexure test was conducted using specimens of 

western hemlock to determine the fracture mechanics properties under Mode II 

conditions while extending the crack length range for stabilising the crack propagation. 

The location of the loading point was varied during the test, and the effect of the loading 

point location on the initiation and propagation fracture toughness values was examined. 

With the proposed method, fracture mechanics properties were appropriately obtained at 

greater crack propagation lengths than in the conventional three-point end-notched 

flexure test when the loading point was not extremely close to the supporting point at 

the crack-free region. 

 

Keywords: three-point eccentric end-notched flexure test; solid wood; initiation fracture 

toughness; propagation fracture test; resistance curve 
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1. Introduction 

 

 When a crack propagates in a fibrous material such as solid wood, the fracture 

toughness often increases as the crack length increases because of the existence of a 

fracture process zone (FPZ) ahead of the crack tip and fibre bridgings between the crack 

surfaces. Therefore, the fracture mechanics properties of fibrous materials including 

solid wood have often been evaluated by a resistance curve (R-curve) that is typically 

determined from the relationship between the fracture toughness and the crack length 

increment during the crack propagation. A three-point end-notched flexure (3ENF) test 

is a simple method for determining Mode II fracture mechanics properties such as the 

initiation fracture toughness and the R-curve. In recent conventional 3ENF tests where 

the load is applied to the mid-span, the fracture mechanics properties have been 

frequently mathematically defined according to beam theory [1-12]. When measuring 

the R-curve, however, the 3ENF test has a drawback in that the ratio of the initial crack 

length to the half span should be greater than 0.7 to stabilise the crack propagation. To 

obtain information on the fracture mechanics properties, it is desirable to obtain the 
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R-curve by stabilising the crack propagation length over a wide range. Several methods 

such as stabilised end-notched flexure (SENF), end-loading shear (ELS), tapered end 

notched flexure (TENF), over-notched flexure (ONF), and four-point bend end-notched 

flexure (4ENF) tests have been used to stabilise crack propagation over a range wider 

than the 3ENF test [13-25]. Nevertheless, there are several disadvantages in these 

methods, even though they are effective at stabilising crack propagation. A SENF test 

requires a servo valve-controlled testing machine that is often complicated to control 

[13]. The testing data in an ELS test can often vary according to the clamping 

conditions [14, 15]. The equation for deriving the fracture toughness in the TENF test is 

more complicated than that of a 3ENF test [16]. In an ONF test, the effect of the 

frictional forces between the crack surfaces is very significant and continuously 

increases the R-curve during crack propagation [17-19]. The 4ENF test may be superior 

to the aforementioned methods because of its simplicity and stability in crack 

propagation [14, 20-25]. To apply a 4ENF test to solid wood, however, it is often 

difficult to let the crack propagate while preventing the specimen failure by bending at 

the loading point in the cracked portion without cutting deep grooves in both 
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side-surfaces [23, 24]. In fact, there are few examples of applying a 4ENF test to solid 

wood. It is more convenient to measure the R-curve over a wide range of propagation 

crack lengths through simple procedures such as equipment and specimen preparation. 

In a conventional 3ENF test in which the load is applied at the mid-span of the 

specimen, the range of the crack length enabling stable propagation is theoretically 

restricted from 0.35 to 0.5 times the span. This range can be easily extended without 

preparing any special equipment or specimens with a three-point eccentric end-notched 

flexure (3EENF) test, the details of which are demonstrated below. 

 This study conducted a 3EENF test on western hemlock specimens to obtain an 

R-curve, defined as the relationship between the propagation fracture toughness and the 

propagation crack length, was obtained. Based on the R-curve, Mode II initiation 

fracture toughness and represented value of the propagation fracture toughness, defined 

as the averaged value of the propagation fracture toughness at the plateau portion of the 

R-curve. The location of the loading point was varied in the 3EENF test, and the effect 

of the location on the fracture mechanics properties described above was examined. 
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2. Three-point eccentric end-notched flexure analyses 

 

 Fig. 1 shows a diagram of the three-point eccentric end-notched flexure (3EENF) 

test for the Mode II analysis. A specimen with a width of B, a depth in the cracked 

portion of H and a crack length of a, is supported by a span with a length of 2L. As 

shown in the figure, a load of P is eccentrically applied and the distance between the 

loading point and the supporting point at the cracked portion is defined as c. By solving 

the equation of flexure while considering the transverse shear force, the load-deflection 

compliance, CL, is given as: 

