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We evaluate the level spacing and smallest eigenvalue distributions of chiral random
matrix ensembles transiting from symplectic or orthogonal to unitary symmetry classes with
a crossover parameter ρ. As expected from the effective σ model description, these results
can be fitted perfectly to the fundamental or adjoint staggered Dirac spectrum of SU(2)
quenched lattice gauge theory under the imaginary chemical potential (twisting) μ. The
linear dependence of the parameter ρ on μ determines the pion decay constant F as its
proportionality constant.
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Introduction Two-color QCD has served as a strategic testing ground for realis-
tic chromodynamics, as well as a tractable model interesting in its own right, owing
to the absence of the sign problem at finite density and with pairs of degenerated
flavors.1) This and other gauge theories with quarks in a (pseudo)real representation
exhibit exotic global symmetry breaking:2) quarks and charge-conjugated antiquarks
form a multiplet of the extended flavor group, which breaks spontaneously to the
extended vector subgroup.3) Accordingly, the effect of the chemical potential that
distinguishes quarks from antiquarks and breaks this extended symmetry is incor-
porated into the low-energy chiral Lagrangian4) through the flavor-covariant deriva-
tive.5),6) Because the unconventional global symmetries originate from the presence
of antiunitary symmetries of Dirac operators, the symmetry-violating chemical po-
tential μ in these QCD-like theories also manifests itself in the statistical properties
of Dirac spectra.7) One can indeed predict the fluctuation of Dirac eigenvalues
that permeate into the complex plane from the zero-momentum part of chiral La-
grangians, which in turn is equivalent to the chiral Gaussian orthogonal or symplectic
ensemble (chGOE, chGSE)8) extended to its non-Hermitian counterpart through the
introduction of a schematic density component coupled to (real) μ.9),10)

Antiunitary symmetries of SU(2) Dirac operators could, however, also be vi-
olated by any Hermitian term in a complex representation, most simply by the
U(1) gauge field either fluctuating or fixed as a background, the latter being gauge-
equivalent to the twisted boundary condition or imaginary chemical potential.11)–13)

In this case, Dirac eigenvalues remain real after the inclusion of symmetry violation
and their statistical behavior exhibits crossover instead of permeation to the com-
plex plane. Since these two cases are essentially identical in the chiral Lagrangian
description save for the sign of μ2, studies of Dirac spectra from both sides should
reveal the validity of analytic continuation in μ, as is required for three-color QCD.

Spectral crossover between universality classes of Hermitian random matrix
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(RM) ensembles,14)–16) namely from GOE or GSE to GUE, has been extensively
studied for disordered and chaotic Hamiltonians whose time-reversal invariance is
slightly broken by a magnetic field. The transitional behavior of spectral fluctua-
tions is by itself universal in the sense that the local spectral fluctuation depends
only on a single parameter ρ defined below. The reason for this universality is traced
back to the nonlinear σ model (Eq. (8) below) governing the spectral statistics, which
can be derived either by conventional disorder averaging17) or by summation over
encountered periodic orbits of chaotic systems,18) without any reference to the de-
tails of dynamics. Thus, one can rely on the simplest model that yields the identical
σ model, i.e., parametric RMs, for actual computation.

On the other hand, chiral or superconducting variants of universality crossover
have been relatively less explored. Damgaard and collaborators19),20) have achieved
a significant breakthrough by analytically computing correlation functions and in-
dividual small eigenvalue distributions for the spectral crossover within the chiral
Gaussian unitary ensemble (chGUE) class. They presented convincing numerical
evidence that the Dirac spectrum of three-color QCD at an imaginary isospin chem-
ical potential indeed exhibits crossover as predicted by chiral RMs. On the other
hand, although analytic results for microscopic spectral correlation functions for the
crossover from chGOE or chGSE to chGUE have been known for some time,21),22)

they have lacked physical application. To the best of our knowledge, the only phys-
ical example of crossover involving different Hermitian chiral universality classes is
the CI-C transition for the super/normal/superconducting hybrid interface in a mag-
netic field.23) In this paper, we provide novel applications of crossover between chiral
Hermitian universality classes from lattice gauge theory.
Parametric chiral random matrices Consider an ensemble of N ×N Hermitian
complex (quaternion) matrices H = HS+iαHA, with HS real symmetric (quaternion
self-dual) and HA real antisymmetric (quaternion anti-self-dual), distributed accord-
ing to Gaussian measures of variance σ2. By setting N/2×N/2 block-diagonal parts
of H to zero, the matrix takes the form (T and D stand for transpose and quaternion-
dual, respectively)

H =
[

0 H1 + iαH2

(H1 − iαH2)T,D 0

]
, H1, H2 :

N

2
×N

2
(quaternion-) real matrix.

Depending on the parameter α, this parametric (also called dynamical or Brownian
motion14)) chiral RM ensemble is used to interpolate between two limiting cases,
chGOE (chGSE) at α = 0 and chGUE at α = 1. Since nonzero eigenvalues of H
occur in pairs of equal magnitude and opposite signs, it suffices to retain nonnegative
eigenvalues only. The correlation function of n eigenvalues {λi} of H in the vicinity
of the origin (where the mean level spacing is Δ(0)) is expressed, in the limit N →
∞, α→ 0 and ρ ≡ ασ/Δ(0) fixed, as a determinant with S,D, I given by21),22)

Rn(x1, . . . , xn) =
(
det [K(xi, xj)]

n
i,j=1

)1/2
, K(x, y) =

[
S(x, y) I(x, y)
D(x, y) S(y, x)

]
, (1)

S(x, y) = π
√
xy

{
xJ1(πx)J0(πy) − J0(πx)yJ1(πy)

x2 − y2
+
J0(πy)

2

∫ ∞

π

dv e−ρ2(v2−π2)J0(vx)
}
,
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D(x, y) = −
√
xy

2

∫ π

0

dv v2 e2ρ2v2 {xJ1(vx)J0(vy) − J0(vx)yJ1(vy)} ,

I(x, y) =
√
xy

2

∫ ∞

π

dv v

∫ ∞

1

du e−ρ2v2(1+u2) {J0(vux)J0(vy) − J0(vx)J0(vuy)} (2)

for chGOE-chGUE crossover, and

S(x, y) = π
√
xy

{
xJ1(πx)J0(πy) − J0(πx)yJ1(πy)

x2 − y2
− J0(πx)

2

∫ π

0

dv eρ2(v2−π2)J0(vy)
}
,

D(x, y) =
√
xy

2

∫ π

0

dv v

∫ 1

0

du eρ2v2(1+u2) {J0(vux)J0(vy) − J0(vx)J0(vuy)} ,

I(x, y) =
√
xy

2

∫ ∞

π

dv v2 e−2ρ2v2 {xJ1(vx)J0(vy) − J0(vx)yJ1(vy)} (3)

for chGSE-chGUE crossover. Here xi ≡ λi/Δ(0) are unfolded eigenvalues. The prob-
ability E(s) that the interval [0, s] contains no eigenvalues is given as the Fredholm
determinant

E(s) = Det(1− K̂s)1/2, (4)

where K̂s is an integral operator of convolution with the dynamical Bessel kernel
K(x, y) (1)–(3) acting on two-component L2-functions f over the interval [0, s],
(K̂sf)(x) =

∫ s
0 dyK(x, y)f(y). The probability distribution p1(s) of the unfolded

smallest eigenvalue s = λ1/Δ(0), which is half of the very central level spacing, is
given by the first derivative p1(s) = −E′(s). See Ref.24) for an alternative derivation.

In the limit x, y � 1 with r = x−y kept finite, the eigenvalues x, y are liberated
from repulsion by their mirror images −x,−y and their correlation becomes transla-
tionally invariant. The S,D, I components of the kernel in this limit are given by,16)

S(r) =
sinπr
πr

, D(r) =
∫ π

0

dv

π
v e2ρ2v2

sin vr, I(r) =
∫ ∞

π

dv

πv
e−2ρ2v2

sin vr, (5)

S(r) =
sinπr
πr

, D(r) =
∫ ∞

π

dv

π
v e−2ρ2v2

sin vr, I(r) =
∫ π

0

dv

πv
e2ρ2v2

sin vr, (6)

for GOE-GUE and GSE-GUE crossover, respectively. These expressions can be used
to interpolate between two nonchiral ensembles, GOE (GSE) at ρ = 0 and GUE at
ρ = ∞. The gap probability E(s) is again given as (4) with this dynamical sine
kernel.15) The distribution P (s) of the level spacings s = xi+1 − xi is given by the
second derivative P (s) = E′′(s).