CL =
d

P
=

2L - c( )
2

3a3 + 2c2L( )
8ExBH

3L2
+
s 2L - c( )
4GxyBHL

 (1) 

where Ex is the Young’s modulus in the length direction, which is defined as the 

x-direction, Gxy is the shear modulus in the length/depth plane, which is defined as the 

xy-plane, s is the Timoshenko’s shear factor which is equal to 1.2 for the beam with a 

rectangular cross-section, and  is the deflection at the loading point. Therefore, the 

Mode II energy release rate, GII, is derived as: 

GII =
P2

2B

dCL

da
=

9 2L - c( )
2
P2a2

16ExB
2H 3L2

 (2) 
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Under constant loading point deflection condition, dGII/da is derived from Eqs. (1) and 

(2) as follows: 

dGII

da
=

9d 2 2L - c( )
2
a

8ExB
2H 3L2C2

1-
9a3

3a3 + 2c2L

æ

èç
ö

ø÷
 (3) 

To stabilise the crack propagation, dGII/da should be negative; thus, 

a ³
c2L

3
3  (4) 

Based on this equation, the minimum value of a/2L, defined as amin/2L, can be 

determined from the loading point location relative to the span length c/2L as follows: 

amin

2L
=

1

6

c
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2

3  (5) 

The path length where the crack stably propagates, defined as ls, is derived as follows: 

ls = c- amin = 2L
c

2L
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When the value of ls is large, the R-curve can be obtained over a wide range of crack 

propagation lengths. Fig. 2 shows the relationship between the values of ls/2L and c/2L 

obtained from Eq. (6). In a conventional 3ENF test, c = 0.5 so that ls/2L = 0.15; by 

contrast, ls/2L = 0.5 in the most conventional 4ENF test [20-25]. Therefore, when the 

loading point is located rightward of the mid-span, the range of the path length where 
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the crack stably propagates is wider than in a conventional 3ENF test, although it is 

narrower than that in a 4ENF test. 

 In an actual fracture test, the load-deflection compliance is often greater than that 

obtained by Eq. (2) because of the deformation caused by the transverse shear force, 

which is the second term in Eq. (1), the fracture process zone (FPZ) induced at the 

region ahead of the crack tip, and the fibre bridgings; the sample behaves as if the crack 

length value is longer than the actual value. To accommodate this phenomenon, Eqs. (1) 

and (2) are modified as [9]: 

CL =
2L - c( )

2
3 a+ D( )

3
+ 2c2Lé

ë
ù
û

8ExBH
3L2

=
2L - c( )

2
3aeq

3 + 2c2L( )
8ExBH

3L2
 (7) 

GII =
9 2L - c( )

2
P2aeq

2

16ExB
2H 3L2

 (8) 

where  is the correction value of the crack length, and aeq is the equivalent crack length. 

The influences of the transverse shear force, FPZ ahead of the crack tip, and fibre 

bridgings are contained in the aeq value. Based on Eq. (7), the aeq value can be obtained 

as 

aeq =
8ExBH

3L2CL

3 2L - c( )
2

-
2c2L

3
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û
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3

 (9) 
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 Once the value of GII is obtained from Eq. (8), the Ex value must then be measured 

with a separate test. This obstacle can be reduced when measuring the strain at a specific 

point in the specimen during the fracture test. This data reduction method was originally 

proposed by the author as a “compliance combination method” and it may prove 

promising for the analysis of 3EENF test results [5, 9, 11, 23, 24]. According to 

elementary beam theory, the longitudinal strain at a loading point x is derived as 

follows: 

e x =
3 2L - c( )cP
4ExBH

2L
 (10) 

The x value is not influenced from the transverse shear force [9, 26]. Therefore the 

load-strain compliance CS can be obtained as follows: 

CS =
e x
P

=
3 2L - c( )c
4ExBH

2L
 (11) 

By using Eqs. (7) and (11), the Young’s modulus Ex can be eliminated and the aeq value 

can be obtained as follows: 

aeq =
2HLc

2L - c
×
CL

CS

-
2

3
c2L

æ

èç
ö

ø÷

1

3

 (12) 

By substituting Eqs. (11) and (12) into Eq. (8), GII can be obtained as 
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GII ==
3 2L - c( )CSP

2

4BHLc
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2
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2

3

 (13) 

Using the compliance combination method, the GII value can be solely evaluated by the 

fracture test without measuring the crack length or any elastic constants that are 

implicitly contained in the load-deflection compliance CL and the load-longitudinal 

strain compliances CS. 

 

3. Finite element calculations 

 

 Two-dimensional finite element analyses (2D-FEAs) were independently 

conducted on the actual fracture tests detailed below to examine the validity of the 

3EENF test. The ANSYS 12 program, which is available in the Shimane University 

library, was used for the FE analyses. Figs. 3(a) and (b) show the FE mesh used in the 

calculations and the boundary conditions corresponding to the 3EENF test simulations. 

The horizontal length of the model was 430 mm, and the model width, B, was 12 mm. 

The depth of the model, 2H, was 24 mm. The model consisted of four-node plane 
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elements. The mesh was constructed to be finer closer to the crack tip, as shown in Fig. 

3(b). The dimensions of the element at the delamination front were 0.5 and 0.5 mm in 

the x- and y-directions, respectively. Table 1 presents the elastic properties used in the 

present calculations, which were similar to those used in a previous study that used 

spruce specimens [11]. The initial crack length a0 was determined as c - ls, thus 

theoretically confirming stable crack propagation in the fracture test. Table 2 shows the 

a0 value corresponding to the c/2L and c values. 

 The variation of the GII value under the varying crack length a was examined in the 

FEAs. Table 3 shows the crack length a and the applied load P corresponding to the 

loading point c. The intervals of the a value were determined to be approximately equal 

to ls/5, whereas the P value was determined to correspond to the GII value in Eq. (2) as 

1000 J/m2, which was approximately equal to the propagation fracture toughness GIIR 

obtained in a previous study [11]. The load-deflection compliance CL was obtained from 

the displacement of the node at the point behind the loading point. 

 The GII value was calculated using three data reduction methods: beam theory, 

compliance combination, and compliance calibration methods. In the beam theory 
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method, the GII and aeq values were obtained by substituting the Ex and P values shown 

in Tables 1 and 2 and the CL value into Eqs. (9) and (8), respectively. In the compliance 

combination method, the GII and aeq values were obtained by substituting the P, CL and 

CS values into Eqs. (12) and (13), respectively. The equivalent crack length 

corresponding to the initial crack length a0 was defined as aeq0, and the propagation 

crack length aeq was obtained as aeq = aeq - aeq0. The GII-aeq0 relationships obtained 

by the beam theory and compliance combination methods were compared with each 

other. 

 In the compliance calibration method, the CL-a relationship was regressed into the 

following 4th polynomial function: 

CL == A0 + A1a+ A2a
2 + A3a

3 + A4a
4  (14) 

where A0-A4 are the parameters obtained by the regression. Using Eq. (14), the GII value 

was derived as: 

GII =
P2

2B

dCL

da
=
P2

2B
A1 + 2A2a + 3A3a

2 + 4A4a
3( )  (15) 

In the compliance calibration method, aeq was defined as a - a0, and the obtained 

GII-aeq relationship was compared with those obtained from the aforementioned data 
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reduction methods. 

 In several previous studies of 3ENF, ONF, and 4ENF tests [17-24], the compliance 

calibration was conducted by shifting a specimen in the support and virtually varying 

the crack length. Otherwise, the specimens with various crack lengths corresponding to 

the c/2L value should be prepared to obtain the CL-a relationship. In this study, however, 

it was difficult to prepare specimens that satisfied these conditions. In the actual 3EENF 

tests performed in this study, the compliance calibration method was not adopted for the 

data reduction. 

 The GI and GII values were also calculated using a virtual crack closure technique 

(VCCT) as follows [27]: 

GI

VCCT =
Fy
jd y
i

2BDa

GII

VCCT =
Fx
jd x
i

2BDa

ì

í

ïï

î

ï
ï

 (16) 

where Fx
j and Fy

j are the nodal forces at the crack tip node j in the x- and y-directions, 

respectively, and x
i and y

i are the relative displacements of the nodes i and i’, which 

are located at a distance  behind the crack tip, in the x- and y-directions, respectively. 

Similar to the compliance calibration method, aeq was defined as a - a0, and the 
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obtained GII-aeq relationship was compared with the three data reduction methods. 