An efficient way of evaluating the Fredholm determinant of a trace-class operator
K̂s acting on L2-functions over an interval [0, s] is the Nyström-type discretization25)

Det(1 − K̂s) � det
[
δij −K(xi, xj)

√
wiwj

]m

i,j=1
. (7)

Here, the quadrature rule consists of a set of points {xi} taken from the interval [0, s]
and associated weights {wi} such that

∫ s
0 f(x)dx � ∑m

i=1 f(xi)wi. As the order m of
the approximation increases, the RHS of (7) is proven to converge uniformly to its
LHS. The convergence is rapid and exponentially fast.25) For our purpose, we employ
the Gauss quadrature rule (sampling at the Legendre nodes), as 15-digit accuracy
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Fig. 1. Smallest eigenvalue distributions (top), microscopic level densities (center) and level spacing

distributions (bottom) for (ch)GSE-(ch)GUE (left) and (ch)GOE-(ch)GUE (right) crossover.

is known to be attainable already with only m = 5 for the Fredholm determinant
E(0.1) for the sine kernel.25) We have applied the Nyström-type method to the
dynamical Bessel kernel (1), (2), (3) and the dynamical sine kernel (1), (5), (6),
and evaluated p1(s) and P (s) for chG(O,S)E-chGUE and G(O,S)E-GUE crossover,
respectively. In order to achieve the accuracy needed for computing the first and
second derivatives (p1(s) and P (s)) to a high precision, we chose the approximation
order m to be at least 20 for the former and 100 for the latter, and confirmed the
stability of the results for increasing m. Plots of p1(s) and P (s) for the region
0 ≤ s ≤ 3 − 4 and for the parameter range ρ � 1 are exhibited in Fig. 1. Although
Mehta and Pandey15) have expressed P (s) in terms of eigenvalues of an infinite-
dimensional matrix, the elements of which are integrals involving prolate spheroidal
functions, numerical plots of p1(s) for parametric chiral RM ensembles have never
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appeared in the literature. We also exhibit single-level densities R1(x) (1) in Fig. 1,
whose first peaks comprise p1(s). The practical advantage of adopting distributions
of individual level spacings over n-level correlation functions (R1(x), etc.) for fitting
is clear from the figures. As the oscillation of the latter consists of overlapping
multiple peaks, the characteristic shape of each peak is inevitably smeared, to yield
a rather structureless curve for which an accurate fit is difficult. On the other hand,
the shape of the former is clearly distinguishable and is extremely sensitive to the
ρ parameter, because the ratio of p1(s) or P (s) for the orthogonal and symplectic
classes to that for the unitary class grows as exp π2s2

16 for large s. Therefore, p1(s)
and P (s) admit very sharp one-parameter fitting by the least-squares method or (in
principle) simply from the tails of the curves.
Dirac spectrum The Dirac operator of QCD-like theory with quarks in a real or
pseudoreal representation possesses antiunitary symmetry unlike those in complex
representations:8) the Euclidean Dirac operator for quarks in the fundamental (ad-
joint) representation of SU(2) commutes with Cτ2K (CK). Here, C is the charge
conjugation matrix, τ2 is one of the generators of the gauge group and K is the
complex conjugation. As (Cτ2K)2 = +1 ((CK)2 = −1), D is essentially a real
symmetric (quaternion self-dual) matrix. The reality and self-duality of the contin-
uum Dirac operators are known to be interchanged for the lattice staggered Dirac
operators owing to the absence of the charge conjugation matrix.26) Since the U(1)
Dirac operator in a continuum or on a lattice possesses no such antiunitary sym-
metry, the Dirac operator in the fundamental representation of SU(2) (the adjoint
representation of SU(N))×U(1) has its antiunitary symmetry (weakly) broken. As
the simplest example, we consider SU(2) quenched lattice gauge theory under the
twisted boundary condition, that is, we multiply SU(2) link variables on the tempo-
ral boundary of the hypercubic lattice of size V = L4 by a constant phase eiθn,µ with
θn,μ = 2πϕ δn4,Lδμ,4 (ϕ 	 1). As SU(2) Dirac operators possess (pseudo)reality
either for the periodic or antiperiodic boundary condition on each dimension, we im-
pose periodicity (antiperiodicity) for the spatial (temporal) direction and consider
a small deviation (twisting) in the temporal boundary condition. This twisting is
gauge-equivalent to a fixed U(1) background of flux 2πϕ or imaginary chemical po-
tential μ = i2πϕ/L, which is the measure of symmetry violation and plays the rôle
of α in the parametric RMs.27) Its effect on the chiral Lagrangian is completely
dictated,12) in parallel with the case of real chemical potentials.5)