 

4. Experiment 

 

4.1. Materials 

 

 Western hemlock (Tsuga heterophylla Sarg.) lumber with a density of 463  13 

kg/m3 and eight or nine annual rings contained in a radial length of 10 mm was used for 

the tests. As shown in Fig. 4, the annual rings were sufficiently flat and their curvature 

could thus be ignored. The lumber contained no defects such as knots or grain 

distortions, and the specimens cut from it could be regarded as “small and clear.” Prior 

to the test, the lumber was stored for approximately one year in a room at a constant 

temperature of 20C and a relative humidity of 65% and was confirmed to be in an 

air-dried condition. These conditions were maintained throughout the tests. After 

conducting the 3EENF test, the specimen was oven-dried for measuring the MC of the 

specimens, which were 11.7  0.2%. The Young’s modulus in the longitudinal direction, 
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which corresponds to Ex, was 12.6 ± 0.5 GPa, as measured by the flexural vibration tests 

previously conducted by the 3EENF tests. The influence of shear deflection on the Ex 

value was reduced based on Timoshenko’s vibration theory [28]. Five specimens were 

used for one test condition.  

 

4.3. Three-point eccentric end-notched flexure tests 

 

 All of the specimens were cut from the aforementioned lumber such that they 

were side-matched according to the dimensions of 430 mm (longitudinal direction)  12 

mm (tangential direction)  24 mm (radial direction). As previously noted, the crack 

propagation must precede the bending failure in a fracture test. The bending stress is 

maximised at the point where x = a and is defined as   and derived as follows: 

s max =
3 2L - c( )Pa

2BH 2L
 (17) 

To allow the crack to propagate while preventing the bending failure, the load P 

satisfying Eq. (2) should be smaller than that satisfying Eq. (17). Therefore, the depth in 

the cracked portion H should satisfy the following inequality: 
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H >
4ExGIIR

s max

2
 (18) 

Equation (18) indicates that the critical value of H is independent of the location of the 

loading point c/2L. Based on the GIIR and max values, which were supposed to be 

approximately 1000 J/m2 and 100 MPa, the critical value of H was 6.4 mm. To firmly 

enhance the crack propagation while preventing the specimen from bending failure, the 

H value was determined as 12 mm in this study. In addition, the results of the FEAs 

indicated that the bending rotation at the supports is smaller than 0.1 rad, so the 

deformation was small enough not to consider the large bending in the 3EENF test. 

 The crack was produced in the longitudinal direction along the longitudinal-radial 

plane, which is the so-called RL-system. Therefore, the x- and y-directions correspond 

to the longitudinal and tangential directions of the wood. The crack was initially cut 

with a band saw (thickness = 0.3 mm), and then extended ahead of the crack tip using a 

razor blade to the initial crack length a0 shown in Table 2. Straight lines were drawn 

perpendicular to the crack in the crack-free region at the intervals shown in Table 3 to 

observe the approximated location of the crack tip. Two sheets of 0.05-mm-thick Teflon 

were inserted between the crack surfaces to reduce the friction between the upper and 
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lower cantilever beams. The specimen was supported by 400-mm spans. To prevent the 

specimen from indenting at the supporting point, a steel platen with a width of 30 mm 

was placed between the specimen and the supporting point. A load was applied to the 

point of x = c at a cross-head speed of 1 mm/min until the crack tip reached the straight 

line drawn below the loading point. Fig. 5 shows the set-up of the 3EENF test. The total 

testing time was approximately 15 min. 

 A displacement gauge was placed below the loading point to obtain the deflection 

at the loading point . The longitudinal strain, x, was measured using a strain gauge 

(gauge length = 2 mm; FLA-2-11, Tokyo Sokki Kenkyujo Co., Tokyo) that was bonded 

at a point behind the loading point. In the bending loading, the longitudinal strain varied 

in the length direction of the beam, and this variation may have affected the accuracy of 

the flexural Young’s modulus value measured by the strain gauge. In addition, there 

was concern that a measurement error was induced because the output from the strain 

gauge was influenced by the pointwise material property variation at the region where 

the strain gauge was bonded [29]. However, these concerns were reduced with a 

homogeneous specimen and a short strain gauge [26, 30]. Recently, the digital image 
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correlation (DIC) technique is adopted for determining the Young’s modulus in a 

cracked sample [31, 32]. Although the DIC technique is more complicated than bonding 

a strain gauge, it is effective to characterising the elastic properties of a cracked sample, 

which dominate the accuracy of the fracture mechanics properties. Comparisons 

between these methods are required for a further research. 

 Fig. 6 shows the typical P- and P-x relationships. Similar to several previous 

studies [9, 11, 23, 24], the initial load-deflection compliance CL0 and load-strain 

compliance CS were determined from the initial slope of the P- and P-x relationships, 

respectively, whereas the temporary load-loading point deflection compliance CL was 

determined from the slope of the straight line drawn in the nonlinear region of the P- 

relationship. The equivalent crack length (aeq) and propagation fracture (GIIR) values 

during the crack propagation were obtained by substituting the P, CL, and CS values into 

Eqs. (12) and (13), respectively. The critical load for crack propagation, defined as Pc, 

was determined as that at the onset of nonlinearity in the P- relationship as shown in 

Fig. 6. The initiation fracture toughness GIIc was obtained by substituting the Pc, CL0, 

and CS values into Eq. (13). Similar to the FEM, the propagation crack length aeq was 
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obtained as aeq = aeq - aeq0, and the R-curve was obtained as the GIIR-aeq relationship. 

In addition, the GIIR values were averaged, and the representative value of propagation 

fracture toughness, defined as GIIR
, was obtained. In this study, the plateau region of 

the R-curve was defined as that between the maximal and minimal values of GIIR before 

the continuous increasing of the GIIR value, the details of which are described below. 

The obtained GIIc and GIIR
 values were compared with each other, and the effect of the 

loading location was examined. 

 

5. Results and discussion 

 

5.1. Finite element calculations 

 

 Fig. 7 shows the comparison of the relationships between the Mode II energy 

release rate GII and propagation crack length aeq obtained from the FEAs. In the VCCT, 

the total energy release rate (ERR) is defined as GVCCT (= GI
VCCT + GII

VCCT), and the 

ratio of Mode II component to the total ERR, GII
VCCT/GVCCT, was larger than 99.9% for 
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all analysis results. Therefore, the 3EENF tests conducted in this study could be 

regarded to be a rather pure Mode II condition. All of the GII values obtained by the data 

reduction methods and the VCCT were greater than 1000 J/m2, which was obtained by 

substituting the a and P values listed in Table 3 into Eq. (2), because of the shear 

deformation and the crack tip rotation ahead of the crack tip [2-12]. The GII values 

obtained from the beam theory and compliance combination methods were greater than 

those obtained from the VCCT. These discrepancies were enhanced as the c/2L value 

increased. In contrast, the GII value obtained from the compliance calibration method, 

which was not adopted in the actual fracture test in this study, coincided well with that 

obtained from the VCCT. 

 There were discrepancies in the FEA results between the GII values obtained from 

the different data reduction methods. In conventional 3ENF tests conducted in a 

previous study [5], however, these discrepancies were not so significant. In the FEAs 

conducted in this study, the softening behaviour due to the fracture process zone (FPZ) 

ahead of the crack tip was not taken into account, although it had been considered in the 

analyses of previously conducted 3ENF tests [6, 7, 34-37]. If the effect of the FPZ is 
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considered, then the FEA results may be different from those obtained in this study. 

Further research should be conducted to reveal the validity of these data reduction 

methods in more detail. 

 Recently, Moutou Pitti et al. [38] adopted the M-integral for analysing the crack 

growth in orthotropic material like solid wood based on the approach by FEM. 

Although the M-integral is often complicated than the data reduction methods based on 

the compliance, they may be effective for characterising the fracture properties of solid 

wood. In addition, as described previously, there are several examples conducting the 

crack propagation simulations by FEA for characterising the fracture mechanics 

properties while the FPZ and fibre bridgings are taken into account [6, 7, 35-38]. 

Further researches are also required to examine the applicability of these novel methods 

on the 3EENF test. 

 

5.2. Three-point end-notched flexure tests 

 

 Fig. 8 shows the R-curves obtained in the 3EENF tests under different loading 
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point locations. As shown in this figure, the crack wholly propagated stably during the 

test in the range of propagation crack length. It was revealed from the FEA and actual 

fracture test results that the GIIR-aeq relationships obtained from the beam theory and 

compliance combination methods coincided well with each other. Therefore, the 

R-curves in Fig. 7 were obtained based solely on the compliance combination method. 