For our aim of confirming the presence of chG(S,O)E-chGUE crossover in lattice
gauge theories, we restrict ourselves to the strong coupling region of SU(2) at β =
4/g2 = 0− 1, where the level density at the origin, 1/Δ(0), is sufficiently above zero
and the chiral symmetry is spontaneously broken. Accepting that the model is away
from the continuum limit, we employ the simplest algorithm: unimproved plaquette
action and a 10-hit heat-bath update coupled with overrelaxation. Because of our
need to detect possibly small deviations of spectral fluctuation from the universal RM
statistics at either end (ρ = 0 or ∞), we give priority to the number of independent
gauge configurations and perform our simulation on a lattice of the smallest size V =
44. This choice is sufficient for measuring the local behavior of eigenvalues within
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3Δ − 4Δ and determining the ρ parameter precisely. In this region, the systematic
deviation due to the smallness of the lattice is expected to be less prominent (it will
manifest itself at larger separation) than the statistical fluctuation.

Dirac spectral statistics are fitted to parametric RM predictions by the follow-
ing steps: (i) First we perform pure SU(2) simulations for each β and measure the
smallest fundamental or adjoint staggered Dirac eigenvalue λ1 for O(105) configu-
rations. Taking for granted that Dirac eigenvalues obey chG(S,O)E statistics, we
find the value of Δ that optimally fits the histogram of the smallest Dirac eigenvalue
to the rescaled chG(S,O)E result p1(λ1/Δ)/Δ. (ii) Next, we multiply the SU(2)
link variables by the twisting phases and measure all Dirac eigenvalues {λi} for
Nconf = O(104) independent configurations. The unfolded smallest eigenvalue is still
defined by x1 = λ1/Δ(0) with respect to Δ(0) determined from pure SU(2) simula-
tions. We fit the frequencies of x1 to the RM prediction p(ρ)

1 (s) by the least-squares
method and find the optimal value of ρ. The valid range of fitting the smallest
eigenvalue x1 is chosen to be [0, 2.8] (fundamental) and [0, 1.6] (adjoint), divided
into 20 segments. (iii) Finally, we measure the distribution of level spacings from
the spectral ‘plateau’ [λm, λM] adjacent to but not including the origin, in which
the mean level spacing Δ(λ) is well approximated as a constant close to Δ(0). In
order to avoid possible distortion of the level spacing distribution, we take λm not
too close to the origin and set its smallest value to be the 11th eigenvalue. We fit
the frequencies of unfolded level spacings s = (λi+1 − λi)/Δ(λ̄), λi, λi+1 ∈ [λm, λM]
to the RM prediction P (ρ)(s) as before. Thanks to the enormous gain in statistics
resulting from the spectral averaging, we can safely set the fitting range to be as
large as [0, 3.8] and divide it into 40 segments.
Simulation results We generated 40000 independent configurations at each value
of the coupling constant β = 0, 0.5, 1 and the twisting ϕ = 0.01 − .06 on a lattice
of dimensions V = 44. Optimal values of ρ determined from the smallest eigenvalue
distributions (SED) and level spacing distributions (LSD) for the fundamental (F)
and adjoint (A) representations are tabulated in the central columns of Table I.

Table I. Crossover parameters and low-energy constants.

β rep/dist Δ Σ ρ
√

Δρ F 2 F 2

ϕ=.01 .02 .03 .04 .05 .06 μ Σ

0 F/SED .00930(2) 1.319(2) .059(1) .121(1) .182(1) .239(2) .302(2) .363(2) .370(1) .215(1) -

F/LSD .00929(0) - .061(0) .122(0) .182(1) .244(1) .304(2) .364(4) .374(1) .220(1) .290(1)

A/SED .00620(1) 1.980(3) .076(1) .150(2) .224(3) .288(5) .373(7) .435(9) .372(3) .217(3) -

A/LSD .00618(0) - .075(3) .149(4) .223(6) .298(9) .371(14) .444(22) .372(5) .218(6) .432(11)

0.5 F/SED .01014(1) 1.210(1) .052(1) .102(1) .156(1) .206(2) .257(1) .308(2) .330(1) .171(1) -

F/LSD .01004(0) - .052(0) .103(0) .155(1) .206(1) .257(1) .307(2) .329(1) .170(1) .208(1)

A/SED .00629(1) 1.951(2) .066(1) .131(2) .197(3) .258(4) .312(5) .370(7) .324(2) .165(2) -

A/LSD .00622(0) - .067(3) .134(4) .202(5) .268(7) .331(9) .400(18).336(4) .177(4) .350(9)

1 F/SED .01132(13)1.084(12) .046(2) .094(1) .138(1) .185(1) .233(2) .280(2) .315(1) .156(1) -

F/LSD .01105(0) - .048(0) .095(0) .143(1) .190(1) .237(1) .284(2) .319(1) .160(1) .177(1)

A/SED .00633(2) 1.939(7) .066(2) .134(2) .198(3) .257(4) .320(6) .391(7) .332(2) .173(2) -

A/LSD .00632(0) - .067(4) .133(4) .198(5) .265(7) .331(11) .398(16).335(4) .176(5) .342(9)
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Fig. 2. Smallest eigenvalue distributions (top), microscopic level densities (center) and level spacing

distributions (bottom) of SU(2) fundamental (left) and adjoint (right) staggered Dirac operators

at coupling β = 0.5 and flux ϕ = 0.01 − .06. V = 44, Nconf = 40000.

Sample plots of p1(s), R1(x) and P (s) at β = 0.5 are exhibited in Fig. 2. In all
figures, measured histograms are plotted by colored dots, and optimally fit paramet-
ric RM results are shown as curves of the same color. Also plotted in the figures
are the results from chG(S,O)E or G(S,O)E (black real lines), and chGUE or GUE
(broken lines). Note that the microscopic level densities R1(x) are not fitted to the
corresponding data, but are merely obtained by substituting the values of ρ deter-
mined from the SEDs. Even by inspection, the precision of one-parameter fitting
is convincing in all distributions shown. The ranges of χ2/d.o.f. for the optimal
RM distributions are 0.53− 1.47 (Fund/SED), 0.56− 1.57 (Adj/SED), 0.64− 1.49∗)

∗) Except for Fund/LSD at very small ρ . 0.1, where the distribution becomes extremely peaky

at small s owing to the onset of Kramers degeneracy and the fitting error is inevitably enhanced.
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(Fund/LSD), 0.68 − 1.30 (Adj/LSD). Considering the smallness of our lattice, the
precision achieved is astonishing; it is even more surprising when one recalls the
acute sensitivity of P (ρ)(s) to ρ shown in Fig. 1. The goodness of fit is compa-
rable to those in the pioneering papers,19) which involved fitting to the spectral
data from larger lattices: χ2/d.o.f. = 0.33 for quenched QCD on a 124 lattice and
χ2/d.o.f. = 1.13−1.33 for dynamical QCD on a 64 lattice, with O(103) configurations.

Fig. 3. Ratios between the twisting ϕ and the

crossover parameter
√

Δρ at β = 1.

From Table I one notices that (i) for a
fixed gauge coupling β, the relationships
between ϕ and ρ are all reasonably lin-
ear. In Fig. 3, we present a sample plot
of

√
Δρ/ϕ at β = 1. The error bars in-

dicated are statistical only. The mean
values of this ratio, namely from LSDs,
are very stable under the change of flux
ϕ and fluctuate only within 0.5%, and
(ii) the values of ρ determined from SED
and from LSD are in good agreement, as
they should be. High linearity will be es-
sential for the precise determination of
the pion decay constant.

Low-energy constants The effective low-energy Lagrangian for QCD-like theories
with NF flavors of quarks in a (pseudo)real representation at a finite chemical poten-
tial μ and bare quark mass m is unambiguously fixed by the global symmetry alone
(as long as μ is much smaller than the vector meson mass) and takes a form contain-
ing two phenomenological constants: F the ‘pion’ decay constant and Σ =

〈
ψ̄ψ

〉
/NF

the chiral condensate, both measured in the chiral and zero-chemical potential limit
m, μ→ 0. If the theory is in a finite volume V = L4 and the Thouless energy defined
as Ec ∼ F 2/ΣL2 is much larger than m, the path integral is dominated by the zero
mode and takes the tractable form

Z =
∫

SU(2NF )
dU exp

(
V μ2F 2 tr (B̂U †B̂U + B̂B̂) +

1
2
V ΣmRe tr M̂U

)
. (8)