Similar to the results shown in several previous studies, the R-curve initially increased 

steeply and then displayed a plateau region. After the plateau region, the R-curve 

increased again because of the concentration of stress around the loading point and the 

confinement of the FPZ [11, 36, 39]. In the conventional 3ENF test, the range of the ls 

value was restricted because of the initial crack length, which should be longer than 

0.7L, and the confinement of the FPZ when the crack tip was close to the loading point. 

However, the range of aeq in the R-curve can be extended by conducting the 3EENF 

test. Nevertheless, the GIIR values in the plateau region of the specimens with c/2L 

values of 0.8 and 0.9 were often greater than the others. In addition, the variation of the 

GIIR value was more significant in these conditions. As shown in the FEA results in Fig. 

7, the greater GIIR values in these conditions may be due to the compliance combination 
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method adopted in this study. In addition, the influence of the frictional force and fibre 

bridgings between the cracked surfaces may be significant for the R-curve behaviours of 

the specimens with c/2L values of 0.8 and 0.9, the cracked surfaces of which are 

relatively large. Therefore, the resistance against the crack propagation may be induced 

under these conditions. Further research should also be conducted to reveal these 

phenomena in more detail. 

 Fig. 9 shows the initiation and propagation fracture toughness values, GIIc and 

GIIR
, respectively, corresponding to the location of the loading point c/2L. The GIIc 

values were constant independent of the c/2L. In contrast, the GIIR
 values of the 

specimens with c/2L = 0.8 and 0.9 were significantly larger than the others, and the 

variation of the GIIR
 value was significant in these c/2L ranges. As demonstrated in 

several previous studies, Mode II fracture mechanics behaviours can be obtained from 

the conventional 3ENF test, where c/2L = 0.5 [1-12]. Because the GIIc and GIIR
values 

in c/2L = 0.5-0.7 are close to each other, the fracture mechanics properties obtained in 

these conditions are thought to be valid. In particular, the aeq value is approximately 

twice as high in the condition of c/2L = 0.7 than in the conventional 3ENF test condition 
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(c/2L = 0.5). In contrast, the 3EENF test conditions of c/2L = 0.8 and 0.9 should be 

examined in more detail, although it is feasible to extend the propagation crack length 

under these conditions. 

 As described above, the sample behaves as if the crack length value is longer than 

the actual value because of the deformation caused by the transverse shear force, the 

FPZ, and the fibre bridgings. Considering this phenomenon, the  value was evaluated 

from the following equation: 

D = aeq0 - a0
 (18) 

Fig. 10 shows the  value corresponding to the location of the loading point c/2L. The  

value was approximately 35 mm. Morel et al. pointed out that the length of the FPZ 

reaches approximately several centimetres [39]. The  value contains the effects of 

deformation caused by the transverse shear force and the fibre bridgings as well as the 

FPZ, so it may not be comparable to the results obtained by Morel et al. As described 

above, however, it is reasonable that the large part of the  value is because of the 

length of the FPZ, which induces the increase of the R-curve at the end of the fracture 

test. 



-24- 

 

 

 

 

6. Conclusions 

 

 Three-point end-notched flexure (3EENF) tests were conducted using specimens 

of western hemlock to determine the Mode II fracture mechanics properties, including 

the resistance curve (R-curve), initiation fracture toughness, and propagation fracture 

toughness. These properties were obtained using a compliance combination method as 

the data reduction method. In addition to the fracture tests, finite element analyses 

(FEAs) were conducted and the validity of the 3EENF test methods were also 

examined. 

 The FEA results demonstrated that the discrepancies of the GII values obtained 

from the data reduction methods (beam theory and compliance combination methods) 

and those obtained from the VCCT were more pronounced when the loading point 

approached the supporting point at the crack-free region. 

 For all of the specimens, the R-curve initially increased steeply, then displayed a 

plateau region, and finally increased again due to the concentration of stress around the 
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loading point and the confinement of the FPZ. The initiation fracture toughness GIIc was 

not dependent on the location of the loading point. In contrast, the GIIR values in the 

plateau region of the tests under the c/2L conditions of 0.8 and 0.9 were often greater 

than those under the c/2L conditions of 0.5-0.7. This phenomenon affected the 

represented value of propagation fracture toughness GIIR
, which demonstrated a 

tendency similar to that of GIIR. 

 Based on the summarized results obtained in this study, fracture mechanics 

properties can be appropriately obtained from a 3EENF test when the loading point is 

not extremely close to the supporting point at the crack-free region. 
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Figure captions 

 

Fig. 1. Schematic diagram of the three-point eccentric end-notched flexure (3EENF) 

test. 

Fig. 2. Relationship between the ls/2L and c/2L values. 

Fig. 3. The finite element (FE) meshes used in the simulations. Unit = mm. a and P 

values corresponding to the length between the left supporting point and loading 

point c are listed in Table 3. 

Fig. 4. Photograph of cross-section of the material used in this experiment 

Fig. 5. Set-up of the three-point end-notched flexure (3EENF) test. 

Fig. 6. Load-deflection at the loading point, load-longitudinal strain relationships and 

the definitions of critical load for crack propagation Pc, temporary load-loading 

point deflection compliance CL, initial load-loading point deflection compliance 

CL0, and load-longitudinal strain compliance CS. 

Fig. 7. Relationships between the Mode II energy release rate GII and propagation crack 

length aeq obtained from the FEAs. 

Fig. 8. Resistance curves (R-curves) obtained in the 3EENF tests under different loading 

locations. Data reduction was conducted based on the compliance combination 

method. 

Fig. 9. Initiation and representative propagation fracture toughness values, GIIc and 

GIIR
, respectively, corresponding to the location of the loading point c/2L. The 

results are the average ± SD. 

Fig. 10. Correction value of crack length calculated from the compliance combination 

method  corresponding to the location of the loading point c/2L. The results are 

the average ± SD. 
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Table 1. Elastic constants used for the finite element analysis and data reduction. 

Ex (GPa) Ey (GPa) Gxy (GPa) xy 

16.0  0.8 0.73  0.10 0.61  0.04 0.49 

Results are the average  SD. x- and y-directions correspond to the longitudinal and 

tangential directions of sitka spruce data obtained in a previous study [10]. 
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Table 2. The distance between the loading point and left supporting point, c, the 

maximum length for stabilising the crack propagation, ls, and initial crack length a0 

corresponding to the location of the loading point, c/2L. 

c/2L c (mm) ls/2L ls (mm) a0 (mm) 

0.5 200 0.153 61 139 

0.6 240 0.209 84 156 

0.7 280 0.266 106 174 

0.8 320 0.326 130 190 

0.9 360 0.387 155 205 

a0 was determined as c - ls. 
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Table 3. Applied load P corresponding to the crack length a in the FEAs. 

c = 200 mm c = 240 mm c = 280 mm c = 320 mm c = 360 mm 

a (mm) P (N) a (mm) P (N) a (mm) P (N) a (mm) P (N) a (mm) P (N) 

139 605 156 674 174 806 190 1107 205 2052 

151 556 173 609 195 718 216 974 236 1782 

163 515 190 555 216 648 242 869 267 1575 

176 479 206 510 238 590 268 785 298 1412 

188 448 223 471 259 542 294 715 329 1279 

200 421 240 438 280 501 320 657 360 1168 
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Fig. 1. Schematic diagram of the three-point eccentric end-notched flexure (3EENF) test. 

L and R represent the longitudinal and radial directions, respectively. 

P

2L

c

a

2
H

x (L)

y (R)

LVDT



-38- 

 

 

 

  

 

Fig. 2. Relationship between the ls/2L and c/2L values. 
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Fig. 3. The finite element (FE) meshes used in the simulations. Unit = mm. a and P 

values corresponding to the length between the left supporting point and loading 

point c are listed in Table 3. 
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Fig. 4. Photograph of cross-section of the material used in this experiment 
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Fig. 5. Set-up of the three-point end-notched flexure (3EENF) test. 
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Fig. 6. Load-deflection at the loading point, load-longitudinal strain relationships and 

the definitions of critical load for crack propagation Pc, temporary load-loading point 

deflection compliance CL, initial load-loading point deflection compliance CL0, and 

load-longitudinal strain compliance CS. 
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Fig. 7. Relationships between the Mode II energy release rate GII and propagation 

crack length aeq obtained from the FEAs. 
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Fig. 8. Resistance curves (R-curves) obtained in the 3EENF tests under different loading 

locations. Data reduction was conducted based on the compliance combination method. 
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Fig. 9. Initiation and representative propagation fracture toughness values, GIIc and 

GIIR
, respectively, corresponding to the location of the loading point c/2L. The results 

are the average ± SD. 
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Fig. 10. Correction value of crack length calculated from the compliance combination 

method  corresponding to the location of the loading point c/2L. The results are the 

average ± SD. 
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