Here, U is an SU(2NF ) matrix, B̂ = σ3 ⊗ 1NF
and M̂ = σ1 ⊗ 1NF

(iσ2 ⊗ 1NF
) for

quarks in a real (pseudoreal) representation. In order to extract the Dirac spectrum,
one introduces fermionic as well as bosonic quarks in the fundamental theory, leading
to the graded group version of (8) on the effective theory side. Parametrizing the
graded matrix U in terms of its eigenvalues and comparing the resulting expression
(after analytic continuation μ → iμ and m → iλ) with the RM results (2) and (3),
the coefficients of the chemical-potential and ‘mass’ terms in the exponents on both
sides are readily identified as 4V F 2μ2 = 2π2ρ2 and V Σλ = πx, respectively. Using
the definition of the unfolded eigenvalues x = λ/Δ, the latter gives the Banks-Casher
relation Σ = π/ΔV , which determines one of the low-energy constants Σ in terms of
Δ. Eliminating the volume in favor of the level spacing, the former equation becomes
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√
Δρ =

√
2
π

F 2

Σ
μ =

√
2
π

F 2

Σ

2π
L
ϕ, (9)

where the left-hand side is a volume-independent combination. Accordingly, one
can determine another low-energy constant F 2/Σ from the slope of ϕ-

√
Δρ plots,

preferably on lattices of various sizes. In the next-to-rightmost column of Table I we
exhibit the values of F 2/Σ, with all the numerals in the lattice unit.

Fig. 4. Low-energy constants F 2 and Σ for

SU(2) quenched lattice gauge theory.

Note that in the parameter region
V Σ|m| � 1, Eq. (8) should approach
the σ model of nonchiral parametric RM
ensembles,17) but the pion decay or dif-
fusion constant multiplying tr B̂U †B̂U
is unaffected. Accordingly, if the mean
level spacing is approximately constant
in a window in the very vicinity of the
origin, one can determine F 2/Σ from
the bulk correlation (namely the LSD)
in that window. As LSDs admit the
high-precision determination of ρ and
achieve much higher linearity of the ϕ-√
Δρ plots than those from SEDs (Fig. 3), we have adopted the former for the

determination of F 2/Σ. The coupling dependence of these low-energy constants is
summarized in Table I and plotted in Fig. 4 (including the result from simulations
at β = 1.5). In order to offset the number of components in the gauge multiplet,
the plots of the adjoint are multiplied by 2/3. At β = 0, both low-energy constants
agree between the fundamental and adjoint representations. This observation is con-
sistent with the fact that in the strong coupling limit these constants are common
to the large-N Sp(2N) and O(N) lattice gauge theories,28) which share the same
antiunitary symmetries as the SU(2) fundamental and adjoint.
Summary We have evaluated the smallest eigenvalue and level spacing distribu-
tions for (ch)GSE-(ch)GUE and (ch)GOE-(ch)GUE crossover using a Nyström-type
method, the former being our new contribution. These RM results are applied to
fit the fundamental and adjoint staggered Dirac spectra of SU(2) quenched lattice
gauge theory under the twisted boundary condition. Excellent one-parameter fitting
is achieved for all cases of interest. The acute sensitivity of our fitting distributions,
p1(s) and P (s), on the crossover parameter ρ leads to the precise determination of
the pion decay constant F from its twisting dependence. This method, feasible on
a small-size lattice, has a clear advantage over the conventional method using axial
correlators, which inevitably requires a large temporal dimension.

Our treatment is complementary to the previous approach of determining F for
two-color QCD from its Dirac spectrum,10) which conversely measured the response
of complex Dirac eigenvalues to a real chemical potential. From a practical point
of view, the use of imaginary chemical potential is advantageous because (i) it does
not require the projection of eigenvalues to the real or imaginary axis for fitting,
which is usually requisite for dealing with complex eigenvalues, and (ii) the two-
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dimensional motion of complex eigenvalues may lead to large statistical fluctuation.
Similar complementary treatments were applied for three-color QCD at real and
imaginary isospin chemical potentials, corresponding to non-Hermitian chiral RMs19)

and Hermitian crossover chiral RMs,20),29) respectively. Combined with the results
reported here, which fill the vacancy, the established fact that Dirac spectra in
all three cases (SU(2)-fund.+μ, SU(2)-adj.+μ, SU(3)-fund.+μiso) agree perfectly
with predictions from corresponding zero-mode-approximated chiral Lagrangians in
both regions of μ2 ≷ 0 constitutes encouraging evidence for the validity of analytic
continuation in the μ-plane.

Finally, we note that our preliminary simulation has affirmed that the Dirac
spectra of SU(2)×U(1) quenched lattice gauge theory also fit excellently to the para-
metric RM predictions. We are currently accumulating data on lattices of larger size
than that treated here, and the results will be reported in a subsequent publication.
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